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COUPLED CLUSTERS AND COULOMB CORRELATIONS 

R.F. Bishop 
Department of Mathematics 

Univers i ty  of Manchester I ns t i t u t e  of Science and Technology 
P.O. Box 88, Manchester M60 IQD, England 

I .  INTRODUCTION 

In th is  paper I intend to give a summary of work carr ied out in the las t  few 

years on developments of the coupled-cluster formalism, and i t s  appl icat ion to i n f i -  

n i te  systems of e i ther  bosons or fermions. In pa r t i cu la r  I shal l  concentrate whol ly  

on systems in terac t ing  via the two-body Coulomb force, and hence mainly, but not en- 

t i r e l y ,  on problems involv ing the long-range behaviour of many-body systems. Much of 

th is  work on the one-component Bose and Fermi plasmas has been carr ied out in col labo- 

rat ion with K.H. L~hrmann. 

2. COUPLED-CLUSTER FORMALISM 

I present f i r s t  a b r i e f  ou t l ine  of  the main elements of the coupled-cluster 

formalism needed here. A f u l l  review of the formalism has recent ly  been given, 1 a l -  

though th is  deals almost exc lus ive ly  wi th appl icat ions in nuclear physics, and hence 

large ly  with problems invo lv ing short-range cor re la t ions,  rather than with the long- 

range corre lat ions of the sort induced by the Coulomb force and which la rge ly  concern 

us here. The interested reader is directed to the a r t i c l e  by L~hrmann 2 for  a formula- 

t ion that perhaps best stresses i t s  physical content, and to another a r t i c l e  wi th the 

present author that  sets the formalism f i rm ly  in the context of the one-component 

electron plasma. 3 

In terms of a su i table model, or uncorrelated, N-body wavefunction I@>, the 

(usual l inked-c lus ter )  ansatz for  the exact Coulomb-correlated N-body ground-state 

(g.s.)  wavefunction I~>, 

I~> = eSl~> , 

is made, and we consider I~> normalized to 

model Fermi states of Slater determinant form, 

a f a t IO>, 
I@F > = v1 " ' "  u N 

( i )  
I@> by <@I~> = I .  I deal here with 

(2) 

with I0> the vacuum state,  and where the operators a~ are a set of fermion crea- 

t ion operators for  the orthonormalized s ing le -pa r t i c l e  (~.p.)  states lu i  >. For 

bosons, the antisymmetrized product of s.p. states is replaced by the (symmetric) 

s ing le-state condensate, 

I~B > = (N~)-~(b~)NIo> , (3) 

where the operator b t creates a boson in state o, and, more general ly ,  the opera- o 
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tors b f create bosons in a complete orthonormal s.p. set I~i >. 

Alth~ugh i t  is evident ly possible to consider more general s.p. states, i t  is 

important for  la te r  discussions to real ize that for  a l l  l a te r  results reported, I 

deal exclusively with plane-wave s.p. states. Thus I@F > represents the usual f i l l e d  

Fermi sea, and I@B > the usual completely occupied zero-momentum condensate: both 

isot ropic ,  homogeneous states of zero to ta l  momentum. The correlat ion ooerator S 

is decomposed into n-body (n s N) components, 

N 
S = l S , (4) 

n=2 n 

(n~) - I  Z b t . . . b  t S (p1...pn)(N -I/2 b 
n 

p1...p n Pl Pn n o) ; bosons 

S n = (5) 
(n~) -2 Z a t . . .a t <pl...PnISnl~Z...~ >a .. • fermions 

p l . . . p  n Pl Pn n ~n "avl '  

~1...~ n 

The notation used in Eq.(5), and henceforth, re f lects  the l inked-c luster  aspect of 

the expansion, v iz .  s.p. labels ~i indicate states normally occupied in I@> ( i . e .  

states inside the f i l l e d  Fermi sea for  fermions or the zero-momentum state, ~zO, for  

bosons); and s.p. labels Pi indicate normally unoccupied states. Where necessary 

la te r ,  s.p. labels ~i run over a l ]  s.p. states ( i .  e. a complete set).  I t  is impor- 

tant to real ize that the sum in Eq.(4) omits the term n=l only as a consequence of 

our implied assumption that the exact g.s. wavefunction I~> is also an eigenstate 

of to ta l  momentum (with eigenvalue zero). 

