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Summary

The ability of mammals to maintain a constant body temper-

ature has proven to be a profound evolutionary advantage,
allowing members of this class to thrive in most environ-

ments on earth. Intriguingly, some mammals employ
bouts of deep hypothermia (torpor) to cope with reduced

food supply and harsh climates [1, 2]. During torpor, physio-
logical processes such as respiration, cardiac function,

and metabolic rate are severely depressed, yet the neural
mechanisms that regulate torpor remain unclear [3].

Hypothalamic responses to energy signals, such as leptin,
influence the expression of torpor [4–7]. We show that the

orphan receptor GPR50 plays an important role in adaptive

thermogenesis and torpor. Unlike wild-type mice, Gpr502/2

mice readily enter torpor in response to fasting and 2-deox-

yglucose administration. Decreased thermogenesis in
Gpr502/2 mice is not due to a deficit in brown adipose

tissue, the principal site of nonshivering thermogenesis in
mice [8]. GPR50 is highly expressed in the hypothalamus

of several species, including man [9, 10]. In line with this,
altered thermoregulation in Gpr502/2 mice is associated

with attenuated responses to leptin and a suppression
of thyrotropin-releasing hormone. Thus, our findings iden-

tify hypothalamic circuits involved in torpor and reveal
GPR50 to be a novel component of adaptive thermogenesis

in mammals.

Results and Discussion

Severe Hypometabolism in Gpr502/2 Mice upon Fasting

We demonstrated previously that in comparison to wild-type
(WT) littermates, Gpr502/2 mice show resistance to diet-
induced obesity, yet lose less weight when fasted [9]. Intense
GPR50 immunoreactivity (IR) is observed in the neurons of
the dorsomedial nucleus (DMN) of the hypothalamus and tany-
cytes that line the third ventricle (Figures 1A–1D; see also Fig-
ure S1 available online), both implicated in nutrient sensing
and energy balance [11, 12]. This prompted us to further
characterize the metabolic phenotype of the Gpr502/2 mice.
*Correspondence: david.bechtold@manchester.ac.uk (D.A.B.), andrew.
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Long-term recording of body temperature (Tb) revealed
Gpr502/2 mice to have a lower nighttime Tb compared with
WT mice, despite showing 25% higher locomotor activity
(Figures 1E and 1F). Remarkably, upon fasting, Gpr502/2

mice consistently entered a state of torpor, characterized by
severe drops in metabolic rate (VO2) (Figures 1G and 1I) and
Tb (25.8�C60.7; Figures 1H and 1I). The depth of hypothermia
was not dependent on ambient temperatures (Ta) of 23

�C or
16�C (Figure 1; Figure S2). The temporal profile of torpor indi-
cated that the process was gated by the circadian clock;
this was confirmed by housing mice under constant light
(removing exogenous timing cues) and fasting for 48 hr (Fig-
ure 1J). Two distinct torpor bouts with defined circadian
profiles were observed in the Gpr502/2 mice. Torpor was not
observed in WTmice during 48 hr of food deprivation, demon-
strating that torpor is not driven simply by depletion of energy
stores. Further, the expression of torpor in knockout (KO) mice
was not due to inherent differences in body weight between
the genotypes (Figure S2C). Torpor has been reported previ-
ously in laboratory mice. However, profound hypothermia
(<30�C) has typically been observed only following prolonged
food restriction and reduced Ta [7, 13–16]. Gpr502/2 mice
enter a state of torpor (Tb w25�C) within as little as 6 hr of fast-
ing when housed at constant Ta ofw23�C, which is character-
ized by a stable level of hypothermia.
In line with reduced Tb, expression of uncoupling protein 1

(ucp1) in brown adipose tissue (BAT) was lower in Gpr502/2

mice than WT animals (Figure 1K). Nonetheless, KO mice
exhibited a normal elevation in Tb and BAT expression of
ucp1 and deiodinase 2 (dio2) in response to the b3-adrenergic
receptor agonist CL-316243 (Figures 1L and 1M; Figure S2D).
The robust response of the Gpr502/2 mice to b3-adrenergic
receptor stimulation demonstrates that the low nocturnal Tb

and expression of torpor in these mice are not due to dimin-
ished thermogenic capacity or responsiveness of BAT, but
rather likely reflect altered sympathetic drive to this tissue. It
is also possible that heat loss may be accentuated in the
Gpr502/2mice, for example through alterations in sympathetic
control of blood flow.
Fasted Gpr502/2 mice exhibited significantly lower circu-

