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COUPLED CLUSTERS AND CQULOMB CORRELATIONS

R.F. Bishopn
Department of Mathematics
University of Manchester Institute of Science and Technology
P.0. Box 88, Manchester M60 1QD, England

1. INTRODUCTION

In this paper I intend to give a summary of work carried out in the last few
years on developments of the coupled-cluster formalism, and its application to infi-
nite systems of either bosons or fermions. In particular I shall concentrate wholly
on systems interacting via the two-body Coulomb force, and hence mainly, but not en-
tirely, on problems involving the long-range behaviour of many-body systems. Much of
this work on the one-component Bose and Fermi plasmas has been carried out in collabo-
ration with K.H. Liihrmann. ‘

2. COUPLED-CLUSTER FORMALISM

I present first a brief outline of the main elements of the coupled-cluster
formalism needed here. A full review of the formalism has recently been given,! al-
though this deals almost exclusivelv with applications in nuclear physics, and hence
largely with problems involving short-range correlations, rather than with the long-
range correlations of the sort induced by the Coulomb force and which largely concern
us here. The interested reader is directed to the article by Lihrmann? for a formula-
tion that perhaps best stresses its physical content, and to another article with the
present author that sets the formalism firmly in the context of the one-component
electron plasma, 3

In terms of a suitable model, or uncorrelated, N-body wavefunction ]®>, the
(usual Vinked-cluster) ansatz for the exact Coulomb-correlated N-body ground-state

(g.s.) wavefunction |¥>,

e = &le (1)
is made, and we consider |¥> normalized to |&> by <|¥> = 1, I deal here with
model Fermi states of Slater determinant form,

t +
log> = ay, e a“NIO>’ (2)

with |0> the vacuum state, and where the operators ai are a set of fermion crea-

tion operators for the orthonormalized single-particle (g.p.) states ]v1>. For
bosons, the antisymmetrized product of s.p. states is replaced by the (symmetric)
single-state condensate,

s> = (DYoo, (3)

where the operator b; creates a boson in state o, and, more generally, the opera-
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tors bl_ create bosons in a complete orthonormal s.p. set l“i>'

A1th5ugh it is evidently possible to consider more general s.p. states, it is
important for later discussions to realize that for all later results reported, I
deal exclusively with plane-wave s.p. states. Thus |®F> represents the usual filled
Fermi sea, and |¢B> the usual completely occupied zero-momentum condensate: both
isotropic, homogeneous states of zero total momentum. The correlation onerator S
is decomposed into n-body (n < N) components,

N
s=§s, (4)

_1
(n)y"1 ¥ b: ...b: Sppreeep )N %2 bo)n; bosons

Preeeppy 1t n "
Sy = 5
n 1y =2 + + . (5)
(n!) ) LURRRLY P1eee0p[SpIviee > PN fermions
Pleeepy n n
vl...\)n

The notation used in Eq.(5), and henceforth, reflects the linked-cluster aspect of
the expansion, viz, s.p. labels Vs indicate states normally occupied in [&> (i.e.
states inside the filled Fermi sea for fermions or the zero-momentum state, v=0, for
bosons); and s.p. Tabels 05 indicate normally unoccupied states. Where necessary
later, s.p. labels a; run over all s.p. states (i.e. a complete set). It is impor-
tant to realize that the sum in Eq.(4) omits the term n=1 only as a consequence of
our implied assumption that the exact g.s. wavefunction |¥> s also an eigenstate
of total momentum (with eigenvalue zero).

Physically, Sn represents the true correlation operator for an n-body subsystem
that remains after all the factorizable (or unlinked) correlations have been removed
from the (complete) n-body subsystem amplitude operator Yoo defined by its matrix

elements,
<“1"'anlwn|“1"'vn7\ = <®|a:1...a: a, ...aallw>, fermions ©)
n n
- =Y tyn
EMCIPRRLIN I <ol (N 2 by) ban...ba1|w>, bosons

where, for fermions, the subscript A on a ket state indicates an explicitly anti-
symmetric state

t ot
lvl"'vnl avl...avn|0> .

