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A method is derived for constraining the correlation function in a Jastrow variational 
calculation which permits the truncation of the cluster expansion after two-body terms, 
and which permits exact minimization of the two-body cluster by functional variation. 
This method is compared with one previously proposed by Pandbaripande and is found 
to be superior both theoretically and practically. The method is tested both on liquid 
8He using the Lennard-Jones potential and on the model system of neutrons treated as 
Boltzmann particles (“homework” problem). Good agreement is found both with 
experiment and with other calculations involving the explicit evaluation of higher-order 
terms in the cluster expansion. The method is then applied to a more realistic model of a 
neutron gas up to a density of 4 neutrons per Fa, and is found to give ground-state 
ene&es considerably lower than those of Pandharipande. 

1. INTRODUCTION 

The desire to study dense neutron matter (density > 1014 g cm-3) and the 
problem of its possible solidification has produced a new interest in variational 
techniques, particularly the method of Jastrow correlation functions [I, 21. The 
hope is that such techniques may prove more appropriate for microscopic calcula- 
tions at such extreme densities than the already well-advanced methods of perturba- 
tion theory. The difficulty with the Jastrow method arises through the calculation 
of the many-body (2 3) terms in the cluster expansion, and it is well known that 
some allowance must be made for these higher-order terms, either by explicit 
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calculation or by constraining the correlation function in some way, in order to 
obtain sensible results [3]. 

Several years ago, Pandharipande advanced a method of lowest-order constrained 
variation (L.O.C.V.) [4], where the correlation function was forced to heal rapidly 
and was put equal to unity beyond some healing distance, d. This was not a purely 
variational method, however, since it required the addition of a constant parameter, 
X, to the interparticle potential, which was justified by analogy with Brueckner 
perturbation theory [5] and by purely physical arguments. When applied to a 
hypothetical model system of neutrons treated as Boltzmann particles [6] it gave 
positive values for the energy per particle which were considerably higher than 
other, more reliable, variational calculations. 

In an earlier letter [7] we have suggested an alternative method of L.O.C.V. which 
we have found to give excellent results when applied to the system of Boltzmann 
particles described above. The purpose of this paper is to describe this method in 
detail, to show that it is justified on purely variational grounds, and to compare 
it with the method of Pandharipande. We also apply the method to the more realistic 
fermion problem of liquid 3He and obtain values for the binding energy and satura- 
tion density differing somewhat from other microscopic calculations, but close to 
the experimental values. We also consider “realistic” neutron matter where we 
obtain values for the energy per particle considerably lower than those found using 
the L.O.C.V. of Pandharipande. In the final section of the paper we discuss the 
reliability and significance of this work and indicate that further tests are at present 
under way, particularly with regard to a more detailed treatment of the problems 
of Fermi statistics. For convenience, in the following sections we develop the method 
for Fermi statistics and describe the simplifications for Boltzmann particles where 
appropriate. 

2. VARIATIONAL METHOD 

Let us consider an infinitely extended system of spin-4 fermions with no other 
internal quantum numbers (e.g., neutrons or 3He atoms), interacting through a 
two-body potential. The system is described by a Hamiltonian, H given by 

(1) 

The Jastrow correlation function method [l, 21 consists of forming a trial, 
many-body ground-state wavefunction, 
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where f is a two-body correlation function, the functions & are a complete set of 
single particle states, and A is the antisymmetrizing operator. The variational 
principle then gives the ground state energy, 

Following normal Fermi liquid theory, we consider N fermions normalized 
in a volume Q. The uncorrelated single particle states are then 

&(rJ = P1/2 exp(iki * rt) xi(i), (4) 

where kg < kF , the Fermi momentum, and xi is the spin state. The density is given 
in terms of kF by, 

p = kp3/3n2. 

The energy E is expanded in a cluster series, 

where 
E = El +E2 + *a*, 

and 

E2 = c C,(ij), 
i<i 

(5) 

(6) 

(7) 

(8) 

We have given the cluster series up to two-body terms [8], and it is our purpose 
to consider forms for the function f for which truncation at this point is valid. 