lating glucose in comparison with WT mice (Gpr502/2,
3.9mmol/l6 0.4;WT, 5.46 0.3; p < 0.05) suggesting that hypo-
glycemia could contribute to the torpor response. Consistent
with this, Gpr502/2 mice were found to be hypersensitive to
deoxyglucose (2-DG), a glucose mimetic that induces a state
of perceived hypoglycemia. KO mice exhibited torpor-like
drops in VO2 and Tb following doses of 2-DG (250–500 mg/kg)
that had little effect on WT mice (Figure S3). However, both
genotypes exhibited comparable rises in blood glucose in
response to 2-DG (Figure S3), indicating that the exaggerated
metabolic response of the Gpr502/2 mice is not due to dimin-
ished glucose storage or ineffective counter-regulatory
glucose release. Similarly, no genotype differences in glucose
clearance were observed during a glucose tolerance test
(p > 0.05, two-way analysis of variance; Figure S3E). Tanycytes
express much of the glucose-sensing machinery employed by
pancreatic b-cells [17], and selective destruction of these cells
attenuates 2-DG-induced feeding in rats [18]. This suggests
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Figure 1. Altered Thermogenesis in Gpr502/2 Mice

(A–D) GPR50 immunoreactivity in the brain is limited to the ventral portion of the third ventricle ependymal layer (A) and neurons of the DMN.

(B–D) The identity of GPR50 expressing cells as tanycytes was confirmed by colocalization of the receptor (red) with the tanycyte markers GLUT1 (C; green)

and vimentin (D; green). Lowercase letters in (A) represent the approximate positions of (B), (C), and (D). Nonmerged images are available in Figure S1.

GPR50 expression was undetectable in Gpr50 knockout (KO) mice used in the current studies (Figure S1). Scale bar represents 200 mm in (A) and 15 mm

in (B–D).

(E and F) Mean body temperature (Tb) and locomotor activity in wild-type (WT) andGpr502/2mice collected over 30 days of monitoring (n = 8/group). Night-

time Tb was reduced in Gpr502/2 mice (E), despite a 25% increase in locomotor activity (F).

(G–J) Representative recordings of O2 consumption (VO2; G) and Tb (H) records in Gpr502/2 and WT mice subjected to a 24 hr fast in which Gpr502/2 mice

entered a state of torpor (n = 8–10/group, group data shown in I). Fasting period is represented by the gray bar above trace, and ambient room temperature is

represented by the hashed line in (H). The following abbreviation is used: ZT, zeitgeber time (ZT0 indicates lights on).

(J) To remove exogenous timing cues, we housedmice in constant light and fasted for 48 hr (n = 4/group).Gpr502/2mice exhibited two distinct and precisely

timed torpor bouts.

(K) Lower ucp1 expression was observed in brown adipose tissue (BAT) from Gpr502/2 mice compared with WT mice in either a fed or fasted state

(n = 6–12/group).

(L and M) Administration of the b3-adrenergic receptor agonist CL-316243 (1 mg/kg intraperitoneal [ip]) elicited comparable increases in ucp1 (L) and dio2

(M) expression in BAT in WT and Gpr502/2 mice. Thermogenic responses to CL-316243 are shown in Figure S2.

(E–M) Data is shown asmean6 SEwith *p < 0.05 and **p < 0.01 Student’s t test (E–I); *p < 0.05 versus fed or vehicle and #p < 0.05 versusWT using a two-way

analysis of variance (ANOVA) and Bonferonni’s post hoc test (K–M).
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that GPR50 signaling in tanycytes modulates the response of
these cells to changes in glucose.

Altered Hypothalamic Thyroid Hormones Are Not

Sufficient to Drive Torpor
Tanycytes play a central role in dictating T3 availability within
the hypothalamus [19–21], and local T3 signaling is impli-
cated in hypothalamic responses to fasting [20]. Extensive
colocalization of GPR50 (red) and the T3-transporter MCT8
(green) was observed in tanycytes (Figure 2A). Expression of
mct8 was significantly induced in the ependymal layer and
paraventricular nucleus (PVN) of WT mice in response to fast-
ing (Figures 2C and 2D). This induction was observed in the
PVN, but not the ependymal layer of Gpr502/2 mice (Figures
2F and 2G). The T3-converting enzyme dio2 was also strongly
induced in the ependymal layer of fasted WT mice (Figures 2B



Figure 2. Loss of Gpr50 Alters Thyroid Hormone Availability in the Hypothalamus

(A) Extensive colocalization of GPR50 (red) andMCT8 (green) was observed in tanycyte cell bodies and processes. Blue represents DAPI staining. Scale bar

represents 100 mm in the three left panels and 10 mm in the right panel.