Thus, for bosons as example, the 2- and 3-body subsystem amplitudes ¥, and ¥, can
be expressed as,

¥o(agas) = (NP5 (N5 ) + Sy(aqap)
ologes 050 050 2(@10,

1 1 1 (7)
¥y(aaze) = (N/Zsal,o)(N/zaaz,o)(N/26

)

03,0

1
" 5123[52(u1a2)(N/26a3’0)] + Sy(a10203),
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in the thermodynamic 1imit (N » «; volume @ » =, p = N/go finite), and where
5123 generates the sum of all terms obtained by cyclic permutation of the labels
a1, ap and ag.,

An equivalent physical description of Sn (for fermions) is that its matrix
elements give the exact amplitudes that describe the excitation of n particle-hole
pairs; where particles and holes refer respectively to states normally unoccupied and
normally occupied (in the model wavefunction [¢>). For bosons the role of the hole
states is played by the condensate, It seems intuitively apparent that in order for
our ansatz (1) to be useful, the physical system under consideration ought to share
at least qualitatively the features built into the model state |e¢>. More explicitly
we expect our choices I¢F> and ]®B> to have relevance respectively only to real
fermion systems in states where some semblance of the sharp Fermi surface still re-
mains, and to real Bose systems which contain a finite fraction of the particles in
a zero-momentum condensate. This would seem to rule out from the outset for fermions,
for example, an accurate description of "abnormal" or "super" phases, or indeed of
anything but the usual "Tiquid" or "Fermi fluid" phase. Later, I give some indication
that this intuitive feeling may well be false; or at least that the coupled-cluster
formalism may be much more powerful than this too pessimistically narrow interpretation
would seem to allow,

Formally, the g.s. coupled-cluster formalism now proceeds by decomposing the N-
body Schrtdinger equation

Hlw> = Ely> (8)
into a coupled set of equations for the matrix elements of the correlation operators
Sn. Formally this may be achieved by taking the overlap of Eq.(8) with the states
<¢|(a$l...a:naa ...aal)
the elements <Twn >, Finally the amplitudes Wn are decomposed in terms of the
correlation amplitudes of the Sn’ which has the effect of eliminating all macrosco-

pic terms (i.e. those, 1ike E, which are proportional to N) from the essentially

for n=0,1,...N, to get a set of coupled equations for

microscopic subsystem equations. This wholly algebraic procedure results in a coupled
set of equations for the elements of Sn’ in which the 1Eh equation for Si is cou-
pled to both Si+] and Si+2 (as well as to all S, with j<i), for a Hamiltonian

H 1dinvolving two~body potentials only. For the technical details of the derivation
the reader is referred to Refs.[1-3]. Clearly, in order to be useful this exact
coupled hierarchy needs to be truncated; and as an obvious initial step I discuss the
so-called SUBn approximation scheme in which I set Si =0 for all i>n, and the
remaining equations are treated as accurately as possible.

I now apply the coupled-cluster formalism to one-component Coulomb systems.
stressing mainly the qualitative nature of the results in order more clearly to de-
monstrate the power of the formalism. To this end I spend more time on the mathema-
tically much simpler boson equations, and indicate only more briefly their fermion
counterparts.
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3. APPLICATION TO ONE-COMPONENT COULOMB SYSTEMS

The Coulomb potential with a uniform, rigid and neutralizing background present
is,
_ Ames
vi@) = -8 ) - (9)

292

The density p may be expressed either in terms of the usual dimensionless coupling
constant o which is the average interparticle spacing in units of the Bohr radius

a or in terms of a (for bosons, fictitious) Fermi wavenumber kF applicable to an

0’
unpolarized spin-3 system,

o = (4rr3ad/3)Tl = k3 . o (10)
Henceforth, the g.s. energy per particle is expressed in Rydberg units by
E/N = e(e2/2ao) s 11

and any dimensionless momentum variables that appear have been scaled against the
Fermi momentum hkF, defined by Eq.(10).