Physical ly ,  S n represents the true correlat ion operator for  an n-body subsystem 

that remains a f te r  a l l  the factor izable (or Unlinked) correlat ions have been removed 

from the (complete) n-body subsystem amplitude operator ~n' defined by i t s  matrix 

elements, 

<~ l . . .~n I~n l~ l . . .~n~ ~ <~ la : l . . . a  t a . . .a  ]~>, fermions 
~n an ~I (6) 

~n(~ 1"" .~n) ~ <@I(N-I/2 bo ) t  nbn.  . . b l I ~ >  , bosons 

where, for  fermions, the subscript A on a ket state indicates an e x p l i c i t l y  ant i -  

symmetric state 

l~'-'~n~ ~ at " ' 'a f  I O> • 

~I 9n 

as example, the 2- and 3-body subsystem amplitudes ~2 and ~3 can Thus, for  bosons 

be expressed as, 

~2 (~ i~2 )  = 

~3(~1~2~3)  

(N 2~ ,o)( N 2~ 2,o) + S2(c~l~2) 
1/ 1 1/ 1/ 

= (N/2~ ) (N/2~ )(N/2~ ) 
c~ I ,0 c~250 c~3,0 

+ S123[S2(=I~2)(N 2(Se¢3,0)] + S3(~i~2~3), 

(7) 
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in the thermodynamic l i m i t  (N ÷ ~; volume ~ + ~, p = N/Q f i n i t e ) ,  and where 

S12 3 generates the sum of a l l  terms obtained by cyc l i c  permutation of  the labels 

~1, ~2 and ~3- 

An equivalent physical descr ipt ion of S n ( fo r  fermions) is that i t s  matr ix 

elements give the exact amplitudes that describe the exc i ta t ion  of n par t i c le -ho le  

pairs;  where par t ic les and holes refer  respect ively to states normally unoccupied and 

normally occupied ( in the model wavefunction r~>). For bosons the role of the hole 

states is played by the condensate. I t  seems i n t u i t i v e l y  apparent that  in order for 

our ansatz ( I )  to be useful ,  the physical system under consideration ought to share 

at least q u a l i t a t i v e l y  the features b u i l t  in to the model state I~>. More e x p l i c i t l y  

we expect our choices I~F > and ]~B > to have relevance respect ively only to real 

fermion systems in states where some semblance of the sharp Fermi surface s t i l l  re- 

mains, and to real Bose systems which contain a f i n i t e  f rac t ion of the par t ic les  in 

a zero-momentum condensate. This would seem to rule out from the outset fo r  fermions, 

for  example, an accurate descr ipt ion of "abnormal" or "super" phases, or indeed of 

anything but the usual " l i qu i d "  or "Fermi f l u i d "  phase. Later, I give some ind icat ion 

that th is  i n t u i t i v e  fee l ing may well be fa lse;  or at least that the coupled-cluster 

formalism may be much more powerful than th is  too pess imis t ica l l y  narrow interpretat ioP 

would seem to al low. 

Formally, the g.s. coupled-cluster formalism now proceeds by decomposing the N- 

body Schr~dinger equation 

Hl~> = EI~> (8) 
in to a coupled set of equations for  the matr ix elements of the cor re la t ion operators 

S n. Formally th is  may be achieved by taking the overlap of Eq.(8) wi th the states 

<~i(a i . . .a  f a . . .a  ) for  n = 0,I .N, to net a set of  coupled equations fo r  

the elements <|~nl>. F ina l l y  the amplitudes ~n are decomposed in terms of the 

corre la t ion amplitudes of the S n, which has the e f fec t  of e l iminat ing a l l  macrosco- 

pic terms ( i . e .  those, l i ke  E, which are proport ional to N) from the essen t ia l l y  

microscopic subsystem equations. This whol ly algebraic procedure resul ts  in a coupled 

set of equations for  the elements of S n, in which the i t-~h equation for  S i is cou- 

pled to both Si+ 1 and Si+ 2 (as well as to a l l  Sj with j < i ) ,  for  a Hamiltonian 

H invo lv ing two-body potent ia ls  only. For the technical deta i ls  of the der ivat ion 

the reader is  referred to Re fs . [ l -3 ] .  Clear ly ,  in order to be useful th is  exact 

coupled hierarchy needs to be truncated; and as an obvious i n i t i a l  step I discuss the 

so-cal led SUBn approximation scheme in which I set S i = 0 for  a l l  i>n, and the 

remaining equations are treated as accurately as possible. 