For potentials of the form 

where Pz is the projection operator for the Zth relative partial wave, we must con- 
sider a function f of the form 
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In principle, f may also depend on the relative momentum, k, of the interacting 
pair, 

k=&Iki-kkiI, (11) 

but such a dependence is unlikely to have a large effect on the two-body energy [9], 
so we will use the approximation that, for a particular density, f depends only on 
the relative separation and the relative angular momentum of the interacting pair. 
Since the Vz(r) considered here have at most three different forms, namely, for I is 
zero, 1 is odd, and I is even and nonzero, the I dependence of f(r) is similarly 
restricted to three corresponding forms, although a generalization to include 
different forms for higher 1 states is clearly straightforward. 

Separating (8) into relative and center-of-mass coordinates, using the Rayleigh 
partial wave expansion for exp(i k + r), and integrating over the center-of-mass 
and relative angular coordinate gives, 

C&j) = c (21 + l)[l - C-1)’ &31 czz(g), 
1 

(12) 
4n w 

c2z(ij) = i&z- o 1 I - g [h(r) f;(r) p?(kr) + V@>&‘(r) pz(kr) pl’(kr)l 

wherep,(x) = xjz(x), j, is the spherical Bessel function of order I, the primes denote 
differentiation with respect to r, and 01 and fl are the spin indices of particles i, j. 

In order for the method to make physical sense, the functions fz(r) must satisfy 
the following natural conditions. 

(i) fz(0) must be finite, i.e., regular at the origin, 
(ii) fz(r) - 1, and r+m 
(iii) fz(r) andf,‘(r) must be continuous everywhere. 

Condition (iii) permits integration by parts on Eq. (12), giving 

4%. 
‘,‘(ij) = Qk2 - Jam 1: f;“(r) + ~z(r)h2(rl\ p?(kr) dr, (13) 

where the integrated term is zero due to conditions (i) and (ii) above. 
From (8), summing over the four possible spin states for a pair of spin-4 fermions 

and summing over the odd and nonzero even values of 1, we have 
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where t = 0, I,2 corresponds, respectively, to 1 being zero, odd, and even (but non- 
zero). The functions b,(k, r) are given by, 

b,(k, r) = 3 sin2(k * r), 
b,(k, r) = cos2(k * r) -jo2(/cr). 

(15) 

In the continuum limit, 

; - (I/ fF dki , 
0 

(16) 

and so performing the integrations over ki and ki implied in Eq. (14) gives, 

E2/N = (p-/2kF2) irn 5 {(fi2/4 f;“(r) + @r)fi%-)) &%‘w) dry (17) 
0 t=o 

where 

so(x) = 3 1 - $ - F + 
I 

2 sin x cos x lj2 x9 
I 

, 

al(x) = 13 [x2 - 9(sin x - x cos x)” U2 
X4 II , 

a2(x) = ix2 + g [(sin x -; cm 4” -1+f+z!$L 2 sin x cos x Ii2 
x3 II 

Varying the functions ft(r) to minimize E2/N gives the three uncoupled Euler- 
Lagrange equations, 

-(~“/mm) 4h) + &vw).h’(~)~ + v’(r) 4br)“m) = 0, 
t = 0, 1, 2, 

or, equivalently, 
(1% 

-$ g,(r) - I$$$ + $ vV)l a(r) = 0, t = 0, 1, 2, (20) 

where g,(r) = a&s) St(r), and the primes denote differentiation with respect to r. 
It is well known that if Eq. (20) is solved for a potential with an attractive tail 

then there are no solutions with the correct asymptotic behavior off,(r + co) -+ 1. 
This problem, the “Emery Difficulty” [3], results from the fact that the cluster 
expansion for the energy has been truncated after two-body terms and the Euler- 
Lagrange equation gives anft(r) for which this truncation is not justified. 
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3. CONSTRAINED VARIATION 

In dense matter, where the interparticle potentials have a strongly repulsive 
core, it is this core which is responsible for most of the short-range correlations 
and so, with the truncation of the cluster expansion after two-body terms, it is 
unrealistic to allow the attractive part of the potential to have a large effect on the 
form of the correlation function. Thus we impose the constraint onft(r) that 

This constraint has been widely used in nuclear matter and other many-body 
calculations [2, 8, lo] where a particular form has often been assumed for the 
function f [e.g., f(r) = 1 - e-“+c); r > c], and it is found to give reasonable 
results in the density range of equilibrium nuclear matter. 