3.1 Charged Bose system

For spin-zero bosons, the exact two-body equation for Sz(q) = 52(3,—3) may
readily be found by the method sketched in Sect.2:

D0 Sp(a) + Tapp * Tep * Topp * F (0 V(DS (EE",-8-87) + 4N, (3,730,841 = 0,
EX - (12)
TRPA = Nv(q)[1+52(q)]2; TCP = '4N'52(Q)§ TLAD = EV(Q‘QI)S?(Q'),
ql
and where the g.s. energy per particle is given by,
E/N = 3Nv(0) + 33v(q)Sy(q) . (13)
-
q

The SUB2 approximation is obtained from Eq.(12) by putting S3 and 54 to zero.
The remaining first four terms in Eq.(12) represent respectively (i) the kinetic
energy (KE) contribution, (ii) the terms that generate the ring or bubble diagrams
of the random-phase approximation (RPA), (iii) the terms that generate the self-
consistent (s.c.) energy insertions on the zero-momentum condensate lines, i.e. the
s.c. condensate potential (CP), and (iv) the terms that scatter the two particles
outside the condensate and hence generate the two-particle ladder (LAD) diagrams.
Inserting the potential from Eq.(9) into the SUB2 equation gives, in dimensionless
variables,

qzsz(q) + 40Lrs(37rq Y1148 ( N 2(0“" )285 ( )
f a'q ln' fqlsz(q') = 03 (14)

e = 2(nary)" 1[ dq S,(q), (15)
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_1
where o = (91/4) 5
Although Egs.(14) and (15) are readily amenable to numerical solution, it is
more instructive here to examine them in the high density (rs + 0) and low density
(rS + @) Timits., In the high density T1imit it is readily shown that to leading
order for the energy only the KE and RPA terms contribute. The resulting quadratic
equation is trivially solved to give
€ 3 = Qr -3/1“
r>0 °RPA S
s
L . (16)
q - -zw-l(e/“)f dx[T4x-x2 (x4+2) 71 = -0.8031 ,

[}
which is the exact result first obtained by Foldy.* It is not difficult to show that
the next term in the high-density expansion is a constant,

_3 '
EYTS—;EQY‘S /‘++R, (]7)
and that both the CP and LAD terms now contribute to R. I find,
RSUBZ = RCP + RLAD; RCP = 16/15n, RLAD = 32/457 . (18)

By 1nspectihg Eq.(12) and the equivalent equations for 53 and 54 it can however
be shown that the coupling terms to 53 and 54 in the exact Eq.(12) also contribute
to the constant R (although not to Q). I have also calculated the constant R
given by the exact two-body Eq.(12), keeping the complete coupling to three- and four-
body clusters., I find that, to this order, the 3-body correlation amplitude S3

needed in Eq.(12) may be replaced by,

1 > > >
-N/253(q],q2,q3) > Lu(ay)+u(gy)+e(a3) 171855l {v(aq) (145,(a;))

+v(a,) (145,(9,))18,(a3) 1, (19)
for 3]+aé+aé = 0, and where the effective s.p. energy is,
w(g) = M2q?/2m + Nv(q)(1+5,(q)); (20)

and a similar replacement may be made for 54 by examining the 4-body equation.
Equations (12) and (13) then lead to

R = Reypy + Ry + Ry » 0.0280 (21)

SUB2 3
where both the contributions R3 and R4 from the coupling terms to S3 and 54

in Eq.(12) are finite. The final result of Eq.(21) is exact, and an extremely tedious
rearrangement of the integral expressions shows it to be in precise agreement with

the first correct result reported, of Brueckner.5 It is worth pointing out that, by
contrast with most competing methods, each of the terms in Eqs.(18) and (21) is fi-
nite, and no cancellation of spurious logarithmic singularities occurs. This particu-
lar point highlights a more general advantage of the coupled-cluster formalism —
namely that terms which tend to cancel each other are automatically grouped together.

Turning now to the more revealing Tow-density limit, naively one would not ex-
pect the SUB2 approximation to give any reasonable result at all in this strong-
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coupling regime, since one imagines that the n-body clusters even with n >> 2 are
still very important. Indeed one belijeves the real Coulomb system to undergo a phase
transition to a Wigner solid® in this 1imit, and the solid may be regarded as an
archetypal system where the N-body correlations dominate, At any rate it is clear
that the low-density Coulomb systems provide one of the most stringent tests for our
formalism.

