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Abstract

Theory is presented for the influence of sheet uniformity on several structural parame-
ters of paper and general classes of planar stochastic fibrous materials. The theory makes
use of the negative binomial distribution for the probability of coverage of points by fi-
bres, allowing expressions to be derived for structural properties of sheets with greater
variance of coverage than that observed in a corresponding point Poisson process. The
expressions obtained provide insights into the extent that formation influences free-fibre-
length distribution, pore size distribution, absolute contact states and fractional contact
area.

Introduction

The use of stochastic modelling and statistical geometry to model structural features of paper
pertinent to the mechanical, optical and transport properties of the sheet is well established
for the special case of random fibre networks. One of the earliest studies of such systems
in the context of paper structure is that of Kallmes and Corte [1] who provided a precise
definition of a random fibre network:

• The fibres are deposited independently of one another.

• The fibres have an equal probability of landing at all points in the sheet.
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• The fibres have an equal probability of making all possible angles with any
arbitrarily chosen, fixed axis, i.e. the fibres have a random orientation.

For modelling purposes, this definition is satisfied by two statistical distributions. The number
of fibres covering a point in the plane of support of the network is a discrete random variable
called coverage and the probability that a point has coverage c is given by the Poisson
distribution,

P (c) =
c̄c e−c̄

c!
for c = 0, 1, 2 . . . (1)

with mean c̄, variance var(c) = c̄ and coefficient of variation, cv(c) = 1/
√

c̄. The Poisson
distribution for coverage handles the first two of Kallmes and Corte’s criteria in their definition
of a random fibre network. The third criterion is satisfied by using a uniform probability
density function for the angle made by the major axes of fibres to a given direction.

The mean coverage of a fibre network with mean grammage, β̄, depends only on the mass
per unit area of the fibres βf , as given by the ratio of fibre coarseness, δ, to fibre width, ω:

c̄ =
β̄

βf
=

β̄ ω

δ
. (2)

Accordingly, the statistics of coverage at points in random fibre networks are independent of
fibre length and morphological characteristics of fibres along their length such as curl, kink,
etc.

Certain properties of random fibrous networks can be determined directly from the Poisson
distribution only. For example, the probability of finding a pinhole in a sheet is given by the
Poisson probability of coverage zero,

P (0) = e−c̄ . (3)

Similarly, the free-fibre-length distribution arises as the distribution of intervals along the
length of a fibre in which there are no fibre crossings [1] and is given by the exponential
distribution which has probability density,

f(g) =
1
ḡ

e−g/ḡ , (4)

with mean ḡ and variance var(g) = ḡ2.
In networks with mean coverage less than about 1, only a small fraction of the network

has coverage greater than 3 and wherever fibres cross they can be considered to be in contact.
We classify these thin networks as ‘two-dimensional’ and their fractional contact area Φ2D,
i.e. the structural analogue of relative bonded area, was derived by Kallmes et al. [2] by
considering the Poisson probabilities of the network having coverage 1, 2 or 3 to give,

Φ2D = 1− 1
c̄

+
e−c̄

c̄
. (5)
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At higher values of mean coverage, we expect that there will be regions where one fibre lies
above another but is separated by some vertical distance through the influence of nearby
fibres. The fractional contact area of networks of this type has been shown to depend on
mean coverage and porosity only [3], this being consistent with the theoretical approaches of
Soszyński [4, 5].

Kallmes et al. [2] considered also the configurations of fibre contacts in two-dimensional
random networks, i.e. the fraction of the network where fibres are in contact with 1, 2 or no
other fibres at points along their length, no other configuration being possible. They gave
the probability of these absolute contact states, zero, 1 and 2 as,

B(0) = e−c̄ (6)

B(1) =
2
c̄

(
1− (1 + c̄) e−c̄

)
(7)

B(2) =
1
c̄

(
c̄− 2 + (c̄ + 2) e−c̄

)
, (8)

respectively. This treatment was recently extended by Sampson and Sirviö [6] to account
for the separation of vertically adjacent fibre surfaces that is characteristic of networks with
coverages and porosities more typical of industrially formed papers. Equations (6) to (8) are
still valid for such structures, but represent the fractions available for contact with 0, 1 or 2
other fibres.