Constraint (21) is sometimes objected to on the grounds that the exact expression 
for the energy of the system, written in terms of the exact pair distribution function 
g(r), reduces to our expression (14) in the approximation g&) +ft2(r). It is then 
argued, in the familiar case of liquid helium for example, that the peak which 
develops in g(r) should be reflected in our “bare” correlation functionf(r). As long 
as we are interested only in a calculation of the energy of the system, however, this 
argument is spurious for the following reasons. Peaks in pair distribution functions 
can be thought of as arising primarily from two related sources, namely long-range 
effects and the requirement of overall normalization of the exact wavefunction. 
Our method is clearly designed to account for short-range correlations and effects 
coming from long-range forces are clearly excluded from consideration. On the 
other hand, the peak which g(r) develops, in liquid helium, for example, is probably 
mostly due to the overall normalization requirement and not to the attractive part 
of the potential. It is likely that g(r) would have a large peak even in the complete 
absence of the attractive well in this case. In this respect it is certainly true that with 
the imposition of constraint (21) it is impossible to impose exact normalization of 
the wavefunction within the two-body approximation. It is probable, however, 
that this lack of normalization has a small effect on the computation of the energy 
for nucleons at around nuclear matter density [lo], although for liquid 3He this 
lack of normalization may be a more serious deficiency. It is true that, were we 
interested in a realistic calculation of g,(r), the expressionf,2(r) would be a bad 
approximation, but it could still be used as the input, for example, to a higher self- 
consistent approximation for g(r). 

It is worth noting that the L.O.C.V. method of Pandharipande which is described 
in Section 5, and in comparison with which we are chiefly interested at this stage, 
does not explicitly impose constraint (21). However, in the calculations described 
in Section 6 we have compared results by our method with the L.O.C.V. prescrip- 

595/102/r-12 
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tion of Pandharipande. We find that for all the systems studied the correlation 
functions obtained in the L.O.C.V. prescription in fact always obey condition (21) 
except at very low densities, where our method is not designed to apply. 

Clearly, any constraint imposed at the two-body level becomes irrelevant if all 
of the omitted terms in the cluster expansion are also evaluated. Our motivation in 
imposing constraint (21) is to keep these higher-order terms small. Compared 
with an unconstrained calculation we hope to be able to include in our effective 
two-body energy the dominant contributions arising from these terms. Within this 
context it is interesting to compare our imposition of constraint (21) with recent 
calculations of Clark, Lam, and ter Louw [IO]. These authors have performed 
variational calculations on model nuclear matter systems using particular para- 
metrized forms of their correlation functions f(r) and minimizing with respect 
to these parameters. In particular, they have compared results with forms of the 
correlation functionsf(r) which do and do not contain peaks, i.e., which do and do 
not satisfy Eq. (21). These authors find, by doing perturbation theory within their 
correlation function basis (and working to second-order perturbation theory 
evaluated in the two-body cluster approximation), that so long as the leading term 
in the perturbation series, namely, the Jastrow energy expectation value, is evaluated 
through the three-body cluster order, their results are essentially independent of 
whether their correlation functions contain a peak.or not. In so far as our con- 
traints are designed to include the dominant pieces of the higher clusters (which 
are themselves constrained to be small), these results indicate that imposition of 
constraint (21) is certainly not very severe for an evaluation of the energy. 

While constraint (21) is sufficient to overcome the “Emery Difficulty,” it may not 
be, of itself, sufficient to ensure that the truncation of the cluster expansion in 
Eq. (6) is justified, particularly at densities where, in an uncorrelated system, there 
is a high probability of particles entering the range of one another’s repulsive 
cores. Under such conditions, the dominant effect of the introduction of two-body 
correlations should be to expel any particle which is within the range of the 
repulsive core of another. Thus, if we restrict the average number of particles 
expelled by the correlations from the core radius R, of any particle to be less than 1, 
then, on the average, we will be restricting correlations to be between nearest 
neighbors, and truncation of the cluster expansion should hopefully be justified. 
Calculated in the two-body approximation this gives, 

where the functions at are given by Eqs. (18), and R, is the radius of the repulsive 
core of the potential. 