It is readily seen from Egs.(14) and (15} that in the SUB2 approximation,

sup T T A Br % v 0(r ), (22)
where the KE term contributes only to the constant B in leading order., In this
1imit the terms RPA, CP and LAD are all necessary for a quantitative evaluation of the
constant A, but they play distinctly different qualitative roles. Thus it is vital to
keep the RPA terms to get the correct analytic behaviour because, as expected, these
terms continue to be crucial for the long-range (g > 0) screening of the Coulomb
potential. Similarly the CP plays a crucial role now in the short-range (q > )
limit. Whereas the inclusion of the LAD term quantitatively changes the constants A
and B in Eq.(22), it may safely be omitted without changing the analytic form of Eq.
(22). Dropping the LAD term from Eq.(14), I find

SUB2 - LAD approxn.: A = (32/31T2)1/3 *~1.03; B = 3y5n/8 ~ (0.68 . (23)

Use of the virial theorem verifies our expectation that the leading term in Eq.(22) is
purely potential energy; and furthermore shows that the much more interesting second
term is exactly one half each kinetic and potential energies — which at the very
lTeast is strongly reminiscent of simple harmonic motion and of the behaviour expected
of a solid.

Indeed, as first pointed out by Wigner,® the energy of the system is minimised in
this low density 1imit by the particles crystallizing into a regular periodic lattice,
which Teads to an electrostatic potential energy proportional to rs‘l. Whereas in a
fluid phase the particles are free to occupy the whole volume, which by the uncertainty
principle leads to a kinetic energy proportional to rs‘z, in the Wigner solid phase
the particles are constrained to oscillate about the fixed lattice sites and hence to
have a greater kinetic energy. Elementary cogsiderations of simple harmonic motion
lead to a kinetic energy proportiona]lto rs_’Q. The exact expansion in the Wigner
solid phase is a power series in rs— % where the terms of order rs'2 and higher
are due to anharmonicities in the zero-point motion. Based on a b.c.c. Tlattice,

Carr et al.” give,

3
e s = 1792 ¢ 71 4 265 0 772 - 073 P72 4 ..,
exact rore S S S (24)
Clearly our approximation in Eqs.(22) and (23) has the correct analytic form for
the energy of a solid, although the values of the coefficients are considerably under-
estimated. What is more important however is that even the lowest SUB2 approximation

in the coupled-cluster scheme gives a low-density energy which cannot nossibly repre-
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sent what is normally understood by a fluid phase, since the particles are definitely
not free to occupy the whole volume.

Thus it is clear that our intrinsically fluid-1ike and everywhere translationally-
invariant approach can provide a good description of both fluid and solid phases; and
we can understand the possibility of this by similar reasoning to that behind the
familiar “floating crystal model" of Feenberg.® On the other hand, we must still face
the fact that three- and more-body effects can only be treated in SUB2 approximation
in an average sense, and cannot possibly represent the detailed internal structure of
a Tattice wavefunction. While I have presented explicit evidence that this is not a
severe Timitation at least as far as the qualitative behaviour of the g.s. energy is
concerned (and probably also for matrix elements of other few-body operators), the
fact remains that for a charged Bose system in the low-density limit, the third and
higher order correlations are still very strong. Thus accurate values of the coeffi-
cients A and B cannot be expected. I note here that numerical calculations of the
complete SUB2 equation including the LAD term do not change this overall picture. In
fact our approximate value of A from Eq.(23) is lowered by about 20% by including the
LAD term, thereby increasing the discrepancy with the Wigner value. (I note also
however that an evaluation of the two-body radial distribution function within the
SUB2 approximation gives a positive-definite function at all densities only so long
as the LAD term is included.)

Finally I note that although the SUB2 approximation works superbly over the
entire density regime for the Bose Coulomb system, the g.s. energy is quantitatively
unsatisfactory in the low-density 1imit. It is clear that higher-order clusters must
be incorporated; but due to the relative simplicity of the Bose coupled-cluster equa-
tions this is quite practicable, as indeed I have already indicated in the high-
density Timit.