These absolute contact states are important because we expect regions where there is no
contact to exhibit different stress-strain behaviours from those with one or two contacts. In
particular, fibres at the surfaces of the network can contact other fibres on one side only and
as such might be considered less efficient at bearing load than other fibres within the bulk of
the network. The fraction of the total fibre surface that is available for contact with other
fibres has recently been derived for random fibre networks [7] and is given by,

f = 1 +
γ − Ei(c̄) + log(c̄)

ec̄ − 1
(9)

where γ is Euler’s constant and Ei(c̄) is the exponential integral function1.
Whereas the structure of handsheets can be considered to approximate that of a random

fibre network formed from the same constituent fibres [8, 9], the higher consistencies used in
industrial papermaking lead to flocculation of fibres in suspension and worse formation, i.e.
sheets exhibit a higher variance of local coverage than that arising from an equivalent point
Poisson process in two dimensions. When comparing the formation of real sheets with that
calculated for a random network formed from the same fibres, it is convenient to use the
ratio of their variances. This approach was used by Corte [10] and has subsequently been
used extensively by Dodson and coworkers, see e.g. [8] who termed the variance ratio the

1Note that Equation (9) is a simplified form of that given in [7]
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‘formation number’, nf (x), this parameter being dependent on the scale of inspection, x. We
note that Dodson and coworkers [11–13] report correlations between the formation number
and flocculation in suspension, as quantified by the crowding number [14].

Here we derive expressions that account for the influence of formation, as characterised by
the formation number at points, nf , on the structural properties of the sheet that have been
discussed so far. To account for the increased variance of coverage over that observed using the
Poisson distribution, we use the negative binomial distribution for the probability of coverage.
This distribution has been widely applied in other fields where data exhibit higher degrees of
clustering, and hence higher variance, than those arising from equivalent Poisson processes,
see e.g. [15–17]. It is particularly well suited to modelling flocculation in paper since it allows
the variance of coverage at points to be varied independently of the mean, which is precisely
the physical manifestation of forming processes, where mean coverage is held constant and
flocculation influences its distribution in the plane. Recall that for random networks, as
modelled using the Poisson distribution, the variance of coverage at points is equal to the
mean coverage. We do not concern ourselves here with the mechanisms influencing network
uniformity such as suspension crowding and forming dynamics, but constrain our treatment
to description of network structure at given level of formation, as parameterised by the
formation number.

Theory

Consider a stochastic fibre network with mean coverage c̄ such that the probability that a
point in the plane of support has coverage c is given by the negative binomial distribution:

P ∗(c) =
Γ(c + m)
c! Γ(m)

(1− p)c pm for c = 0, 1, 2, . . . (10)

where Γ(m) is the Euler gamma function and the mean, variance and coefficient of variation
of coverage at points are given in terms of parameters m and p:

c̄ =
m (1− p)

p
(11)

var∗(c) =
m (1− p)

p2
(12)

cv∗(c) =

√
1

m (1− p)
(13)

where the asterisks denote that we are dealing with flocculated networks.
Our interest is flocculated networks with variance of coverage greater than that arising

from an equivalent point Poisson process in two dimensions. We quantify the departure from
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randomness arising from flocculation by the formation number at points, as given by the
ratio of the point variance of a flocculated network to that of a random network,

nf =
var∗(c)
var(c)

. (14)

A property of the Poisson distribution is that var(c) = c̄, so we have,

cv∗(c) =
√

nf

c̄
. (15)

Substituting for cv∗(c) and solving Equations (11) and (13) simultaneously for p and m gives,

m =
c̄

nf − 1
(16)

p =
1
nf

. (17)

Substituting for m and p in Equation (10) yields, on manipulation, the negative binomial
probability function in terms of c̄ and nf only:

P ∗(c) =
Γ

(
c + c̄

nf−1

)

c! Γ
(

c̄
nf−1

)
(

1− 1
nf

)c

n
− c̄

nf−1

f for c = 0, 1, 2, . . . (18)

We note that as nf → 1, Equation (18) converges to the Poisson distribution, as given by
Equation (1). This is important, since any expressions we derive for structural properties of
flocculated networks include the random case as a special case in the limit as nf → 1.

