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This work explores the strain dependence of the piezoelectric effect in GaAs and InAs zinc blende

crystals. We write the polarization in terms of the internal anion-cation displacement and the ionic and

dipole charges. We then use ab initio density functional theory to evaluate the dependence of all

quantities on the strain tensor. We investigate which aspects of the elastic and dielectric response of zinc

blende crystals are sources of non-linearities in the piezoelectric effect. We observe that the main source

of non-linearities is the response to elastic deformation and, in particular, the internal sublattice

displacement of the interpenetrating cation and anion sublattices. We show that the internal sublattice

displacement dependence on the diagonal stress components is neither symmetric nor antisymmetric in

the strain. Therefore, non-linear coefficients of order higher than quadratic are needed to correctly

describe non-linear effects. Using a fitting procedure of the ab initio data, we also determine all

non-linear piezoelectric coefficients up to the third power in the diagonal components of the strain

tensor. We can report that non-linear effects up to third order can be significant in precisely determining

the magnitude of the piezoelectric polarization if compressive or tensile strains larger than 10% are

present. We notice however that, in nanostructures such as quantum dots, the optical properties are less

sensitive to the third order non-linear piezoelectric effect and that third order coefficients can therefore

be neglected. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818798]

I. INTRODUCTION

The piezoelectric (PZ) effect in bulk III-V semiconduc-

tors arises from lack of inversion symmetry along one or

more particular crystallographic directions known as polar

axes.1,2 PZ effects are found in devices as diverse as light-

emitting diodes (LEDs), lasers, power devices, transducers,

and micropositioners.3 Furthermore, the recently discovered

field of Piezotronics4–7 has highlighted the potential for

exploiting the PZ field in nanostructured semiconductors for

the realization of self-powering devices, nanogenerators,

pressure sensors, and in flexible electronics applications.

In III-V semiconductors, strain with a component along

the polar axis of the crystal leads to the generation of electri-

cal dipoles. In zinc blende (ZB) crystals, such dipoles are

created in response to shear strain, i.e., the off-diagonal com-

ponents of the strain tensor and manifest themselves as a

macroscopic PZ field that exists, for instance, in quantum

wells (QWs) grown on [111] oriented substrates, quantum

wires, and quantum dots (QDs). A similar effect is also

observed in wurtzite (WZ) semiconductors along the polar

axis [0001] when the crystal is deformed by either parallel or

perpendicular strain, i.e., the diagonal components of the

strain tensor.

Though the piezoelectric field in semiconductors

has for a long time been treated as a linear effect in

the strain, the influence of non-linearities has been high-

lighted in WZ III-N,8 ZB II-VI,9,10 and ZB III-V11,12,15

semiconductors.

All previous studies concur on the importance and of

non-linear effects and their magnitude.11,12 It is also gener-

ally acknowledged9 that the two most widely used methods

employed to evaluate such effects, namely, the linear

response method (LRM)13 and Harrison’s method (HM),14

appear to produce different results. In order to shed some

light into this discrepancy, one needs to compare directly the

coefficients predicted by the two methods. This has not yet

been achieved because data obtained using HM11,15 were so

far given as an incomplete set, i.e., a subset of the depend-

ence upon the full strain tensor. In this paper, we in part

address this issue and present the piezoelectric coefficients

(PZCs) dependence on all combinations of the diagonal com-

ponents of the strain tensor. The reason that is difficult to

fully address the issue of comparing the two models is that

for a full comparison involving also the shear components

HM11,15 would involve an unfeasible number of simulations

to completely map the dependence on all strain components,

as it will be discussed in detail in Sec. III.

II. METHODOLOGY

The method we have previously developed11 is based on

a semi-empirical approach, where the piezoelectric charges

are given by the sum of a direct dipole contribution and a

bond contribution, as originally proposed by Harrison.14

In order to evaluate all the linear and non-linear coeffi-

cients, we determined the total strain induced polarization

using the framework validated on experimental data from

InGaAs QWs11,15

Px̂i
¼

Z�Hdxi þ 2apð1� ap
2Þ �
X4

q¼1

ð~rq � x̂iÞdRq

2X
; (1)
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where x̂i is the Cartesian direction, dxi is the displacement

vector of cations with respect to anions from the ideal posi-

tion, rq and dRq are the distance and displacement vectors of

the nearest neighbour q from the atom at the centre of the tet-

rahedron, ap is the bond polarity, and X is the atomic vol-

ume. Borrowing from the language of tight binding, ZH* is

the atomic charge, generally different from the transverse

effective charge, which instead has its direct equivalent in

the dynamic effective charge or Born charge (Z).

