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The Dirac contour representation and its properties are studied. It provides an elegant formalism for an
extension of the harmonic-oscillator Hilbert space into a larger space that is suitable for the description of
oscillator systems at both positive and negative temperatures. The analytic continuation of various physical
quantities into the negative temperature region is examined in detail, and several interesting connections are
revealed.
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Analytic representations play an important role in the
study of various aspects of quantum physics. Examples in-
clude the Bargmann~or holomorphic! representation@1#,
other analytic representations used in the theory of coherent
states@2–4# and quantum many-body–field theory@5#, and
several recent developments in conformal field theory. In all
such cases the powerful theory of analytic functions is used
in a quantum-mechanical context.

In this Rapid Communication we extend the previous
Dirac contour representation@6# in order to introduce an en-
larged Hilbert space that is suitable for a coherent theory of
harmonic oscillators at negative temperatures. The formalism
both incorporates earlier ideas about negative temperatures
~see, e.g., Ref.@7#! and extends our own earlier work@8# on
thermal coherent states and their properties. It is potentially
useful in the description of systems that are excited to higher
states, and whose decay into the lower states is described
through the negative temperature formalism. It is thus related
to Glauber’s inverted oscillator@9#, although the mathemati-
cal details are different. The formalism is also useful in any
generalized thermodynamics context that includes negative
temperatures; in black hole physics, etc. We note that even
when limited to positive temperature the formalism is valu-
able in practical quantum optics applications, as has been
demonstrated elsewhere@4#.

We label with the indexp ~for positive temperatures! the
Hilbert spaceHp , and all the states and operators contained
within it, which are associated with the harmonic oscillator,
specified in terms of the usual creation and annihilation op-
erators,ap

† and ap , respectively. We shall show that the
Dirac contour representation withinHp can naturally be ex-
tended into another Hilbert spaceHn , similarly labeled with
the indexn ~for negative temperatures!. The formalism in
Hn alone is very similar to the formalism inHp alone.
However, we show that by considering the enlarged Hilbert
spaceHp%Hn , the spaceHn can be interpreted as a Hil-
bert space of the harmonic oscillator at negative tempera-
tures.

In the Dirac contour representation@5# of Hp , the nor-
malized eigenbras and eigenkets of the number operator
ap
†ap are represented as

^N;pu→~N! !
1
2z2N21, uN;p&→~N! !2

1
2zn, ~1!

where N50,1,2,. . . . More generally, arbitrary states in
Hp ,

u f ;p&5(
N

f NuN;p&, ^ f ;pu5(
N

f N* ^N;pu, ~2!
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where, here and henceforth, all sums onN ~andM ) run from
zero to infinity, are represented as

u f ;p&→(
N

f N~N! !2
1
2zN[ f k

p~z!, ~3!

^ f ;pu→(
N

f N* ~N! !
1
2z2N21[ f b

p~z!, ~4!

where the indicesk andb refer to ket and bra, respectively.
When(Nu f Nu251, the normalized functionf k

p(z) is a holo-
morphic function in the complex planezPC, whereas
f b
p(z) is clearly nonanalytic.
By making use of the simple relation,

R
C8

dz

2p i

exp~z* z!

zN11 5
~z* !N

N!
, ~5!

whereC8 is an anticlockwise contour enclosing the origin,
we may prove the generalized Fourier transform relation be-
tween f b

p(z) and f k
p(z),

R
C

dz

2p i
f b
p~z!exp~z* z!5@ f k

p~z!#* , ~6!

under conditions of convergence that need to be specified on
an individual basis, but that generally amount to the anti-
clockwise contourC enclosing the singularities off b

p(z).
The scalar product of two states may similarly be represented
as

^ f ;pug;p&5 R
C

dz

2p i
f b
p~z!gk

p~z!5 (
N50

`

f N* gN . ~7!

A simple example of the Dirac contour representation in
Hp is provided by the standard Glauber coherent state
uA;p& for which

uA;p&→exp~2 1
2 uAu21Az!, ~8!