Histograms of the coverage at points as given by the Equation (18) for some flocculated
cases (nf > 1), and by Equation (1) for the random case (nf = 1), are shown in Figure 1 for
networks with mean coverage 5 and 10. As expected, increasing nf increases the probabilities
of the highest and lowest coverages in the network and reduces the fraction with coverage
close to the mean. Inevitably, this influences the skewness of the distribution, defined as the
third central moment divided by the cube of the standard deviation and given by,

Sk =
2nf − 1√

c̄ nf
. (19)

So, skewness increases with flocculation, decreases with increasing coverage and when nf = 1
we recover the skewness of the Poisson distribution, 1/

√
c̄.
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Figure 1: Histograms of coverage for networks with mean coverage c̄ = 5 (top row) and c̄ = 10 (bottom
row). Histograms on the left represent the random case as given by the Poisson distribution; other
histograms represent flocculated cases as given by the negative binomial distribution with variance over
random quantified by nf .

Pinholes

The probability of a pinhole occurring in the network is given by the probability of coverage
zero, i.e.,

P ∗(0) = n
− c̄

nf−1

f , (20)

and limnf→1 P ∗(0) = e−c̄ recovering the result for the random case.
Equation (20) is plotted against mean coverage in Figure 2 where nf = 1 corresponds

to the random case and the probability of pinholes increases with flocculation. Direct com-
parison of Equation (20) with experimental data reported in the literature is difficult, since
the formation number at points, nf is rarely reported. It is illustrative however to consider
how the incidence of individual pinholes is related to the probabilities plotted in Figure 2.
Wiseman [18] suggests that pinholes in newsprint have equivalent circular diameters of or-
der 30 µm, so we may estimate the area of an individual pinhole as being around 7×10−10 m2.
Accordingly, a probability of pinholes of 10−6 corresponds to about 1500 pinholes per square
meter. Thus, although the probabilities plotted are relatively low, Figure 2 suggests that
small changes in formation can have a significant influence on the occurrence of pinholes.
This is consistent with Wiseman’s observations for newsprint and directory grades made on
twin-wire and Fourdrinier formers. Similarly, Mauranen [19] reports a probability of pin-
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Figure 2: Probability of coverage zero plotted against formation number at points, nf .

holes of order 10−3 for 35 g m−2 directory grade sheets formed on a Fourdrinier compared
with 10−5 for the same grade formed on a roll-blade former and having better formation.
Reduced incidence of pinholes with improved formation was observed also by Harwood [20].

Free-fibre-length distribution

To derive the free-fibre-length distribution, we use the negative binomial distribution to
describe the frequency of crossings along a line with µ crossings per unit length. The expected
number of crossings in an interval of length g is µ g and the probability of there being no
crossings in a gap of length g is,

P ∗(0) = n
− µ g

nf−1

f . (21)

The probability density of g is given by,

f∗(g) =
P ∗(0)∫∞

0 P ∗(0) dg

=
µ log(nf )
nf − 1

n
− µ g

nf−1

f , (22)
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with mean,

g∗ =
∫ ∞

0
g f∗(g) dg (23)

=
nf − 1

µ log(1/nf )
(24)

Solving Equation (24) for µ and substituting into Equation (22) yields on manipulation,

f∗(g) =
1
g∗ e−g/g∗ , (25)

which is, of course, the probability density function for the exponential distribution. Since
clustering of points along a line has no influence on the mean distance between adjacent
points, g∗ = ḡ and we recover Equation (4) for random networks.

As crossings can occur on both sides of a given fibre, intervals containing a small integer
number of crossings may be more appropriate for characterisation of the free-fibre-lengths
that form the in-plane perimeter of pores within the sheet [21]. The distribution of intervals
containing n crossings in a random fibre network is,

f(g, n) =
P (n)∫∞

0 P (n) dg
(26)

=
µ (µ g)n e−µ g

n!
. (27)

The expected length of an interval containing n crossings is gn = (n + 1) ḡ, so we have,

gn = (n + 1) ḡ =
∫ ∞

0
g f(g, n) dg (28)

=
n + 1

µ
, (29)

such that ḡ = 1/µ and,

f(g, n) =
gn e−g/ḡ

ḡ(n+1) n!
, (30)

which is the probability density function for the gamma distribution with mean, gn = (n+1) ḡ
and coefficient of variation, 1/

√
n + 1.