This constraint has been derived on average physical grounds and so is presum- 
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ably more directly applicable to Boltzmann particles (in which case k;%,“(kFr) + 
4r2, and the sum over t disappears), where the additional complication of spin- 
statistics does not arise. For this reason we first apply constraint (22) to the Boltz- 
mann homework problem and its subsequent success suggests that a direct applica- 
tion to Fermi problems is worthwhile. 

Since this constraint, together with the constraint ft(r) < 1, forcesf,(r) to tend 
rapidly to unity, we may replace the upper limit of the integral by + cc with the 
effect of making the constraint only very slightly stronger. Constraint (22) introduces 
the same Lagrange multiplier into each of Eqs. (20) so that we must solve 

$ g,(r) - ,* + f: [V’(r) + Al\ g,k> = 0, t = 0, I, 2, (23) 

subject to the constraints 

7rp m 2 
k,2 SE (1 - f?(r)) a,2(k,r) dr < 1. 

0 t=o 
(25) 

Equations (23)-(25) form the basis of our constrained variational method, and 
they are now amenable to exact functional solution, as we describe in the next 
section. 

4. METHOD OF SOLUTION 

Equation (23) has two linearly independent solutions, but one of these is singular 
at the origin and so is excluded by condition (i) of Section 2, in order to ensure 
continuity at r = 0. Thus 

,fl(r) = At gt(r) a,o’ 

where g,(r) is the solution of (23) which is regular at the origin, and A, is a constant. 
Since we are considering potentials with a strongly repulsive core, we introduce 
constraint (24) by supposing a distance dt such that for r > dt minimization of the 
two-body energy withy,(r) < 1 is obtained withf,(r) z 1. That such a dt exists is 
evident for a potential with an attractive tail, since constraint (25) ensures that 
ft(a”) = 1 for some at inside the attractive tail. Then for r > ut minimization is 
obtained with ft = 1, since distorting ft(r) away from unity such that ft(r) < 1 
increases both terms in the energy expression (17). Notice that the condition that 
ft’(r) be continuous at r = at does not affect this argument (see the Appendix). 
Thus dt < at. 
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A similar argument holds for a potential which is purely repulsive, provided 
that the repulsion falls off sufficiently rapidly as r -+ 00, but in this case distorting 
ft(r) away from unity for large r must be compensated for by an increase inft(r) 
for smaller r (because of constraint (25)) and this will clearly be energetically un- 
favorable for a rapidly decreasing, repulsive potential. 

The constant At is chosen such thatf,(&) = 1, and dt is made as large as possible 
with ft(r < dt) < 1. Now if ft’(r = dt) < 0, then ft(dt - h) >ft(dt) = 1, h > 0, 
which contradicts ft(r) < 1, and if ft’(r = dt) > 0, then dt may be increased to 
dt + h when ft(dt - h) < ft(dt) = 1, so that dt was not as large as possible. Thus 
dt is the point where, 

Now from Eq. (23), 
f,‘(dt) = 0. (27) 

h’(r) = -4 l$$$j- - -$f!$ a(r)). I 

Our method is to solve (23) for gt(r) and determine dt so that, 

gt’(dt) - at’(kFdt) 
at(kFdt) gt(dt)* 

(28) 

(29) 

We then determine At so thatft(dt) = 1, and set f(r > dt) = 1. X is initially set 
to 0, and if constraint (25) is not satisfied, h is varied iteratively, solving forf,(r), 
At , and dt at each step, until 

where the upper limit of the integral becomes dt becausef,(r > dt) = 1. 