I now apply the coupled-cluster formalism to one-component Coulomb systems, 

stressing mainly the qua l i t a t i ve  nature of the resul ts  in order more c lear l y  to de- 

monstrate the power of the formalism. To th is  end I spend more time on the mathema- 

t i c a l l y  much simpler boson equations, and indicate only more b r i e f l y  t he i r  fermion 

counterparts. 
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3. APPLICATION TO ONE-COMPONENT COULOMB SYSTEMS 

The Coulomb potential with a uniform, r i g id  and neutral iz ing background present 

i s ,  

v(q) = 4~e2 I I -  ~i~,0] (9) 
~q2 

The density p may be expressed e i ther  in terms of the usual dimensionless coupling 

constant r s, which is the average in te rpar t i c le  spacing in units of the Bohr radius 

ao° or in terms of a ( for  bosons, f i c t i t i o u s )  Fermi wavenumber k F applicable to an 

unpolarized spin-½ system, 

p = (4~r3a3/3) - I  = k~/3~2 o (I0) 

Henceforth, the g.So energy per par t ic le  is expressed in Rydberg units by 

E/N = ~(e2/2ao) , ( I I )  

and any dimensionless momentum variables that appear have been scaled against the 

Fermi momentum ~nk F, defined by Eq.(lO). 

3...I Charged ' Bose system 

For spin-zero bosons, the e xa.c.t two-body equation for  S2(q) --- S2(q,-q) may 

readi ly  be found by the method sketched in Sect.2: 

~2q2 , ½ + +, ÷ ÷ ÷ + +, ÷, 
' '~  S2(q ) + TRp A + TCp + TEA D + ~v(q )[2N S3(q, q , -q-q ' )  + ½NS4(q,-q,q ,-q )]  = O, 

~' (12) 
TRp A = Nv(q)[l+S2(q)]2 ; TCp = -41~-$2(q); TLA D = v(q-q ' )S2(q ' ) ,  

and where the g.s. energy per par t ic le  is given by, 

E/N = ½Nv(O) + ½~v(q)S2(q) . (13) 

The SUB2 approximation is obtained from Eq.(12) by putting S 3 and S 4 to zero. 

The remaining f i r s t  four terms in Eq.(12) represent respect ively ( i )  the k inet ic  

energy (KE) contr ibut ion, ( i i )  the terms that generate the ring or bubble diagrams 

of the random-phase approximation (RPA), ( i i i )  the terms that generate the se l f -  

consistent (s .c . )  energy insert ions on the zero-momentum condensate l ines,  i .e .  the 

s.c. condensate potential (CP), and ( iv )  the terms that scatter the two par t ic les 

outside the condensate and hence generate the two-part ic le ladder (LAD) diagrams. 

Insert ing the potential  from Eq.(9) into the SUB2 equation gives, in dimensionless 

var iables,  

q2S2(q) + 4~rs(3~q2)-1[l+S2(q)] 2 - 2(~rs)2~S2(q) 

ars dq'q'~n (q')  = O; (14) + --~- 
o 

= 2(  rs) lJd  S2(q), (15) 
JO 
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where ~ ~ (9~/4) ~ . 

Although Eqs.(14) and (15) are read i ly  amenable to numerical so lu t ion,  i t  is 

more ins t ruc t i ve  here to examine them in the high density ( r  s ÷ O) and low density 

( r  s ÷ ~) l im i t s .  In the high density l i m i t  i t  is read i ly  shown that to leading 

order for  the energy only the KE and RPA terms contr ibute.  The resu l t ing  quadratic 

equation is t r i v i a l l y  solved to give 

~rs"~ ERPA = Q rs -3/4 
(16) 

I~ dx[l+x4_x2(x4+2) ~ ]  Q = -2~-1,6 ~ ) (  - -0.8031 , 
1 

- o  

which is the exact resu l t  f i r s t  obtained by Foldy. 4 I t  is not d i f f i c u l t  to show that 

the next term in the high-densi ty expansion is a constant, 

~r'-%~ Q rs -3/4 + R , (17) 
S 

and that both the CP and LAD terms now contr ibute to R. I f i nd ,  

RSUB2 = RCp + RLAD; RCp = 16/157, RLA D = 32/45~ . (18) 