It has not been possible to obtain the corresponding closed-form expression for the prob-
ability density of intervals containing n crossings in a flocculated fibre network as given by,

f∗(g, n) =
P ∗(n)∫∞

0 P ∗(n) dg
. (31)
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The probability densities for some small n can be obtained in closed form however, and
for n = 1 we recover the gamma distribution that is known to describe the intervals for the
random case:

f∗(g, 1) =
g e−g/ḡ

ḡ2
, (32)

with g1 = 2 ḡ and coefficient of variation, cv∗(g1) = 1/
√

2.
Probability densities and hence the variance and coefficient of variation of gn have been

derived for n > 1, though these become increasingly cumbersome with increasing n. We find
however that plots of these are well approximated by gamma distributions with the same
mean and coefficients of variation. i.e. gn = (n + 1) ḡ and

cv∗(g2) =

√
1
2
− 3

2
(
3 + log2(nf )

) (33)

cv∗(g3) =

√
1
2

+
9 (4− log(nf ))

4
(
12 + 9 log(nf ) + 2 log2(nf )

)2 −
15

4
(
12 + 9 log(nf ) + 2 log2(nf )

)(34)

such that there is a dependence of the coefficient of variation on uniformity, as quantified
by the parameter nf . This is illustrated in Figure 3 where the coefficient of variation of the
length of intervals containing n crossings is plotted against nf .

Recall that free-fibre-lengths represent the boundaries of voids in the plane of the sheet
which have been modelled using the product of independent and identical gamma distribu-
tions [22]. We note however that despite an expectation that pore size will be influenced by
formation [8, 22, 23], experimental evidence suggests that any dependence is rather weak [24].
Recent theoretical treatments suggest two reasons for this, firstly that the adjacent sides of
polygons representing voids in the plane are correlated, and that this correlation is expected
to be rather insensitive to fibre orientation and flocculation [25], and secondly that mea-
surements of pore size are strongly influenced by the out-of-plane dimensions of voids [26],
these being rather insensitive to formation [27, 28]. The insensitivity of the free-fibre-length
distribution and the distributions of intervals containing n crossings to the parameter nf ,
which quantifies formation, provides a third contributing factor to the observed insensitivity
of pore size to formation. Interestingly, we observe that the dependence of the coefficient
of variation of free-fibre-lengths is most sensitive to nf when it is close to 1; as such any
influence in near-random structures would be rather difficult to isolate experimentally.

Absolute Contact States

The absolute contact states derived by Kallmes et al. [2] for random networks and given by
Equations (6) to (8) represent the fractions of the fibre surface in the network that is available
for contact with no other fibres, one other fibre or two other fibres. For flocculated networks,
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Figure 3: Coefficient of variation of intervals contain n crossings. cv∗(gn) is independent of formation for
n = 0 and n = 1 and exhibits a weak dependence for higher n.

we repeat their derivation using the negative binomial distribution for the probability of
coverage c and we have,

B∗(0) =
P ∗(1)

c̄
(35)

B∗(1) =
2 (1− P ∗(0)− P ∗(1))

c̄
(36)

B∗(2) =
1
c̄

∞∑

c=3

(c− 2) P ∗(c) . (37)

On simplification, these yield,

B∗(0) =
(

1
nf

)1+ c̄
nf−1

, (38)

B∗(1) =
2
c̄

(
1− (c̄ + nf )

(
1
nf

)1+ c̄
nf−1

)
, (39)

B∗(2) =
1
c̄

(
c̄− 2 + (c̄ + 2nf )

(
1
nf

)1+ c̄
nf−1

)
. (40)
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Figure 4: Absolute contact states. A weak dependence of the fractions B∗(0) and B∗(1) on flocculation
is observed for networks with mean coverage 5, though the fraction B∗(2) is less sensitive. At lower
coverages, sensitivity is greater.

Equations (38) to (40) are plotted against the formation number, nf in Figure 4 for mean
coverages up to 5. At mean coverage c̄ = 5 and greater, we observe only a weak dependence
on nf and obtain the expected approximations,

B∗(0) ≈ 0 ; B∗(1) ≈ 2
c̄

; B∗(2) ≈ 1− 2
c̄

.