^A;pu→exp~2 1
2 uAu2!~z2A* !21, uzu.uAu. ~9!

We observe that the bra-state representation is valid only for
uzu.uAu, an effect of which is that in contour integrations
involving this state, such as those in Eqs.~6! and ~7!, the
point A must lie inside the contourC.

At this point it is interesting to consider the relationship
between the Dirac contour representation and the more fa-
miliar Bargmann ~or holomorphic! representation@1#, in
which the normalizable ket stateu f ;p& of Eq. ~2! is also
represented by the holomorphic functionf k

p(z) of Eq. ~3!,
but where its corresponding adjoint bra state^ f ;pu is repre-
sented by the complex conjugate function@ f k

p(z)#* . By in-
serting into Eq.~7! the relation

gk
p~z!5E d2z

p
exp~z* z2uzu2!gk

p~z!, ~10!

which is valid for all holomorphic functionsgk
p(z), and by

making use of Eq.~6!, we readily derive the alternative re-
lation

^ f ;pug;p&5E d2z

p
e2uzu2@ f k

p~z!#* gk
p~z!, ~11!

which is the usual relation for the inner product in the Barg-
mann representation ofHp .

An arbitrary operatorQp in Hp ,

Qp[ (
M ,N50

`

QMNuM ;p&^N;pu, ~12!

has the Dirac contour representation,

Qp~z1 ,z2!5 (
M ,N50

`

QMNS N!M ! D
1
2 z1

M

z2
N11 . ~13!

Its trace is given by the elegant formula

TrQp[(
N

QNN5(
N

R
C1

R
C2

dz1dz2
~2p i !2

Qp~z1 ,z2!
z2
N

z1
N11

52
1

4p2 R
C1

R
C2

dz1dz2
z12z2

Qp~z1 ,z2!,

C2,C1 , ~14!

where the integrations overz1 and z2 run anticlockwise
around the contoursC1 andC2 , respectively, which encircle
the origin. The summation overN converges to the quoted
result if and only ifuz1u.uz2u. This implies that the ring of
the contourC2 ~defined asrmin<uzu<rmax, where rmin and
rmax are the minimum and maximum distances, respectively,
from the origin to points on the contour! lies wholly inside
the ring of the contourC1 . This condition is denoted sym-
bolically by C2,C1 . One may also readily check that for-
mally we have that the mode of action ofQp on an arbitrary
ket stateug;p& has the Dirac contour representation

Qpug;p&→ R
C

dz8

2p i
Qp~z,z8!gk

p~z8!, ~15!

with a similar representation for̂f ;puQp ,

^ f ;puQp→ R
C

dz8

2p i
f b
p~z8!Qp~z8,z!. ~16!

Similarly, if Q1;p andQ2;p are two operators inHp rep-
resented by the functionsQ1;p(z1 ,z2) andQ2;p(z1 ,z2), re-
spectively, it is easy to show that their product takes the form
of a generalized convolution

Q1;pQ2;p→ R
C

dz

2p i
Q1;p~z1 ,z!Q2;p~z,z2!. ~17!

As illustrative examples we now consider the Dirac con-
tour representations of the operators 1p , ap , ap

† , and
ap
†ap . For the unit operator 1p , QMN5dM ,N , and Eq.~13!
converges to (z22z1)

21 when uz1u,uz2u. For uz1u>uz2u the
sum diverges. However, the latter case implies, for example,
that the pointz in Eq. ~15! lies outside the contourC, and
hence that the result is zero. In this sense we are, therefore,
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justified in saying that foruz1u.uz2u, the Dirac contour rep-
resentation of 1p is zero. We write accordingly,

1p→~z22z1!
21u~ uz2u2uz1u!, ~18!

whereu(x) is the unit step function;u(x)[1 for x.0, and
u(x)[0 for x<0. We may likewise show

ap→~z22z1!
22u~ uz2u2uz1u!, ~19!

ap
†→z1~z22z1!

21u~ uz2u2uz1u!, ~20!

ap
†ap→z1~z22z1!