By inspecting Eq.(12) and the equivalent equations for  S 3 and S 4 i t  can however 

be shown that the coupling terms to S 3 and S 4 in the exact Eq.(12) also contr ibute 

to the constant R (although not to Q). I have also calculated the constant R 

given by the exact two-body Eq.(12), keeping the complete coupling to three- and four- 

body c lusters.  I f ind that ,  to th is  order, the 3-body cor re la t ion amplitude S 3 

needed in Eq.(12) may be replaced by, 

-m m3~ql,q2,q 3) ÷ [m(ql)+m(q2)+m(q3)]-~S123[{v(ql)(l+S2(ql )) 

+ v(q2)( l+S2(q2))}S2(q3)] ,  (19) 
÷ ÷ ÷  

fo r  ql+q2+q3 = O, and where the e f fec t ive  s.p. energy i s ,  

m(q) = ~2q2/2m + Nv(q)( l+S2(q));  (20) 

and a s im i la r  replacement may be made for  S 4 by examining the 4-body equation. 

Equations (12) and (13) then lead to 

R = RSUB2 + R 3 + R 4 ~ 0°0280 (21 

where both the contr ibut ions R 3 and R 4 from the coupling terms to S 3 and S 4 

in Eq.(12) are f i n i t e •  The f ina l  resu l t  of Eq.(21) is exact, and an extremely tedious 

rearrangement of the integral  expressions shows i t  to be in precise agreement wi th 

the f i r s t  correct resu l t  reported, of Brueckner. s I t  is worth point ing out that ,  by 

contrast with most competing methods, each of the terms in Eqs.(18) and (21) is f i -  

n i t e ,  and no cancel lat ion of spurious logar i thmic s i ngu la r i t i es  occurs• This par t icu-  

la r  point  h igh l igh ts  a more general advantage of the coupled-cluster formalism --  

namely that terms which tend to cancel each other are automat ical ly grouped together. 

Turning now to the more revealing low-density l i m i t ,  naively one would not ex- 

pect the SUB2 approximation to give any reasonable resu l t  at a l l  in th is  strong- 
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coupl ing regime, since one imagines that  the n-body c lusters even wi th n >> 2 are 

s t i l l  very important.  Indeed one bel ieves the real Coulomb system to undergo a phase 

t r a n s i t i o n  to a Wigner so l i d  6 in th is  l i m i t ,  and the so l i d  may be regarded as an 

archetypal system where the N-body co r re la t i ons  dominate. At any rate i t  is c lear  

that  the low-densi ty Coulomb systems provide one of  the most s t r i ngen t  tests fo r  our 

formalism. 

I t  is r ead i l y  seen from Eqs.(14) and (15) that  in the SUB2 approximat ion,  

+ Brs -3/2 + O( ) ,  (22) ~SUB2 r - ~ ' -  _ Ar s-1 rs2 
s 

where the KE term contr ibutes only to the constant B in leading order.  In th is  

l i m i t  the terms RPA, CP and LAD are a l l  necessary fo r  a quan t i t a t i ve  eva luat ion  of  the 

constant A, but they play d i s t i n c t l y  d i f f e r e n t  q u a l i t a t i v e  ro les.  Thus i t  is v i t a l  to 

keep the RPA terms to get the correct  ana l y t i c  behaviour because, as expected, these 

terms continue to be cruc ia l  fo r  the long-range (q ÷ O) screening of  the Coulomb 

p o t e n t i a l .  S i m i l a r l y  the CP plays a cruc ia l  ro le  now in the short-range (q ÷ ~) 

l i m i t .  Whereas the inc lus ion  of the LAD term q u a n t i t a t i v e l y  changes the constants A 

and B in Eq.(22),  i t  may sa fe ly  be omitted wi thout  changing the ana l y t i c  form of Eq. 