Note that in the limit as nf → 1, Equations (38) to (40) recover Equations (6) to (8).

Fractional contact area

Two dimensional networks

Consider first a network of fibres of infinitesimal thickness such that they make contact with
each other at all regions where they cross. Each fibre has an upper and a lower surface and
those parts of the fibres that constitute the surfaces of the sheet can make contact with other
fibres on one side only.

At a point in a fibre network with coverage c, the fraction of the fibre surface covering
that point which is in contact with other fibres is,

φ(c) =
c− 1

c
, (41)

such that the fractional contact area of a random two-dimensional network is,

Φ2D =
1
c̄

∞∑

c=1

c φ(c) P (c)

= 1− 1
c̄

+
e−c̄

c̄
, (42)
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which is Equation (5) as derived by Kallmes et al. [2] by considering the Poisson probabilities
of coverage up to 3.

The fractional open area, ε of a two dimensional fibre network is given by the probability
of coverage c = 0 and is the two-dimensional equivalent of porosity in networks of finite
thickness. From Equation (3) we have, for the random case

c̄ = log(1/ε), (43)

so the fractional contact area of a two dimensional random fibre network can be given in
terms of its fractional open area only:

Φ2D = 1 +
1− ε

log(ε)
. (44)

For the flocculated case we use the negative binomial distribution for coverage, and we
have,

Φ∗2D =
1
c̄

∞∑

c=1

c φ(c) P ∗(c)

= 1− 1
c̄

+
n
− c̄

nf−1

f

c̄
. (45)

and, since ε = P ∗(0) = n
− c̄

nf−1

f , we have the following unified expression for the fractional
contact area of random and flocculated two-dimensional networks:

Φ∗2D = 1− 1
c̄

+
ε

c̄
. (46)

For two dimensional networks of equal coverage, the free parameter ε in Equation (46) in-
creases with flocculation such that the fractional contact area increases also. Such behaviour
is consistent with expectation, since increasing flocculation will increase the fraction of the
network with coverage greater than 2 and hence the proportion of the total fibre length
that contacts other fibres on both sides. An alternative scenario is that both coverage and
flocculation vary and we note from Equation (20) that these variables are coupled such that,

c̄ =
(nf − 1)
log(nf )

log(1/ε) , (47)

and limnf→1 c̄ = log(1/ε). In the random case, ε = e−c̄; it follows therefore that the fractional
contact area of a flocculated network with mean coverage c̄ is the same as that of a random
network with the same fractional open area and mean coverage c̄ log(nf )/(nf − 1).
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Multiplanar networks

The fractional contact area of networks with finite thickness can be modelled by considering
the superposition of several two-dimensional networks. Our approach is guided by that of
recent theory [3], but it has the advantage that the resultant expressions are simpler and
applicable over the full range of network porosities, whereas those presented in [3] were
applicable only to networks with porosity greater than about 0.3.

When two structures with fractional open area, ε, are brought together, the fraction
of their projected solid area that makes contact is (1 − ε)2. For a given two dimensional
network, with fractional contact area, Φ2D, the fraction of the fibre surface that is available
for additional contacts is (1−Φ2D). Accordingly, for a network with infinite coverage formed
from the superposition of an infinite number of layers, we have,

Φ∞ = Φ2D + (1− ε)2 (1− Φ2D) . (48)

We have seen earlier that the fractional contact area of a flocculated two dimensional network
with mean coverage c̄ is equivalent to that of a random network with the same fractional open
area but with mean coverage c̄ log(nf )/(nf − 1). This is convenient, as it allows us to use
Equation (44), which arises from consideration of random networks, to compute Φ2D and
hence Φ∞ using Equation (48) such that Φ∞ is independent of nf .