22u~ uz2u2uz1u!. ~21!

We may also show more generally that the following rep-
resentations hold for arbitrary~integral! powers of the basic
creation and destruction operators,

~ap
†!M→z1

M~z22z1!
21u~ uz2u2uz1u!, ~22!

~ap!
N→N! ~z22z1!

2N21u~ uz2u2uz1u!. ~23!

Use of Eq.~17! also yields the relations for normal-ordered
and antinormal-ordered products,

~ap
†!M~ap!

N→N!z1
M~z22z1!

2N21u~ uz2u2uz1u!, ~24!

~ap!
N~ap

†!M→F S d

dz1
D N z1

M

z22z1
Gu~ uz2u2uz1u!. ~25!

The further use of Eq.~15! then also shows that

~ap
†!M~ap!

Nug;p&→zMS ddzD
N

gk
p~z!, ~26!

~ap!
N~ap

†!Mug;p&→S ddzD
N

zMgk
p~z!. ~27!

We thus observe that the mode of action of the operators
ap
† and ap on ket statesug;p& within Hp is equivalent to
multiplication byz and differentiation with respect toz, re-
spectively, of the holomorphic functiongk

p(z), i.e., ap
†→z,

ap→d/dz, just as in the usual Bargmann representation.
However, it is important to realize that the mode of action of
ap
† andap with respect to the bra states^ f ;pu in terms of the
correspondingnonanalyticfunctionsf b

p(z) cannot be so sim-
ply expressed.

We also consider the thermal density operator inHp ,

rp
th~b![~12e2b!exp~2bap

†ap!, b>0. ~28!

Its Dirac contour representation is simply constructed as

rp
th~b;z1 ,z2!5

12e2b

z22e2bz1
u~ uz2u2e2buz1u!. ~29!

We turn next to the Hilbert spaceHn , for which the
Dirac contour representation of the normalized eigenbras and
eigenkets of the number operatoran

†an is that of the corre-
sponding eigenkets and eigenbras, respectively, ofHp ,

^N;nu→~N! !2
1
2zN, uN;n&→~N! !

1
2z2N21. ~30!

Thus, the representations of bra and ket states are opposite in
Hp andHn : this is their only difference. Arbitrary states
u f ;n& and^ f ;nu in Hn have analogous expansions to that in
Eq. ~2! for Hp , and have the corresponding Dirac contour
representations,

u f ;n&→(
N

f N~N! !
1
2z2N21[ f k

n~z!, ~31!

^ f ;nu→(
N

f N* ~N! !2
1
2zN[ f b

n~z!. ~32!

We note that the overlap of any state inHn with any
state in Hp is identically zero. Operators Qn
[(M ,NQMNuM ;n&^N;nu inHn , defined analogously to Eq.
~12! inHp , are represented by the corresponding functions,

Qn~z1 ,z2!5 (
M ,N

QMNSM !

N! D
1
2 z2

N

z1
M11 . ~33!

The analogs of Eqs.~18!–~21! are readily shown to be

1n→~z12z2!
21u~ uz1u2uz2u!, ~34!

an→z2~z12z2!
21u~ uz1u2uz2u!, ~35!

an
†→~z12z2!

22u~ uz1u2uz2u!, ~36!

an
†an→z2~z12z2!

22u~ uz1u2uz2u!. ~37!

A comparison of Eqs.~18!, ~19!, and~21! with Eqs.~34!,
~36!, and~37! reveals the following relations:

1p21n→~z22z1!
21, ~38!

ap1an
†→~z22z1!

22, ~39!

ap
†ap1anan

†→z1~z22z1!
22. ~40!

In order to analytically continue the operatorap
† of Eq. ~20!

with the operatoran of Eq. ~35! we need to introduce first an
‘‘extended’’ destruction operatorãn ,

ãn[an1u0;p&^0;nu. ~41!