(22). Dropping the LAD term from Eq.(14),  I f ind  

SUB2 - LAD approxn.: A = (32/3~2) I/3 " 1.03; B = 31/2~/8 - 0.68 . (23) 

Use o f  the v i r i a l  theorem v e r i f i e s  our expectat ion tha t  the leading term in Eq.(22) is 

purely  po ten t ia l  energy; and furthermore shows that  the much more i n te res t i ng  second 

term is exac t l y  one ha l f  each k i ne t i c  and po ten t ia l  energies - -  which a t  the very 

leas t  is s t rong ly  reminiscent of  simple harmonic motion and of  the behaviour expected 

o f  a so l i d .  

Indeed, as f i r s t  pointed out by Wigner, 6 the energy o f  the system is minimised in 

th is  low densi ty l i m i t  by the pa r t i c les  c r y s t a l l i z i n g  in to  a regu lar  per iod ic  l a t t i c e ,  

- . Whereas in a which leads to an e l e c t r o s t a t i c  po ten t ia l  energy propor t iona l  to rs 1 

f l u i d  phase the pa r t i c les  are f ree to occupy the whole volume, which by the uncer ta in ty  

p r i n c i p l e  leads to a k ine t i c  energy propor t iona l  to rs-2,  in the Wigner so l id  phase 

the pa r t i c l es  are constrained to o s c i l l a t e  about the f i xed  l a t t i c e  s i tes  and hence to 

have a greater  k i n e t i c  energy. Elementary considerat ions o f  simple harmonic motion 

lead to a k ine t i c  energy propor t iona l  to rs -3/2 The exact expansion in the Wigner 

-i/2 where the terms of order r -2 and higher so l i d  phase is  a power ser ies in r s s 

are due to anharmonici t ies in the zero-po in t  motion. Based on a b .c .c ,  l a t t i c e ,  

Carr et  a l .  7 g ive,  

. ~ - + 2.65 r - ~ 2  0.73 rs-2 + . . .  ~exact rs ~<~ - 1.792 r s i s - (24) 

C lear l y  our approximation in Eqs.(22) and (23) has the correct  ana l y t i c  form fo r  

the energy o f  a s o l i d ,  although the values o f  the coe f f i c i en t s  are considerably under- 

est imated. What is more important however is that  even the lowest SUB2 approximation 

in the coupled-c luster  scheme gives a low-densi ty  energy which cannot possib ly  repre- 
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sent what is normally understood by a f l u i d  phase, since the par t ic les are d e f i n i t e l y  

not free to occupy the whole volume. 

Thus i t  is c lear that our i n t r i n s i c a l l y  f l u i d - l i k e  and everywhere t r ans l a t i ona l l y  

invar ian t  approach can provide a good descr ipt ion of both f l u i d  and so l id  phases; and 

we can understand the p o s s i b i l i t y  of th is  by s im i la r  reasoning to that behind the 

fam i l i a r  " f l oa t ing  crystal  model" of Feenberg. 8 On the other hand, we must s t i l l  face 

the fact  that  three- and more-body effects can only be treated in SUB2 approximation 

in an average sense, and cannot possibly represent the detai led in ternal  structure of 

a l a t t i c e  wavefunction. While I have presented e x p l i c i t  evidence that th is  is not a 

severe l im i t a t i on  at least as far  as the qua l i t a t i ve  behaviour of the g.s. energy is 

concerned (and probably also for  matrix elements of other few-body operators), the 

fact  remains that for  a charged Bose system in the low-density l i m i t ,  the th i rd  and 

higher order corre lat ions are s t i l l  very strong. Thus accurate values of the coe f f i -  

cients A and B cannot be expected° I note here that  numerical calculat ions of the 

complete SUB2 equation including the LAD term do not change th is  overal l  p ic ture.  In 

fact  our approximate value of A from Eq.(23) is lowered by about 20% by including the 

LAD term, thereby increasing the discrepancy with the Wigner value. ( I  note also 

however that an evaluation of the two-body radial  d i s t r i bu t i on  funct ion w i th in  the 

SUB2 approximation gives a pos i t i ve -de f i n i t e  funct ion at a l l  densit ies only so long 

as the LAD term is included.)  

F ina l l y  I note that although the SUB2 approximation works superbly over the 

ent i re  density regime for  the Bose Coulomb system, the g.so energy is quan t i t a t i ve l y  

unsat is factory in the low-density l i m i t .  I t  is c lear that higher-order clusters must 

be incorporated; but due to the re la t i ve  s imp l i c i t y  of the Bose coupled-cluster equa- 

t ions th is  is quite pract icable,  as indeed I have already indicated in the high- 

density l i m i t .  