In our previous work,8,11,15 we have demonstrated that

ZH* is always a fraction of the value of the dynamic effec-

tive charge (Z*), if the values of the PZ polarization are to

be in agreement with experiment. In fact, in III-N materials,

calculating the PZCs by using Z* leads to grossly overesti-

mated strain induced PZ fields, as confirmed by Bernardini

and Fiorentini.16

The effective charge was used in our model to evaluate

the bond polarity

Z� ¼ �DZ þ 4ap þ 4apð1� ap
2Þ; (2)

where DZ¼ 1. The atomic charge ZH* in our model is

always determined, so that once ap and the elastic deforma-

tion have been calculated in the limit of small strain (Bulk

crystals), the model correctly reproduces experimental val-

ues of the PZC.

For both bulk and strained cases, the elastic deformation

and Z* were evaluated by using plane wave pseudopotential

(with pseudopotentials derived with the Troullier–Martin

scheme17) density functional theory in the local density

approximation (DFT-LDA)18 and density functional pertur-

bation theory (DFPT) within the CASTEP19 code.

Such choice is based on our own experience and the fact

that, e.g., the generalized gradient approximation appears not

to work as well as LDA for problems involving structural

relaxation of semiconductor materials.20

III. DFT CALCULATIONS: INTERNAL DISTORTION

The first important quantity needed in the evaluation of

Eq. (1) is the Kleinman parameter of internal distortion.21

We used a strain tensor of the form:

S ¼
1þ e1 c=2 c=2

c=2 1þ e2 c=2

c=2 c=2 1þ e3

0
B@

1
CA; (3)

where reduced indexes (x¼ 1, y¼ 2, z¼ 3, yz¼ 4, xz¼ 5,

xy¼ 6) are used.

We note that the strain tensor in Eq. (3) is not com-

pletely generalized, as the off diagonal components (shear

strain) are taken to be identical. In this case, the displace-

ment is purely uniaxial. This particular form of the strain ten-

sor was chosen to limit to 3 in the dimensionality of the

problem, when a fixed small value of c is used and e1, e2, and

e3 are varied independently.

Even with such a reduced dimensionality, we require

roughly 103 DFT calculations for each material investigated. If

we also varied c, we would require a total of 104 calculations,

surging to 106 if independent shear strains were also included.

Going beyond, 103 independent calculations is impractical,

particularly, when one takes into account the difficulty in

achieving convergence of all DFT simulations, as much as

possible without changing conditions, such as the number of K

points or energy cut-off between simulations. On a few occa-

sions, more stringent convergence criteria had to be applied

especially for data points calculated under the condition of

very high strain. Since for each set of convergence criteria the

relaxed lattice parameter changes, altering these parameters

makes comparison between different DFT simulations

extremely difficult. We therefore tried to minimize the need

for changing convergence criteria. To ensure that data points

were correctly converged, we found it very helpful to perform

graphic checks of the data and therefore be able to pick out vis-

ually those data points that did not appear to be respecting the

trend given by the other data points. This would have also

become challenging, if the full dependence on all the compo-

nents of the strain tensor had been investigated.

The less computationally demanding LRM used by Beya-

Wakata et al.13 can easily consider 3 independent off diagonal

(shear) strain components together with 3 independent diago-

nal components, therefore, using the full strain tensor.