We note that operatorsL that map states fromHp into
Hn and vice versa, namely,

L[ (
M ,N

~AMNuM ;p&^N;nu1BMNuM ;n&^N;pu!, ~42!

have the Dirac contour representation,

L~z1 ,z2!5 (
M ,N

@AMN~M !N! !2
1
2z1

Mz2
N

1BMN~M !N! !
1
2z1

2M21z2
2N21#. ~43!

Equation~43! shows immediately that the Dirac contour rep-
resentation of the operatoru0;p&^0;nu is 1. Thus, Eqs.~35!
and ~41! yield the mapping

ãn→z1~z12z2!
21u~ uz1u2uz2u!, ~44!
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in the same sense as described previously, and hence

ap
†2ãn→z1~z22z1!

21. ~45!

Equations~39! and~45! show that as we cross the boundary
uz1u5uz2u @e.g., as the pointz passes through the contourC
in Eq. ~15!#, the transitionap→an

† , ap
†→2ãn takes place for

the individual creation and destruction operators. The corre-
sponding transition for an arbitrary functionf (ap ,ap

†) is,
however, more subtle and is not simply obtained by making
the above transition for each individual operator, i.e.,
f (ap ,ap

†)→” f (an† ,2ãn), as is already apparent from Eqs.
~38! and ~40!.

The thermal density operatorrn
th(b) inHn , with b>0, is

defined exactly as in Eq.~28!, but with ap→an . Use of Eq.
~33! readily yields its Dirac contour representation,

rn
th~b;z1 ,z2!5

12eb

z22ebz1
u~2uz2u1ebuz1u!. ~46!

We see clearly that Eq.~46! represents the analytic continu-
ation of Eq. ~29!, defined inHp , into what inHp is the
‘‘forbidden region’’ b,0 and uz2u,e2buz1u. Whereas the
regionb,0 is forbidden within eitherHp orHn alone, the
enlarged spaceHp%Hn allows a precise and meaningful
framework for a description of negative temperatures. It is
this result, together with a series of other results in the same
general context, which we indicate below, that leads to the
interpretation ofHn within this context as a negative tem-
perature Hilbert space.

More precisely, we define the generalized thermal density
operatorr th(b), for all real values ofb,

r th~b!5H rp
th~b!, b.0

rn
th~2b!, b,0,

~47!

within Hp%Hn . We stress again that, whereas in either
Hp orHn alone only the operatorsrp

th(b) andrn
th(b), re-

spectively, withb.0, are meaningful, withinHp%Hn the
extendedr th(b) is meaningful. Its Dirac contour representa-
tion is given by

r th~b!5
12e2b

z22e2bz1
u@b~ uz2u2e2buz1u!#. ~48!

Analogous results to those given above can also be proved
for the entropy operatorr thlnr th, whose trace is proportional
to the von Neumann entropy. Full details will be given else-
where. Such results also strengthen our interpretation of
Hn as a Hilbert space for the harmonic oscillator at negative
temperatures.

In previous work @8# we have introduced generalized
temperature-dependentP andQ representations in terms of
thermal coherent states. We have noted that such generalized
P andQ representations formally represent the analytic con-
tinuation of each other to negative temperatures. The present
work puts such observations onto a sounder footing, since
we have now explicitly extended the original Hilbert space to
accommodate the negative temperature states. Indeed, an al-
ternative and simpler proof can now be given, which relies
on the above mappingap↔an

† , ap
†↔2ãn betweenHp and

Hn , and on the fact that theP andQ representations of a
given operator are directly related, respectively, to its
antinormal- and normal-ordered forms. Mathematical details
will be given elsewhere.

In summary, we have shown that one of the prime features
of the Dirac contour representation is that it accommodates
easily and elegantly an extended Hilbert space suitable for
the description of quantum physics at negative temperatures.
Its close relationship with thermo-field-dynamics and its gen-
eralization is most easily discussed in terms of the thermal
coherent states and their generalization to the displaced
negative-binomial coherent mixed states, which we have in-
vestigated rather fully in previous work@8#. We intend to
publish elsewhere a full account of the interrelationships be-
tween these new forms of coherent states and their various
representations.
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