3.2 Charged Fermi syste m 

The SUB2 equations for  fermions, although conceptually s im i la r  to those for  

bosons, are mathematically vast ly  more complex due both to the many more terms re- 

quired by antisymmetrizat ion, and to the state- (ic.e~ momentum-) dependence induced 

by the hole states inside the Fermi sea in comparison with the unique zero-momentum 

condensate fo r  bosons. In par t i cu la r  fo r  fermions the matr ix elements S2(kl,k2;q ) 

<~I+~,~2-~IS21~I,~2 > depend not only on a momentum t ransfer  ~ as fo r  bosons but 

also on the two hole momenta E l and ~2" The complete SUB2 equation fo r  charged 

Fermi systems has been discussed in de ta i l ,  3 and i t  is c lear that a numerical so lu t ion 

of th is  non- l inear in tegral  equation fo r  a funct ion of three 3-vectors, whi le perhaps 

jus t  feas ib le ,  is not to be undertaken l i gh t l y~  Accordingly we have again examined 

various l im i t s  and approximation schemes for  handling the coupled-cluster Fermi equa, 

t ions ,  and I now b r i e f l y  report on these. 

In the high-densi ty l i m i t ,  the RPA again gives the leading cont r ibut ion to the 

cor re la t ion energy, ~c' i . e .  the g.s. energy re la t i ve  to the (uncorrelated) Hartree- 
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Fock energy. In Ref. [3] the nonlinear integral  equation for  S 2 in RPA was solved 

exact ly and in some de ta i l ,  both confirming the well-known results of Gell-Mann and 

Brueckner, 9 and giv ing for  the f i r s t  time exact ana ly t ic  forms for  the four-po in t  

funct ion S 2 and the once-integrated three-point  par t i c le -ho le  vertex funct ion. The 

Tamm-Dancoff approximation (TDA) to the r ing summation was also formulated, and the 

analogous exact solut ions in TDA were also presented for  the electron gas for  the f i r s t  

time. 

Turning to the intermediate-coupling (I ~ r s ~ 5) meta l l i c -dens i ty  regime, we no 

longer expect the RPA plus second-order exchange to be a good approximation, although 

i t  gives the f i r s t  two terms in the high-densi ty expansion for  ~ exact ly .  Thus, 
c 

qui te apart from ignoring (a) the simple exchange ef fects necessary to antisymmetrize 

RPA, we have ignored even in SUB2 approximation: (b) a l l  of the combined par t i c le -  

par t i c le  and hole-hole ladder terms, some at least of which are important fo r  the 

correct short-range behaviour; (c) the generalized self-energy correct ion terms which 

se l f - cons is ten t l y  generate both the par t i c le  potent ia l  and, much more important ly the 

hole potent ia l  (which now for  fermions plays the same crucia l  role as the CP for  

bosons); (d) classes of higher ring-exchange terms; and (e) a class of addit ional 

exchange terms which includes the par t i c le -ho le  ladder terms° In order systematical ly 

to deal with these ef fects I have proposed and implemented a fu r ther  approximation 

t ha t  enables us to study these terms much more readi ly°  

Based on a comparison with Bose systems, the fermion equations should be much 

simpler i f  they could be "state-averaged"; and the basic approximation is thus to 

average over the i n i t i a l  hole momenta k I and k 2 in÷ +2S (k l ,k2;q)  but keeping the 

exact property that f ina l  states (~i+~), (k2-q) l i e  outside the Fermi sea important 
+ ÷ ÷  

( i .e~ ,  the Pauli p r inc ip le  is exact ly implemented)° In th is  way the exact S2(kl,k2;q) 

is replaced by an averaged S2(q), and the resu l t ing  coupled-cluster equation con- 

sidered s t i l l  then i t s e l f  has to be state-averaged. Although the procedure for  th is  

l a t t e r  step is not unique, th is  works to our advantage, for  two reasons: (a) the 

averaging can be made on physical ly-mot ivated grounds rather than being imposed 

a r b i t r a r i l y ;  and (b) since we know exact resul ts fo r  S 2 in at least one l i m i t ,  name- 

l y  the RPA and TDA resul ts  for  r s + O, the errors induced by the various averaging 