Given that in our calculations such generalization is

instead computationally demanding, we restrict our investiga-

tion to the non-linear behaviour in the diagonal components,

in the limit of small shear strain. Such approach can be justi-

fied in the following way. First, we notice that in Migliorato

et al.11 the Kleinman parameter has a weak dependence on

shear strain (e.g., from 0.45 to 0.40 in GaAs), for values of

c< 0.05, which is roughly the largest values of the shear strain

normally encountered in nanostructures. Second, a large

dependence was instead recorded upon the diagonal strain

components: for hydrostatic strain between 0 and 0.1, the

Kleinman parameter of GaAs varies from 0.45 to 0.80. Third,

the dependence on the non-linear shear strain was predicted to

be very small also in the LRM calculations of Beya-Wakata

et al.13 Fourth, we will show in Sec. VI that the dependence

on the diagonal strain components can be fitted by a cubic

equations, where the small non-linear shear strain dependence

is contained in the noise of both the DFT calculations and the

fitting procedure. The contribution from non-linear shear

strain would therefore be difficult to distinguish as it would

always be overshadowed by the much larger dependence on

the diagonal strain components. In conclusion, the approach

of neglecting the non-linear dependence on the shear strain

does not detract in any way from the validity of the present

calculations in the limit of small strain, while representing

only a marginal correction to the case of large shear strain, as

already shown in our previous work.11

The Kleinman parameter is linked to the overall cation-

anion displacement Cartesian components through the

relationship

dx̂i ¼
fx̂ i

c a

4ð1þ ex̂ i x̂ i
Þ : (4)

This equation is our own revision of the original definition

given by Leonard Kleinman.21 Such revised form is necessary

073515-2 Tse et al. J. Appl. Phys. 114, 073515 (2013)



because the parameter was originally defined to be a material

constant whereas in our description is treated as a 3 dimen-

sional vector function of the strain, as already described in

Garg et al.15 Furthermore, we prefer to use explicitly the strain

components in the definition to preserve the original physical

meaning of the parameter, i.e., a value of 1 maintains all bond

angles equal to each other irrespective of the amount of shear

strain applied to the crystal.

IV. DFT CALCULATIONS: BOND POLARITY

The bond polarity is obtained from calculations of the

effective charges from DFPT with the Berry phase

approach.22 Energy Cut-Off of 3000 eV and MP K-Point grid

of 6� 6� 6 provided a convergence error of less that 0.01%.

For InAs, 2000 eV and 8� 8� 8, a convergence error of less

than 0.001% was obtained. The Density Functional used in

these calculations is the well-known Local Density

Approximations (DFPT-LDA) with norm-conserving

pseudopotentials.

The strain tensor used in these calculations is in the sim-

ple form of

S ¼
1þ e1 0 0

0 1þ e2 0

0 0 1þ e3

0
@

1
A; (5)

as dependence on the shear strain is not necessary in

this case. This approximation was tested, and at least for

small values of the shear strain, was found to be valid.

Furthermore, including a non-linear dependence on the

shear strain makes it difficult to identify the charges com-

ponents along the Cartesian axes, while also making the

numbers of simulations required very large, as discussed

earlier. Additionally, we note that the previous work11,15

demonstrated that non-linearities in the Kleinman parame-

ter have a larger effect on the PZCs, compared with non-

linearities in the bond polarity. Therefore, neglecting the

shear strain dependence and only retaining the much larger

dependence on the diagonal strain is always a reasonable

approximation.

The calculation yields the Born Charges matrix, which

when diagonalized results in 6 eigenvalues, k1, k2, and k3 for

cations and k4, k5, and k6 for anions, respectively. The Born

Effective Charge parameter Z* is evaluated by averaging the

3 values

Z�cation ¼
1

3
ðk1 þ k2 þ k3Þ; Z�anion ¼

1

3
ðk4 þ k5 þ k6Þ: (6)

We then perform a further averaging

Z� ¼ 1

2
ðjZ�anionj þ jZ�cationjÞ: (7)

We relate the bond polarity to the effective charges through

Eq. (2). The equation is cubic but yields only one physical

solution, so that there is a unique correspondence of values

of Z* and ap. For bulk GaAs and InAs, we obtain values of

ap of 0.420 and 0.474, respectively, which is similar to previ-

ous calculations.11,15

V. PIEZOELECTRIC COEFFICIENTS

The Kleinman vector and bond polarity data23 are easily

combined using Eq. (1), the only difficulty being the calcula-

tion of the geometrical factor that multiplies the bond polar-

ity. This requires combining the strained positions of all the

atoms in the tetrahedron under consideration, obtained in the

DFT calculations of the internal distortion.

The calculated PZCs values are presented in Figs. 1–6,

where the three coefficients e14, e25, and e36 are separated for

ease of representation. These plots display the dependence in

the strain components e1 and e2 for a value of e3 which

increases in steps of 0.02 from �0.1 in the top left plot to

þ0.1 in the bottom right plot. The increase in e1 is left to

right first and then onto the lower row. Not all possible com-

binations of diagonal strains are shown as cubic symmetry

implies invariance upon exchange of e1, e2, and e3. This obvi-

ously results in progressively less data points included in

each sequence of plots for each figure.