When we consider multiplanar networks of finite thickness we must take account of the
fraction of the total fibre length which is located at the surfaces of the network and can
be in contact with other fibres on one side only. At points with coverage c, the fraction of
fibre surfaces available for contact with other fibres is (c− 1)/c. The fraction of the network
covered by fibres is (1− P ∗(0)) so the fraction of the flocculated network as a whole that is
available for contact is,

f∗ =
1

1− P ∗(0)

∞∑

c=2

c− 1
c

P ∗(c) (49)

= 1− c̄ F (c̄, nf )

nf

(
n

c̄
nf−1

f − 1
) (50)

where F (c̄, nf ) is the hypergeometric function, 3F2

(
1, 1, c̄

nf−1 + 1; 2, 2; 1− 1
nf

)
. For the ran-

dom case, f = limnf→1 f∗ and we recover Equation (9).
The fractional contact area of a network of finite coverage is given by,

Φ∗c = f∗Φ∞ . (51)

The influence of coverage and formation on the fractional contact area as given by Equa-
tion (51) is plotted against normalised density (1 − ε) in Figure 5; for clarity, the only
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Figure 5: Fractional contact area plotted against normalised density. The influence of formation on
fractional contact area decreases with increasing coverage and at a given density depends only on the
fraction of fibre surface available for contact.

flocculated case shown is that with nf = 2. For all mean coverages greater than 2, we ob-
serve that flocculation reduces the fractional contact area, though the effect is negligible at
mean coverage 20 or higher. Interestingly, when the mean coverage is 2, flocculation increases
the fractional contact area. The cause of these behaviours is rather subtle; we have identified
that Φ∞ is independent of formation, so the observed dependence on formation of the frac-
tional contact area of networks with finite coverage arises only from the fraction of the fibre
network that is available for contact with other fibres. This is primarily influenced by the
fraction of the network with coverage 1, P ∗(1). The surface showing how this depends on c̄
and nf is shown in Figure 6. At mean coverages below about 2, increasing nf decreases the
fraction of the network with coverage 1, increasing the fractional contact area; the opposite
effect is observed at higher coverages.

Summary

Theory has been presented that provides for the first time analytic expressions for the in-
fluence of formation on several structural parameters of paper and general classes of planar
stochastic fibrous materials. The expressions derived arise from consideration of the proba-
bility of coverage of points by fibres as modelled by the negative binomial distribution. This
distribution permits greater variance of coverage in a network with mean coverage c̄ than that
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Figure 6: Surface showing the fraction of a network with coverage 1 as a function of mean coverage and
formation number, nf . At mean coverages below about 2, increasing nf decreases the fraction of the
network with coverage 1, increasing the fractional contact area; at higher coverages, P ∗(1) decreases as
nf increases.

of a classical random fibre network, as modelled using the Poisson distribution for coverage.
Importantly, the expressions derived recover the established results for random networks, as
given using the Poisson distribution for point coverage, in the limit as nf → 1.

Having stated the probability function for the negative binomial distribution in terms of
the mean coverage and the formation number at points–a measure of the additional variance
when compared to a random network–expressions have been derived for the probability of
pinholes, the free-fibre-length distribution, the distribution of absolute contact states and the
fractional open area of the network. Importantly, the derivations involve no assumptions of
fibre geometry, so the resultant expressions are applicable to straight, curled or kinked fibres.

The theory predicts that the skewness of the distribution of coverage increases with floc-
culation; a consequence of this is that the incidence of pinholes increases, in line with expec-
tation and observations reported in the literature [18–20]. Surprisingly, the free-fibre-length
distribution, i.e. the distribution of intervals between fibre crossings, is found to be inde-
pendent of network uniformity. The distribution of intervals containing a small number of
crossings, which can be considered to represent the perimeters of in-plane voids, is found
to be well approximated by the gamma distribution and to exhibit a weak dependence on
network uniformity. Data characterising the dependence of the free-fibre-length distribution
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on formation that would allow confirmation of such a dependence have not been identified
in the literature, and are probably difficult to obtain. Nonetheless, the finding is consistent
with the experimentally observations that pore size distribution is well approximated by the
gamma distribution and is rather insensitive to formation [24].

Expressions characterising the extent and configuration of contacts between fibres have
been derived. We find that the configuration of fibre contacts, as characterised by the absolute
contact states, are very insensitive to formation once mean coverage exceeds 5. This is
reflected in the influence of formation on the fractional contact area; for very thin networks
of a given coverage, we predict some dependence of this parameter on formation, though for
networks of coverage more representative of most paper products, our models predict that
the influence of formation is weak and decreases with increasing coverage.
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[4] R.M. Soszyński. Relative bonded area – A different approach. Nord. Pulp Pap. Res. J.
10(2):150, 1995.
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