3.2 Charged Fermi system

The SUB2 equations for fermions, although conceptually similar to those for
bosons, are mathematically vastly more complex due both to the many more terms re-
quired by antisymmetrization, and to the state- (i.e. momentum-) dependence induced
by the hole states inside the Fermi sea in comparison with the unique zero-momentum
condensate for bosons. In particular for fermjons the matrix elements 52(?],?2;3) =
<K1+3,?2-3152l?],?2> depend not only on a momentum transfer § as for bosons but
also on the two hole momenta ?] and ?2. The complete SUB2 equation for charged
Fermi systems has been discussed in detail,3 and it is clear that a numerical solution
of this non-linear integral equation for a function of three 3-vectors, while perhaps
just feasible, is not to be undertaken 1ightly! Accordingly we have again examined
various 1imits and approximation schemes for handling the coupled-cluster Fermi equa-
tions, and I now briefly report on these.

In the high-density 1imit, the RPA again gives the leading contribution to the
correlation energy, €e i.e. the g.s. energy relative to the (uncorrelated) Hartree-
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Fock energy. In Ref.[3] the nonlinear integral equation for 52 in RPA was solved
exactly and in some detail, both confirming the well-known results of Gell-Mann and
Brueckner,? and giving for the first time exact analytic forms for the four-point
function S2 and the once-integrated three-point particle-hole vertex function. The
Tamm-Dancoff approximation (TDA) to the ring summation was also formulated, and the
analogous exact solutions in TDA were also presented for the electron gas for the first
time.

< 5) metallic-density regime, we no

Turning to the intermediate-coupling (1 < rs
Tonger expect the RPA plus second-order exchange to be a good approximation, although
it gives the first two terms in the high-density expansion for £ exactly. Thus,
quite apart from ignoring (a) the simple exchange effects necessary to antisymmetrize
RPA, we have ignored even in SUB2 approximation: (b) all of the combined particle-
particle and hole-hole ladder terms, some at least of which are important for the
correct short-range behaviour; (c) the generalized self-energy correction terms which
self-consistently generate both the particle potential and, much more importantly the
hole potential (which now for fermions plays the same crucial role as the CP for
bosons); {d) classes of higher ring-exchange terms; and (e) a class of additional
exchange terms which includes the particle-hole ladder terms. In order systematically
to deal with these effects I have proposed and implemented a further approximation
that enables us to study these terms much more readily.

Based on a comparison with Bose systems, the fermion equations should be much
simpler if they could be "state-averaged"; and the basic approximation is thus to
average over the initial hole momenta i1 and KZ in 52(?],ﬁé;3) but keeping the
important exact property that final states (K]+a), (Ez-a) Tie outside the Fg:miései
(i.e., the Pauli principle is exactly implemented). In this way the exact Sz(k],kz;q)
is replaced by an averaged Sz(q), and the resulting coupled-cluster equation con-
sidered still then itself has to be state-averaged, Although the procedure for this
latter step is not unique, this works to our advantage, for two reasons: (a) the
averaging can be made on physically-motivated grounds rather than being imposed
arbitrarily; and (b) since we know exact results for 32 in at least one 1imit, name-
1y the RPA and TDA results for re 0, the errors induced by the various averaging
schemes can be checked. As an illustration: carrying out the above scheme in RPA
leads to.an equation for 52 which involves only KE and RPA terms. After the re-
placement 52 > §2 has been made the only state-dependence left is in the KE term,
which for fermions is proportional to [[i]+a]2+]?2-a|2-k12-k22]52 = eS,. As two
obvious averaging schemes one could imagine (a) replacing e » <e>; or (b) the intui-
tively and physically more appealing idea of first dividing throuah by e and then
averaging the "energy denominator"; e”! » <e!>. I have shown that the former pro-
cedure Teads precisely to the mean-spherical approximation (which Zabolitzky!0 dis-
cusses in this context, and which his state-independent, variational, Fermi hyper-
netted-chain (FHNC) formalism leads to in this r_ - 0 1imit), which gives an €e

S

in error by 8.4% at re > 0. The latter procedure on the other hand is exact at
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rs > 0, and by comparison with the exact RPA results I show that it is for no den-
sity in error by more than 2%. There seems to be no reason why this result should not
hold for all other terms in the Fermi SUB2 equation, which we may therefore now with
confidence systematically include.