The PZCs for both GaAs and InAs exhibit a similar

behaviour as a function of strain and strong non-linear

effects are present. It is important to note at this point that

the linear model treats the PZC of zincblende as an isotropic

material constant. Therefore, the fact that multiple values,

both positive and negative, are predicted, depending on the

applied strain, is already indicative of non-linear behaviour.

Furthermore, the fact that the points are not equally spaced is

also indicative that the PZCs depend super-linearly on the

strain, while also differing in absolute value for tensile and

compressive strain of equal magnitude. This is a clear indica-

tion of the absence of inversion antisymmetry ei $ �ei. In

other words, compressive and tensile strain do not simply

produce opposite results. This is to be expected, since crys-

tals tend to resist compression more than they oppose expan-

sion, an asymmetry which is obvious when one considers the

cohesive energy diagrams of semiconductor materials.24

Compared with the LRM, our model is therefore more

complete as it yields the dependence on the diagonal strain

components. By contrast in the LRM, both linear depend-

ence on the diagonal strain terms and inversion antisymme-

try are implicitly assumed by the choosing to only determine

piezoelectric coefficients coupled to either e1e2, e1e4, e4e5,

and their cyclic permutations.

The non-linear behaviour appears stronger in InAs com-

pared with GaAs, as the curvature of the data for any con-

stant value of e2 is more noticeable in the former compared

with the latter. This is the direct result of the difference in

the Kleinman deformations as a function of strain, which can

be seen in the Supplementary Material.

In our model, compared with the LRM, the existence of

both positive and negative values of the PZCs can be

explained in a physical way. In fact, the sign of the coeffi-

cient depends on the relative magnitude of the two terms in

Eq. (1). Since the signs of the two terms are opposite, the

first term (direct dipole contribution) tends to dominate for

low strain and provide an overall negative sign. On the other

073515-3 Tse et al. J. Appl. Phys. 114, 073515 (2013)



hand, for particular combinations of the applied strain, the

bond polarity term can dominate and results in a positive

sign of the PZCs. By contrast, in the LRM, the balance

between these two contributions is lost inside the computa-

tional framework and the physical behaviour cannot be

extracted in a meaningful way.

VI. LINEAR AND NON-LINEAR PIEZOELECTRIC
COEFFICIENTS

To further investigate and ultimately quantify the non-

linearities, we obtain the non-linear PZCs by fitting a third

order polynomial to the DFT calculated values, after we

impose conditions on the coefficients based on the cubic

symmetry of the crystal. This leads to a reduced number of

coefficients for the fitting equation

e0lm ¼ elm þ
X3

n¼1
elnmen þ

X3

n�n0¼1
elnn0menen0

þ
X3

n�n0�n00¼1
elnn0n00menen0en00 ; (8)

where again reduced indexes (x¼ 1, y¼ 2, z¼ 3, yz¼ 4,

xz¼ 5, xy¼ 6) are used.

The numerical values obtained from the parameterization

procedure are listed in Table I. For InAs, it was necessary to

give more weight to the data points corresponding to smaller

strains (jeij � 0:6) in order to obtain a satisfactory fit. This is

motivated by the fact that any errors in the DFT calculation

appear to become larger as the applied strain is increased.

It is worth stressing that we refer to as zero order the con-

stant value in the expansion (elm, equivalent to the bulk value)

while linear (elnm), quadratic (elnn0m), and cubic coefficients

FIG. 1. Piezoelectric coefficient e14

(C/m2) dependence on strain for GaAs

calculated from ab-initio DFT. The

data display the dependence upon the

strain components e1 and e2 for a value

of e3 which increases in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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(elnn0n00m) are terms coupled solely to the diagonal strain com-

ponents. The polarization depends on the product of these

terms times the shear components of the strain tensor, effec-

tively making the PZ field quadratic in the strain even in the

case where only the linear term in our expansion is used. This

is different from the definition given by others12,13 where the

linear term corresponds to the constant value of our expan-

sion, while quadratic terms are the product of a term in the

strain times a shear term, or the product of two shear terms.