5. COMPARISON WITH L.O.C.V. OF PANDHARIPANDE 

Pandharipande [4, 1 I] solves an equation similar to Eq. (23) with the constraint 
h(r > d) = 1 for some d, but he determines d from the condition that on the average 
there should be exactly one particle inside the correlation volume defined by d. 
In the two-body approximation this gives 

and he introduces a parameter ht, similar to the h above, but uses this to fixf$‘(d) = 0. 
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Constraints (30) and (3 1) are clearly very similar and, insofar as the t dependence 
of our d may be ignored, are identical when 

b-lkF2) Iod t$o &%r) dr = 2. (32) 

It is interesting to note that this occurs when d - 1.2 x r,,, where r,, = (47rp/3)-‘/” 
is the unit radius, and that this is of the same order as the value for d which 
Pandharipande commonly findsin his calculations. Condition (31), however, has the 
peculiar feature that if we increase the depth of the correlations which we use, then, 
in order, on the average, to restrict correlations to the nearest neighbor, we must 
increase the range of the correlations. It is unlikely that these two effects would 
produce counteracting effects on the higher-order terms in the cluster expansion, 
particularly in the high density limit. 

Pandharipande’s method involves minimizing the two-body energy as given in 
Eq. (12) for r between 0 and d with the boundary conditions: QO) = finite, 
f,(d) = 1, and f,‘(d) = 0. This is an over-prescribed problem (since the corre- 
sponding Euler-Lagrange equation is second order and there are three boundary 
conditions), and, in general, no fi(r) exists which exactly minimizes Eq. (12) with 
these boundary conditions. Pandharipande circumvents this difficulty by adding a 
parameter, h’, to the two-body potential, which he varies to satisfy the condition 
f,‘(d) = 0, and he justifies this procedure by analogy with perturbation theory. Such 
a procedure is not justified on variational grounds, however, for the following 
reason. We may obtain a lower bound for C,l(ij) by considering Eq. (13) and remov- 
ing the boundary condition that f,‘(d) = 0. It is true that, without this condition, 
(12) and (13) are not equivalent (since then fi’(r) is not continuous), but we are 
trying to find a lower bound for C,l(ij) with the condition imposed, and so we may 
work with either (12) or (13). Removing the condition in (12) is not useful because 
we simply obtain a minimum of minus infinity. Minimizing (13) without the 
boundary conditionf,‘(d) = 0 is equivalent to solving an equation similar to (23) 
but without the parameter h. The Appendix shows that we can form anyi satis- 
fyingf,‘(d) = 0 which gives a C,l(ij) which is vanishingly different from this lower 
bound and so this lower bound is the greatest lower bound and should be taken as 
the minimum. Thus the introduction of X into Pandharipande’s method is not 
necessary and is therefore not justified variationally. 

In the variational method described here, however, the difficulty of the nonexis- 
tence of an exact minimum does not arise. We prove that the subsidiary constraints 
(24) and (25) imply that dt must be chosen to satisfyf,‘(dt) = 0, and so we are left 
to solve a second-order differential equation with just two boundary conditions. 
It appears that the introduction of the parameter h is necessary in Pandharipande’s 
method in order to counteract, in a rather arbitrary way, the behavior of condition 
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(31). In contrast, by reversing the roles played by h and d, we have been able to 
justify the inclusion of both on variational grounds alone. 

6. RESULTS 

In an attempt to compare different variational methods, several groups have 
recently applied their variational methods to a hypothetical system of neutrons 
treated as Boltzmann particles and interacting through the repulsive part of the 
Reid 1121 soft-core IS,, potential. The results of Chakravarty, Miller, and Woo 
(CMW) [13], Shen and Woo (SW), and Pandharipande (P) have been reported 
and compared in a recent paper by Shen and Woo [6]. These groups all use different 
variational methods and all except P involve the explicit calculation of many-body 
terms in the cluster series. 

The constrained variational method which we have described in the previous 
sections for fermions applies directly to Boltzmann particles if we remove the 
summation over t from all of the equations and make the substituton k$a,“(k,r) + 
4r2. In fact, as we have already remarked, constraint (22), because it is justified 
on average physical grounds, should be more directly applicable to Boltzmann 
particles. 