Based partly on experience with the Bose equations, our best coupled-cluster
(CC) calculations to date, for €c in the metallic regime, include from the S,
equation the following terms, all treated simultaneously and fully self-consistently:
(i) KE; (i) RPA; (iii) hole potential (HP); (iv) all particle-particle Tadder (LAD)
terms included in SUB2 and furthermore (motivated by experience with nuclear matter)

a much broader class of generalized ladder terms obtained by taking into account part
of the coupling terms to 53 and 54, and which involves replacing the bare potential
by a self-consistent G-matrix (obtained from the full S2 solution itself); (v) a
class of particle-hole Tadder terms called PHA in Ref.[3]; and (vi) exchange (EX) terms
to keep the resulting 52 explicitly antisymmetric. The results of this CC calcula-
tion are shown in the Table below, where for comparison I also show both the essen-
tially exact (unpublished) results of Ceperley who used an approximate Green's func-
tion Monte Carlo (GFMC) method; and, as representatives of the best variational re-
sults, the FHNC results of both Zabolitzkyl® (FHNC-Z) and Lantto!l (FHNC-L).

Table: The Fermi correlation energy €. for the unpolarized electron gas

s €0 ALY £ TFRNC=7) € [{FANC-T)
50 0.0622 tn v, (0.0672 & vg)  0.0570 &n ry 7
1 20.123 20.121 20.114 -0.140
2 -0.0917 -0.0902 -0.0859 -0.098
3 -0.0751 .. -0.0710 -0.079
4 -0.0644 ... -0.0612 -0.067
| 5 -0.0568 -0.0563 -0.0541 -0.058

Turning finally to the low-density limit, the situation for fermions is much more
favourable than for bosons since the Pauli principle very effectively hinders electrons
from clustering in groups of more than two, thus forcing the higher correlations to be
smaller. Although in the exact Wigner Tow-density 1imit the effects of quantum sta-
tistics vanish, with the fermion and boson solid both described by the same asymptotic
expansion (24) (and the different statistics reflected only in differing terms which
vanish exponentially with re ») this is by no means true in our translationally-
invariant €€ description. In the case of electron system, exchange terms do not
vanish and the convergence of the CC hierarchy is thereby considerably improved from
the Bose case. Thus for the analogue of the result (23) for bosons, I find A = 1,58
for electrons in a "state-averaged" RPA+HP scheme — which is in much better agreement

with the Wigner solid value of 1.79.

4. FINAL REMARKS

I intend further to explore the low-density regime with the full SUB2 approxima-
tion for electrons since it provides a scheme that offers what is essentially the
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first unified framework in which to calculate at all densities the g.s. properties

(at Teast) of the charged quantum fluids/solids. Although I have stressed only g.s.
energy calculations it is important to realise that recent extensions of the CC forma-
lism permit calculations both of excited states and of the density matrices. For
excited states, Emrich has given a very elegant formulation in which he derives a
coupled set of eigenvalue equations for the energies and amplitudes of the excitations.
As a first step I have applied this formalism in its Towest level of approximation to
the electron plasma as re 0. As input this requires the exact g.s. (RPA) 52
already found.® To this level of approximation I find the usual plasmon “bound-state"
plus the one-particle-one-hole scattering continuum. Of particular interest at the
next step will be the usefulness of the excited states to pin down further the low-
density solid aspects of the g.s. calculations. Thus presumably the real electron
system has plasmon excitations (with a finite energy gap at low momenta q) at high
densities, and a phonon spectrum (with an acoustic branch linear in gq at small gq)
characteristic of solids at Tow densities. It will be of great interest to see
whether this behaviour is also seen in our calculations; and, if so, whether it can
be used to obtain the critical density.

It is also intended further to examine the one- and two-body density matrices at
metallic and Tow densities, since these can nrovide much more sensitive tests of
various theories than the g.s. energy. For example, while the approximation RPA+EX
gives quite good values for the g.s. enerqy at metallic densities, the density matrices
can be badly wrong — even giving negative values for the two-body radial distribution
function at small separations. A1l preliminary investigations indicate that the CC
calculations also give extremely good Coulomb distribution functions.

Finally, work is also in progress to extend these results to such multi-component
plasmas as the hydrogen plasma, simple metals, and the electron-hole droplets observed
in various semiconductors {with a particular aim to study the excitonic phase).
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