A. Linear terms

Linear coefficients (elnm) are coupled to strain compo-

nents, such as ei with i¼ 1.3. These coefficients are antisym-

metric in nature. Both GaAs and InAs appear to have a

smaller coefficient related to strain in the direction of

polarization compared with the ones linked to the plane or-

thogonal to the direction of polarization. For example, for

polarization in the i¼ 3 direction (which for a (001) grown

semiconductor would be the direction of growth), linked to

the PZC e36, the non-linearity is 3 times stronger for strain in

the i¼ 1 and 2 (growth plane) directions compared to when

the strain is in the direction of growth (Table II). Upon

inspection of the data for the Kleinman parameter, we notice

that the exact same dependence is observable, leading to the

conclusion that this is predominantly an elastic effect due to

the nature of the crystal structure.

In terms of magnitude, for both GaAs and InAs, strain

coupled to the coefficient e114 in the range 6[10�2,10�1]

would contribute to the PZC third to second decimal place.

The coefficient e124 would instead contribute to the PZC sec-

ond to first decimal place in the same range.

FIG. 2. Piezoelectric coefficient e14

(C/m2) dependence on strain for InAs

calculated from ab-initio DFT. The

data display the dependence upon the

strain components e1 and e2 for a value

of e3 which increases in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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Hence, we conclude that linear terms are of sufficient

magnitude to necessitate inclusion in any calculation of the

PZ polarization in InAs and GaAs semiconductors.

B. Quadratic terms

Quadratic coefficients (elnn0m) are coupled to strain com-

ponents, such as eiej with i, j¼ 1.3. Both these coefficients

are symmetric if i¼ j or antisymmetric if i 6¼ j.

GaAs and InAs appear to have different quadratic coeffi-

cients for different polarization and strain directions. This

follows closely the differences already observed in the

Kleinman parameters of both materials. In terms of magni-

tude, for both GaAs and InAs, strain coupled to the various

quadratic coefficients in the range 6[10�2,10�1] would con-

tribute to the PZC fourth to second decimal place. Given that

the bulk coefficients are in the range [10�1, 10�2] C/m2 we

conclude that quadratic terms are of sufficient magnitude to

warrant inclusion in any calculation of the PZ polarization in

InAs and GaAs semiconductors. Furthermore, the combina-

tion of linear and quadratic terms restores a fundamental

asymmetry of the system related to the fact that compressive

and tensile stress should produce neither symmetric nor anti-

symmetric effects.

C. Cubic terms

Cubic coefficients (elnn0n00m) are coupled to strain terms,

such as eiejek with i, j, k¼ 1.3. These terms are antisymmet-

ric in nature. Again GaAs and InAs appear to have different

cubic coefficients for different polarization and strain direc-

tions. In particular, some are negligible for InAs but not for

FIG. 3. Piezoelectric coefficient e25

(C/m2) dependence on strain for GaAs

calculated from ab-initio DFT. The

data display the dependence upon the

strain components e1 and e2 for a value

of e3 which increases in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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GaAs. In terms of magnitude, for both GaAs and InAs, strain

coupled to the largest cubic coefficients in the range

6[10�2,10�1] would contribute to the PZC fifth to second

decimal place. We conclude that cubic terms are of sufficient

magnitude to recommend inclusion only in calculations of

the PZ polarization involving InAs and GaAs semiconduc-

tors subject to particularly large strains (larger than 10%).

For smaller strains the magnitude of the cubic correction is

comparable to the error in the DFT calculations and can be

therefore reasonably neglected.

VII. COMPARISON WITH LINEAR RESPONSE
CALCULATIONS

The recent work by Beya-Wakata et al.13 presented a

comprehensive study based on DFPT and linear response

theory of non-linear polarization in various III-V zinc blende

semiconductors. The method used differs from ours as it

relies entirely on ab initio calculation without any fitting pa-

rameters, which are instead used in our model (ZH*).