In Fig. 1 we compare the results obtained using the method presented above 
with those of CMW, SW, and P, as taken from 16, Fig. I]. As in [6], SW is taken as 
standard and the deviation of the other results from theirs is plotted. Figure 2 
shows the absolute energies obtained using the present method and using P’s 
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FIG. 1. Comparison of the results of several groups for the hypothetical gas of neutrons 
obeying Boltzmann statistics (taken from [6, Fig. 11): -, ElA9present-E/1V)sw ; - - - - - -> 
E/N)p-E/Njsw ; -.-.-*-.-‘-, E/N)a,w-E/Nh . 
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FIG. 2. Total energy per particle for the hypothetical gas of neutrons obeying Boltzmann 
statistics: ---, present method; - - - - - -, Pandharipande’s method. 

method. The results of SW and CMW are not distinguishable from ours on this 
scale. It is clear that our results are in excellent agreement with those of CMW and 
SW, but differ appreciably from those of P. Whilst this is admittedly an extremely 
simple model with none of the complexities of spin and angular momentum depen- 
dence present in “realistic” neutron matter, the agreement with CMW and SW 
is an extremely encouraging indication that we have indeed succeeded in restricting 
the effect of higher-order terms in the cluster series to such an extent that a similar 
calculation on realistic fermion systems might be expected to give credible results. 

Figure 3 and Table I give the results obtained for a calculation of the binding 
energy of liquid 3He using the Lennard-Jones potential [14], 

V(r) = C{(a/r)12 - (a/r)6}, (33) 

where C = 40.88”K, G = 2.556 A. 
Using just two correlation functions, one each for the singlet and triplet states, 

we obtain a minimum for the energy per particle, (E/N)mrn, of -3.18”K at a 
Fermi momentum of 0.81 A-l, corresponding to a density of 0.018 atoms A--3. 
In Fig. 3 we also show the results of a similar calculation using the method of 
L.O.C.V. of Pandharipande, but we have avoided the unnecessary approximation 
of defining an effective two-body interaction which is independent of k as is done in 
[4]; that is, we have solved [4, Eq. (lo)] subject to [4, conditions (7) and (12)] and 
used the functions fL(r) so obtained to calculate the two-body energy as given by 
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TABLE I 

Liquid *He using the Lennard-Jones Potential 

k (A-l) h (“W EIN (“K) 

0.70 0.0 -1.96 
0.72 0.0 -2.23 

0.74 0.0 -2.51 

0.76 -1.00 -2.78 

0.78 -2.45 -3.03 

0.80 -5.25 -3.17 

0.82 -9.65 -3.16 

0.84 -16.03 -2.90 

0.86 -24.47 -2.35 
0.88 -35.53 -1.39 

0.90 -52.67 0.39 

-3.o- 

I I I I I I I I 
O.i’O OR 0.74 076 070 0.00 0.82 0.04 0.86 0.88 

k,(f) 

FIG. 3. Liquid sHe using Lennard-Jones potential: -, present method; ------, 
Pandharipande’s method; +, experimental point. 

Eq. (17) above. This explains the small discrepancy between the results given here, 
and those given in [4]. 

Our results are clearly fairly close to the experimental values for the binding 
energy of -2.52% and saturation density of 0.0164 A-3. However, the results of 
more advanced microscopic calculations using the Lennard-Jones potential give 
less binding at a lower saturation density. For example, using a molecular dynamics 
method and a perturbation correction for Fermi statistics, Schiff and Verlet [15] 
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find a binding energy of -1.35”K at a density of 0.014 A-3. Since in suitably 
scaled variables the Lennard-Jones potential is both strong and very long-ranged, 
one should probably not expect any low order approximation to give accurate 
results, and we suggest that the fact that we obtain binding at all at a reasonable 
density is encouraging. We also note that the very high density behavior of our 
energy is probably more sensible than that of Pandharipande, indicating again that 
our constraints are more appropriate. 