schemes can be checked. As an i l l u s t r a t i o n :  carrying out the above scheme in RPA 

leads to an equation for  S 2 which involves only KE and RPA terms. Af ter  the re- 

placement $2 +~2  has been made the only state-dependence l e f t  is  in the KE term, 

which fo r  fermions is proport ional to [[~l+~]2+l~2-~12-k12-k22]S2 ~ eS 2. As two 

obvious averaging schemes one could imagine (a) replacing e + <e>; or (b) the i n t u i -  

t i v e l y  and phys ica l ly  more appealing idea of f i r s t  d iv id ing  throu9 h by e and then 

averaging the "energy denominator"; e -1 + <e-l>o I have shown that the former pro- 

cedure leads precisely to the meanTspherical ap~rqximatiQn (which Zabol i tzky I° dis- 

cusses in th is  context,  and which his state-independent, va r i a t i ona l ,  Fermi hyper- 

netted-chain (FHNC) formalism leads to in th is  r s + 0 l i m i t ) ,  which gives an E c 

in error  by 8.4% at r s + O. The l a t t e r  procedure on the other hand is exact at 
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r s ÷ O, and by comparison with the exact RPA resul ts  I show that  i t  is  fo r  no den- 

s i t y  in error  by more than 2%. There seems to be no reason why th is  resu l t  should not 

hold for  a l l  other terms in the Fermi SUB2 equation, which we may therefore now with 

confidence systematical ly include. 

Based par t l y  on experience with the Bose equations, our best coupled-cluster 

(CC) calculat ions to date, for  Cc in the meta l l i c  regime, include from the S 2 

equation the fo l lowing terms, a l l  treated simultane.ousl ~ and f u l l y  se l f - cons is ten t l y :  

( i )  KE; ( i i )  RPA; ( i i i )  hole potent ia l  (HP); ( iv )  a l l  pa r t i c l e -pa r t i c l e  ladder (LAD) 

terms included in SUB2 and furthermore (motivated by experience with nuclear matter) 

a much broader class of generalized ladder terms obtained by taking into account part 

of the coupling terms to S 3 and S 4, and which involves replacing the bare potent ia l  

by a se l f -cons is tent  G-matrix (obtained from the f u l l  S 2 solut ion i t s e l f ) ;  (v) a 

class of par t i c le -ho le  ladder terms cal led PHA in Ref . [3 ] ;  and (v i )  exchange (EX) terms 

to keep the resu l t ing S 2 e x p l i c i t l y  antisymmetric. The resul ts of th is  CC calcula- 

t ion are shown in the Table below, where for  comparison I also show both the essen- 

t i a l l y  exact (unpublished) resul ts  of Ceperley who used an approximate Green's func- 

t ion Monte Carlo (GFMC) method; and, as representatives of the best var ia t iona l  re- 

su l t s ,  the FHNC results of both Zabol i tzky z° (FHNC-Z) and Lantto zl (FHNC-L). 

Table: The Fermi corre lat ion energy E c for  the unpolarized electron gas 

r s ~c(CC) . . . . . . .  c(.~FMC ) . . . . .  ~c(Fl~i~C_7) . . . . .  Ec(F~HNC_L) 

÷ 0  0.0622 ~n r s (~'.0622 ~n rs) 0 .0570  ~n r s ?' 
1 -0.123 -0.121 -0.114 -0.140 
2 -0.0917 -0.0902 -0.0859 -0.098 
3 -0.0751 . . .  -0.0710 -0.079 
4 -0.0644 -0.0612 -0.067 
5 -0.05 8 -0.0541 -0.058 

Turning f i n a l l y  to the low-density l i m i t ,  the s i tua t ion  for  fermions is much more 

favourable than for  bosons since the Pauli p r inc ip le  very e f f ec t i ve l y  hinders electrons 

from c luster ing in groups of more than two, thus forc ing the higher corre lat ions to be 

smaller. Although in the exact Wigner low-density l i m i t  the ef fects of quantum sta- 

t i s t i c s  vanish, with the fermion and boson so l id  both described by the same asymptotic 

expansion (24) (and the d i f f e ren t  s t a t i s t i c s  ref lected only in d i f f e r i ng  terms which 

vanish exponent ia l ly  with r s + ~) th is  is by no means true in our t r a n s l a t i o n a l l y -  

invar ian t  CC descr ipt ion.  In the case of  electron system, exchange terms do not 

vanish and the convergence of the CC hierarchy is thereby considerably improved from 

the Bose case. Thus for  the analogue of the resu l t  (23) for  bosons, I f i nd  A ~ 1.58 

for  electrons in a "state-averaged" RPA+HP scheme --  which is in much bet ter  agreement 

wi th the Wigner so l id  value of 1.79. 