Their model considers an expansion of the polarization

to linear and quadratic coefficients, which according to our

definitions are the zero order and linear terms of Eq. (8), in

the 6 components of the strain tensor

P ¼ e14

e4

e5

e6

0
@

1
Aþ e114

e1e4

e2e5

e3e6

0
@

1
Aþ e124

e4ðe2 þ e3Þ
e5ðe1 þ e3Þ
e6ðe2 þ e1Þ

0
@

1
A

þ e156

e5e6

e4e6

e4e5

0
@

1
A: (9)

FIG. 4. Piezoelectric coefficient e25

(C/m2) dependence on strain for InAs

calculated from ab-initio DFT. The

data display the dependence upon the

strain components e1 and e2 for a value

of e3 which increases in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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As explained earlier in our model we neglected the e156

coefficient and therefore the quadratic dependence on the

shear strain. Beya-Wakata et al.13 report values of e156 of

�0.7 C/m2 and 0.2 C/m2 for GaAs and InAs, respectively,

which for the fixed shear strain of 0.02 used in our calcu-

lations would only affect the fifth decimal place. Though

we do not incorporate such dependence in our model, one

could in theory easily incorporate it by accepting their

value of e156.

To compare directly the 2 models, one needs to rewrite

Eq. (9) using e4¼ e5¼ e6¼ c¼ 0.02

P=c ¼ e14 þ e114

e1

e2

e3

0
B@

1
CAþ e124

e2 þ e3

e1 þ e3

e2 þ e1

0
B@

1
CAþ e156c: (10)

From this, it is clear that one of the major differences

between the two models is that, while the non-linear

response method introduces the small dependence on the

quadratic shear strain, it neglects higher order contributions,

such as the quadratic and cubic terms in the diagonal strain

components. Our model instead obtains the latter via a fitting

procedure of the DFT data. However, we can still compare

the values of e14, e114, and e124 in the two models.

The values of e14 for GaAs and InAs in Beya-Wakata

et al.13 are reported as�0.238 C/m2 and�0.115 C/m2, respec-

tively, while in our model the values are fitted to exactly give

the experimental values of �0.16 C/m2 and �0.045 C/m2.

Beya-Wakata et al.13 point out that such experimental value

could be affected by large errors due to interface polarization

charges.25 If this was verified, it would appear to cast doubts

on our model parameters. However, the experimental values

FIG. 5. Piezoelectric coefficient e36

(C/m2) dependence on strain for InAs

calculated from ab-initio DFT. The

data display the dependence upon the

strain components e1 and e2 for a value

of e3 which increases in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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enter only one fitted quantity ZH* and our model could be eas-

ily recalibrated, whilst still maintaining the same non-linear

behaviour as a function of strain.

There is instead a surprising quantitative agreement

between the values of e114 for GaAs and InAs reported as

�0.4 C/m2 and �0.6 C/m2 by Beya-Wakata et al.13 and

�0.666 C/m2 and �0.653 C/m2 in our work. On the con-

trary, the values of e124 for GaAs and InAs reported as

�3.8 C/m2 and �4.1 C/m2 by Beya-Wakata et al.13 and

�1.646 C/m2 and �1.617 C/m2 in our work are different by

over a factor of 2.

Particularly given the closeness of the values of e114,

there is no reasonable explanation for the discrepancy

besides that maybe the inclusion of quadratic and maybe

cubic terms in the Beya-Wakata et al.13 model could help

reconciling in part such difference.

VIII. DISCUSSION

The two models discussed in this paper obviously produce

very different results. We consider two critical cases for com-

parison: InAs pseudomorphically strained on GaAs (001)

(e1¼ e2¼�0.7, e3¼þ0.7, with a further shear component

given by c¼ 0.02), and on GaAs (111) (e1¼ e2¼ e3¼�0.223,

c¼ 0.268). The Beya-Wakata et al.13 model predicts a polariza-

tion in the growth direction equal to þ0.069 C/m2 for the (001)

case and þ0.808 C/m2 for the (111) case. We note that the lin-

ear term alone would in both cases predict a negative polariza-

tion. Our model too predicts a positive sign of the polarization,

but of a much smaller magnitude: þ0.002 C/m2 for the (001)

and þ0.201 C/m2 for the (111) case. This is a crucial difference

that should be observable in experiment and could therefore

help validating our model.

FIG. 6. Piezoelectric coefficient e36

(C/m2) dependence on strain for InAs

calculated from ab-initio DFT. The

data display the dependence in the

strain components e1 and e2 for a value

of e3 which increase in steps of 0.02

from �0.1 in the top left plot to þ0.1

in the bottom right plot. The increase

in e1 is left to right first and then onto

the lower row.
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At present, experimental data for zinc blende semicon-

ductors appear to be inconclusive in validating either model,

mostly due to the fact that it is not possible to completely

isolate contributions arising from the piezoelectric field from

those arising from other sources, such as interface charges

and composition.