TABLE II 
Neutron Matter Using the Modified Reid Potential 

kp (F-‘1 h (MeV) E/N (MeV) 

1.0 0.0 7.15 
1.5 0.0 14.7 
2.0 0.0 27.5 
2.5 -5.51 50.1 
3.0 -49.7 99.8 
3.5 -155 205 
4.0 -337 405 
4.5 -587 735 
5.0 -907 1231 

FIG. 4. Neutron matter using modified Reid potential: -, present method; - - - - - -, 
Pandharipande’s method. 
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Table II and Fig. 4 give the results of the calculation of the energy per particle 
of pure neutron matter, treating the neutrons correctly as fermions, and using a 
modified version of the Reid soft-core, isospin triplet potential [12] as suggested 
by Pandharipande [9]. This potential has the Reid IS, for E = 0 states, the Reid 
lD, for nonzero, even-l states, and the central part of the Reid 3P,-3F2 for the odd-l 
states. The results of a similar calculation using the method of Pandharipande as 
described in [4] are also plotted in Fig. 4 and it is clear that at higher densities our 
results again lie considerably below those of Pandharipande. In Fig. 5 we show a 
plot of the I = 0 correlation functions, fo(r), as obtained using the present method 
and using the method of Pandharipande, at a Fermi momentum of kF = 2.5 F-l. 
We find, generally, for all but the lowest densities (kp < 1.5 F-l), that the ft(r) 
obtained using Pandharipande’s method do, in fact, satisfy the condition imposed 
in our method, thatf,(r) < 1. 

FIG. 5. The I = 0 correlation functions for the calculation of Fig. 4 at kp = 
present method; - - - - - -, Pandharipande’s method. 

2.5 F-‘: -, 

7. DISCUSSION 

The major uncertainty in the formalism described above is clearly the total 
absence of any explicit calculation of the higher-order terms in the cluster series. 
If we accept the idea that the final sum over all the terms in the cluster series, were 
we able to perform such a summation, would not depend very critically upon the 
exact form of the two-body correlation function, then we can adopt the following 
viewpoint. We regard the introduction of our constraints on the correlation func- 
tion as restricting the magnitude of the sum of the higher-order terms in the 
cluster series in some self-consistent way; and we suggest that the introduction of 
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the constraints effectively subsumes part of the higher-order contribution, which 
would occur if we used the physically correct two-body correlation function, into 
the two-body energy obtained with our constraint. This philosophy bears obvious 
analogy to that adopted in the “renormalized” version of many-body perturbation 
theory, typified by the Brueckner-Bethe-Goldstone [16] theory, which has proved 
so useful in nuclear matter calculations. In both these theories, however, it is very 
difficult to check at the end of the calculation whether one has, in fact, obtained 
the desired close approximation to the final sum of the energy series, since the 
introduction of either physically motivated constraints in the present case, or single 
particle potentials in the case of Brueckner theory, will destroy the original ordering 
scheme for the energy series, and may imply cancellations between terms which are 
individually large. 

Having said this, it is, on the other hand, quite clearly unsatisfactory to impose 
constraints, which by their nature are intuitively inspired, and then to trust to luck 
that the cluster expansion can be terminated at the two-body level. The only real 
test of any constrained variational calculation of the sort described here is direct 
comparison with an exact unconstrainted calculation for the same system. For the 
“homework” problem of neutrons interacting as Boltzmann particles described 
above, the results of Shen and Woo [6] can probably be regarded as “exact,” and it 
is extremely encouraging that in this case our results, by comparison, are very good 
indeed, and clearly superior to those of Pandharipande. 

The situation with regard to liquid 3He is by no means so transparent. It is 
probable that an unconstrained cluster expansion for this system would be very 
slowly convergent and it is therefore not surprising that our results differ from other 
higher-order calculations with the Lennard-Jones potential. It is presumably 
coincidental that our results lie so close to the experimental values. The fact that 
we obtain more binding at a higher equilibrium density than, for example, Schiff and 
Verlet [15] we take as an indication that constraint (22) when applied to such a 
dense Fermi system is rather too weak to adequately constrain the higher order 
terms to be small. We note also that allowing “overshoot,” as the exact two-body 
distribution function would require, would only increase this discrepancy. 