4. FINAL REMARKS 

I intend fu r ther  to explore the low-density regime wi th the f u l l  SUB2 approxima- 

t ion for  electrons since i t  provides a scheme that of fers what is  essen t ia l l y  the 
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f i r s t  un i f ied  framework in which to calculate at a l l  densit ies the g.s. propert ies 

(at least)  of the charged quantum f l u i d s / s o l i d s .  Although I have stressed only g,s. 

energy calculat ions i t  is important to real ise that recent extensions of the CC forma- 

l ism permit calculat ions both of excited states and of the density matrices. For 

excited states, Emrich has given a very elegant formulation in which he derives a 

coupled set of eigenvalue equations for  the energies and amplitudes of the exc i ta t ions.  

As a f i r s t  step I have applied th is  formalism in i t s  lowest level of approximation to 

the electron plasma as r s + O. As input th is  requires the exact g.s. (RPA) S 2 

already found. 3 To th is  level of approximation I f ind the usual plasmon "bound-state" 

plus the one-part ic le-one-hole scat ter ing continuum. Of pa r t i cu la r  in terest  at the 

next step w i l l  be the usefulness of the excited states to pin down fur ther  the low- 

density so l id  aspects of the g.s. ca lcu lat ions.  Thus presumably the real electron 

system has plasmon exci tat ions (with a f i n i t e  energy gap at low momenta q) at high 

densi t ies,  and a phonon spectrum (with an acoustic branch l inear  in q at small q) 

charac ter is t ic  of sol ids at low densi t ies.  I t  w i l l  be of great in teres t  to see 

whether th is  behaviour is  also seen in our ca lcu la t ions;  and, i f  so, whether i t  can 

be used to obtain the c r i t i c a l  density. 

I t  is also intended fu r ther  to examine the one- and two-body density matrices at 

meta l l i c  and low densi t ies,  since these can nrovide much more sensi t ive tests of 

various theories than the g.s. energy. For example, whi le the approximation RPA+EX 

gives quite good values for  the g,s. energy at meta l l ic  densi t ies,  the density matrices 

can be badly wrong - -  even giv ing negative values for  the two-body radial  d i s t r i bu t i on  

funct ion at small separations. A l l  prel iminary invest igat ions indicate that the CC 

calculat ions also give extremely good Coulomb d i s t r i bu t i on  funct ions. 

F ina l l y ,  work is also in progress to extend these resul ts to such multi-component 

plasmas as the hydrogen plasma, simple metals, and the electron-hole droplets observed 

in various semiconductors (with a pa r t i cu la r  aim to study the exc i ton ic  phase). 

References 

1H. KUmmel, K.H. LUhrmann and J.G. Zabol i tzky,  Phys. Reports 36C (1978) I ;  and 
ea r l i e r  references contained therein.  

2 K.H. LUhrmann, Ann.Phys.(NY) 103 (1977) 253. 

3 R.F. Bishop and K.H. L~hrmann, Phys.Rev. B 17 (1978) 3757. 

4 L.L. Foldy, Phys.Rev. 12_~4 (1961) 649; 125 (1962) 2208. 

s K.A. Brueckner, Phys.Rev. 156 (1967) 20a. 

E.P. Wigner, Phys.Rev. 46 (1934) 1002. 

7 W.J. Carr, J r . ,  R.A. Coldwel l -Horsfal l  and A.E. Fein, Phys.Rev. \24 (1961) 747. 

8 E. Feenberg, J. Low Temp. Phys. I_~6 (1974) 125. 

9 M. Gell-Mann and K.A. Brueckner, Phys.Rev. I06 (1957) 364. 

I0 J.G. Zabol i tzky,  Phys.Rev. B 22 (1980) 2353. 

11L .J .  Lantto, Phys.Rev. B 22 (1980) 1380. 