One element of validation for HM comes from the study

of non-linearities in the PZ field of wurtzite III-N semiconduc-

tors, where together with 3 independent bulk PZCs there is

also spontaneous polarization, therefore, providing potentially

a more stringent test of validity compared to zinc blende crys-

tals.8 In the case of InGaN QWs, comparison between experi-

mental data and model data using HM’s non-linear PZCs has

certainly supported26,27 the validity of HM. However, no com-

parison has been published with the alternative non-linear

PZCs obtained by Pedesseau et al.28 within the LRM.

In terms of comparing HM and LRM models for zinc

blende, one element that in our opinion casts doubts on the

validity of LRM is that it predicts values of the first order

coefficients (the linear terms) much larger (in absolute value)

than the experimentally reported bulk values. To reconcile

the LRM values with the experimental bulk values, one

would have to assume the involuntary presence of compres-

sive strain in excess of 10% when attempting to measure the

bulk values. In HM instead the experimental bulk values are

used to fit one of the dielectric properties. The difference

between the models is that even in the limit of small strain

the overall polarization is still much larger and negative in

the LRM compared with both HM and the experimentally

determined bulk values. While such difference could be the

result of interface charges affecting the experimental

measurements, as Beya-Wakata et al.13 speculate, it seems

too large for none to have been noticed over the many years

of experimental work on PZ properties of semiconductors.

IX. THE EXAMPLE OF QUANTUM DOTS

In epitaxially grown InAs/GaAs QDs, the piezoelectric field

is directly responsible for lifting the energy degeneracy of the

otherwise indistinguishable p-type electron wavefunctions.29–31

This is typically not the only cause of symmetry breaking, as in

real structures structural (shape and crystal) asymmetries also

play a vital part. We therefore discuss the differences between

the piezoelectric potential distributions in the same nanostruc-

ture according to the conventional linear model (LM), the non-

linear model (HM) of this work, and the non-linear model of

Beya-Wakata et al.13 (LRM). The results are shown in Fig. 7.

The InAs/GaAs QD used in the calculation is a square-based

truncated pyramid with base width of 20 nm, height of 5 nm,

and a top width of 10 nm. We are showing the PZ potential

energy on a (001) plane intersecting the truncated pyramid at

1.5 nm, 2.5 nm and 3.5 nm from the base (30%, 50%, and 70%

of the total height). There are significant differences between

the models. For instance, the magnitude of the potential energy

is certainly much larger for LRM compared with LM or HM

near the top of the pyramid, while it appears comparable closer

to the base. This difference near the top of the pyramid, where

strains are typically larger,32 is the obvious result of the much

larger values of e124 PZC. There are also differences between

the spatial distribution of the potential energy between the linear

and non-linear models. Closer to the top of the pyramid, the lin-

ear model appears to have a double structure on each lobe that

in HM is spatially well separated, while it is not at all present in

LRM. At the bottom of the pyramid, instead, it is the LM that

predicts the largest magnitude and spatial extension of the

potential. Furthermore, HM and LRM are comparable in magni-

tude but HM predicts a slightly larger field.

We further performed electronic structure calculations of

the p-type orbital (e1 and e2 states) electron energies and wave-

functions using both the full 8-band and 14-band k�p formalism,

including the kinetic part with the spin-orbit interaction, strain,

TABLE I. Linear and non-linear coefficients obtained from DFT data. For second and third order terms, the parameters are invariant upon cyclic permutation

of the n indexes.