For the “realistic” model of neutron matter considered here, again for the density 
range of interest no exact calculations exist of either the unconstrained variational 
or the many-body perturbation theory type.l Nuclear matter has, however, been 
well studied up to densities around the equilibrium value (kF 5 1.4 F-l), by the 
linked-cluster perturbation theory of Brueckner, Bethe, and Goldstone; in this 
context the familiar convergence parameter K, proportional to the volume of the 
“wound’ wavefunction [16], is often defined. It is perhaps worth pointing out that 

lpandharipande and Bethe [Phys. Rev. C 7 (1973), 13121 have, however, given hypernetted 
chain results for both this system and liquid SHe. 
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comparable convergence parameters can also be de&red within the framework 
of Jastrow variational theory, although they only have any real meaning for 
unconstrained calculations, for the reasons already cited. Two popular competing 
choices of such convergence parameters are 

k = C (ij 1 A[1 - f2(12)] A I ij)/N 
ij 

= i. (dkp2) lrn [l - h”(r)] a,2(k,r) dr, 

and 
K = C (ij 1 A[1 --f(12)12 A ( ij)/N 

ij 

= t$ (np/kF2) Mom [l - ft(r)l” a?&r) dr- 

The parameter K is evidently the exact Jastrow analog of the Brueckner-Bethe- 
Goldstone smallness parameter. For our constrained calculation, condition (25) 
that we have imposed shows that the parameter k has been set less than or equal 
to unity, and for the higher density ranges, k = 1 has been found necessary. It is 
clear that constraints (24) and (25) together imply also K -=c 1, which perhaps pro- 
vides another indication of how the constraints that we have imposed act to suppress 
higher-order terms and thereby improve the convergence of the cluster expansion. 
While it is certainly naive to treat K as a real convergence parameter in such a 
constrained calculation, it is probably true that as long as it remains suitably small, 
it does provide an indication of the rate of convergence. 

Bearing this warning in mind, we show in Fig. 6 the parameter K plotted as a 
function of Fermi momentum for the “realistic” model of neutron matter already 
described. It is encouraging that even at kF = 4.0 F-l, the parameter K does not 
exceed 0.3. Also plotted in Fig. 6 is the analogous quantity obtained using the 
method of Pandharipande, and it is interesting to note that over most of the 
density range of interest the K of Pandharipande is approximately one-half of ours. 
However, because the method of Pandharipande is not strictly a variational method, 
as already noted, we do not take this result seriously. For all the other reasons 
already cited we believe the present method superior to that of Pandharipande, and 
hence the comparative plots of K probably again only indicate the wariness with 
which one should use the smallness of this parameter as a test of convergence. 

In conclusion, we feel that the method of lowest-order constrained variation 
presented in this work redresses the objections that are open to the method of 
Pandharipande, and puts the theory on a firm basis, both mathematically and 
physically. We have suggested an integral constraint which is justified on simple 
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I.0 

FIG. 6. The convergence parameter K for neutron matter using the modified Reid potential: 
, present method; - - - - - -, Pandharipande’s method. 

physical grounds and which gives reliable results when applied to the Boltzmann 
homework problem. We find indications that when applied to such dense Fermi 
systems as liquid 3He this constraint may be rather too weak and calculations on 
other model fermion systems which attempt to investigate the most suitable 
incorporation of Fermi statistics in the present method will appear elsewhere [17]. 

APPENDIX 

Suppose that solving Eq. (23) from zero to d and then settingf(r) = 1 for r > d 
produces anf(r) as shown in Fig. 7L (i.e., continuous, but with a first derivative 
discontinuous at r = d). Then, instead of using this f(r), we use&(r) as shown in 
Fig. 7R. fi(r) differs from f(r) only in the small region l about r = d, so that 
fi(r) is continuous and has a continuous first derivative. Now from Eq. (17), 

JWYN = Jam F(f',f, r) drlr, (34) 

FIG. 7. Method of givingf(u) a continuous first derivative. 
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S,f’,fr , fi’ are all clearly bounded independently of E in the region E and Eq. (17) 
shows that both F(f’, f, r) and F(f,‘, fi , r ) are also bounded in this region. Thus, 

(36) 

for some fixed A. Then letting E -+ 0 shows that for any continuous f(r) we may 
generate anfi(r) with a continuous first derivative which gives an EJN in Eq. (17) 
which is vanishingly different from that obtained with f(r), and which differs from 
f(r) only in a vanishingly small region about r = d. 
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