Coefficient Condition on indexes Degeneracy GaAs InAs

elm �0.160 �0.045

elnm l¼ n e114¼ e225¼ e336 �0.666 �0.653

l 6¼ n e124¼ e235¼ e316 �1.646 �1.617

n () n0

elnn0m l¼ n¼ n0 e1114¼ e2225¼ e3336 �0.669 �3.217

l¼ n 6¼ n0 e1124¼ e1134¼ e2215¼ e2235¼ e3316¼ e3326 �2.694 �5.098

l 6¼ n¼ n0 e1224¼ e1334¼ e2115¼ e2335¼ e3116¼ e3226 �1.019 1.590

l 6¼ n 6¼ n0 e1234¼ e2135¼ e3126 �5.636 �1.962

n () n0 () n00

elnn0n00m l¼ n¼ n0 ¼ n00 e11114¼ e22225¼ e33336 �0.840 21.063

l¼ n¼ n0 6¼ n00 e11124¼ e11134¼ e22215¼ e22235¼ e33316¼ e33326 �0.241 12.112

l 6¼ n¼ n0 ¼ n00 e12224¼ e13334¼ e21115¼ e23335¼ e31116¼ e32226 �9.168 �15.072

l 6¼ n¼ n0 6¼ n00 e12234¼ e21135¼ e31126 �1.471 �7.450

n 6¼ n0 6¼ n00 e11234¼ e21235¼ e31236 �4.725 �4.909

TABLE II. Comparison of the p-states electron wavefunctions energy differ-

ence (in meV) obtained by 8-band and 14-band k�p electronic structure cal-

culations using different models for piezoelectricity: (a) Linear Model (LM),

(b) Our Model (HM), and (c) Beya-Wakata Model13 (LRM).

k�p Linear HM (this work) LRM (Beya Wakata)13

14 18.0 10.1 7.8

8 18.2 10.3 7.9
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the interface Hamiltonian, as well as the strain-induced piezo-

electric potential. The details of the method used can be found

in Tomić and Vukmirović.33 Both the 14-band and 8-band cal-

culations yield the same result for the difference in energy of

the p-state electron wavefunctions, within 0.2 meV (Table II).

Since the electron wavefunctions tend to be spatially located at

the bottom of the pyramid, the PZ potential calculated using the

LM has the largest energy difference (18.1 6 0.1 meV). HM

and LRM give an energy difference of 10.2 6 0.1 and

7.85 6 0.05 meV, respectively. The difference between the HM

and LRM models is significant. We also tested the influence of

quadratic vs. cubic terms in HM and concluded that in trun-

cated pyramidal QDs the quadratic terms are certainly very sig-

nificant but the cubic terms only add a small positive correction

of 0.1 meV. Hence in these particular structures, the strain is

not sufficiently large to require inclusion of the cubic terms.

It is also noticeable that while both HM and LRM under

particular strain combinations predict the possibility of posi-

tive values of the PZC, in neither of these calculations this

appears to be the case. In Migliorato et al.,30 it was proposed

that the linear PZ field alone was able to account energy dif-

ferences of the p-type electron wavefunctions in both InAs/

GaAs and InGaAs QDs. The experimental values of these

splitting were given in the same work as between 5 and

8 meV, close to the theoretical prediction. However, the ex-

perimental data also suggested that the [110] p-electron

wavefunction should have been higher in energy compared

with its [1�10] counterpart. This could, in principle, be

explained by the PZ field switching from negative to positive

as a result of the strain in the nanostructure. However, in

truncated pyramidal QDs not even non-linear models appear

to predict a switch of the sign of the piezoelectric potential

energy. One cannot exclude that some shapes or sizes of

QDs other than the one used in this work could have strain

large enough to be able to switch the polarization from

negative to positive. But at present we have to conclude that

in experimental observations the degeneracy is mostly due to

shape anisotropy counteracting and entirely reversing the

effect of the piezoelectric field.

X. CONCLUSIONS

We have calculated the linear, quadratic, and cubic pie-

zoelectric coefficients related to diagonal terms of the strain

tensor for both GaAs and InAs zincblende crystals. We have

assessed the magnitude of these extra terms and conclude

that, while linear and quadratic terms are likely to necessitate

inclusion even in the limit of small strain, cubic terms should

only be included when the material undergoes significant

(around 10%) strain.

Though currently synthesized nanostructures do not tend

to exhibit such large strain, semiconductor materials are able

to withstand high external pressure capable of compressing

the wafer by 10% or more. Therefore, when measuring the

electro-optical properties of semiconductor layers under

external pressure one would necessarily need to use the cubic

terms in order to model the resulting polarization and com-

pare with the experimental data.

We tested whether in semiconductor InAs/GaAs trun-

cated pyramidal Quantum Dots only quadratic or also cubic

terms should be taken into account in electronic structure

calculations and confirm that in such structures the strain is

not large enough to necessitate inclusion of the cubic piezo-

electric coefficients, but corrections due to the linear and

quadratic terms (in the diagonal strain components) have a

magnitude comparable to the conventional linear model.
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