(B–F) Hypothalamic expressions of dio2 and mct8 and were determined by in situ hybridization in fed and fasted WT and Gpr502/2 mice (n = 6–8/group).

Autoradiographs are representative of dio2 (B) andmct8 (C and D) expression, in fastedWT (B and C) orGpr502/2 (D) mice. Fasting induced the expression

of dio2 (E) and mct8 (F) in the ependymal layer of WT mice. Constitutive expression of dio2 was elevated in the knockouts. Fasting also led to a significant

increase inmct8 expression in the paraventricular nucleus (PVN) of WT and Gpr502/2 mice. Increased dio2 expression was reflected in hypothalamic T3 in

Gpr502/2 mice (Gpr502/2, 3.9 6 0.3 pmol/g; WT, 3.3 6 0.2).

(G) Data is shown as mean6 SE with *p < 0.05 versus fed and #p < 0.05 versus WT using two-way ANOVA and Bonferonni’s post hoc test. Scale bar repre-

sents 1.6 mm in (B)–(D).

(H) Central administration of T3 had no acute effects on Tb in WT mice (8 ng, intracerebroventricular [icv], n = 5/group).
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and 2E). Interestingly, dio2 expression was constitutively
elevated in fed Gpr502/2 mice, achieving a similar level as
that of fasted WT mice. These findings demonstrate that
GPR50 modulates T3 handling in tanycytes and that altered
T3 availability may therefore influence thermogenesis. A role
for hypothalamic T3 in seasonal torpor has been suggested
[22]. However, neither acute (Figure 2H) nor chronic (Figure S3)
administration of T3 altered Tb in WT mice, suggesting that
changes in T3 are not sufficient to drive torpor and that
a secondary signal of reduced energy statusmust be required.

GPR50 Modulates Leptin Signaling In Vivo and In Vitro

Leptin is a peripherally derived indicator of energy status that
acts at multiple sites within the hypothalamus, including the
DMN [23, 24]. Leptin is capable of blocking torpor in seasonal
species [4–6], and mice deficient in leptin (ob/ob) are prone to
torpor despite their massive fat reserves [5, 7]. Interestingly,
Gpr50 expression in the DMN is significantly reduced in
ob/ob mice but can be increased to levels seen in control
mice (ob/wt) by leptin treatment (Figures 3A–3D). Both
GPR50 and leptin receptor (Ob-Rb; LepR) are expressed at
high levels in the DMN (Figure 3E; [24]). Thus, attenuated
Gpr50 expression may facilitate torpor in ob/ob mice, and
the induction of GPR50 may be an underlying mechanism by
which leptin blocks torpor in ob/ob mice and other species
[4, 5]. Leptin-responsive Gpr50 expression was confirmed
in vitro, where leptin administration toOb-Rb-expressing cells
significantly enhanced Gpr50 promoter-driven luciferase
activity (Figure 3F; Figure S4).
To test the ability of leptin to block torpor in Gpr502/2 mice,

we treated fasted WT and KOmice with leptin 2 to 3 hr prior to
the onset of torpor. Leptin administration blocked fasting-
induced drops in VO2 in WT mice (Figures 3G–3I; Figure S4).
In contrast, central or peripheral administration of leptin was
unable to attenuate torpor in the Gpr502/2 mice, despite the
ability of leptin to block torpor in other mouse and hamster
models [5, 25]. Furthermore, in comparison toWTmice, leptin-
induced thermogenesis was also attenuated in KO mice in
a fed state (Figures 3J and 3K; Figure S4). The reduced efficacy
of leptin on Gpr502/2 mice was specific to thermogenesis,



Figure 3. Interaction of GPR50 and Leptin

(A–D) Gpr50 expression in torpor-prone ob/ob mice was examined by in situ hybridization (n = 8/group). In comparison with control ob/wt mice (A), Gpr50

expression was lower in ob/ob mice (B) in both the DMN and the ependymal layer of the third ventricle (D). Gpr50 expression could be rescued by admin-

istration of exogenous leptin (2 mg/kg/day, ip) for 5 days (C and D). Data is shown as mean6 SE with *p < 0.05 and **p < 0.01 using a one-way ANOVA and

Bonferonni’s post hoc test. Scale bar represents 1.5 mm.

(E) Dual immunolocalization of GPR50 (red) and LepR-eGFP (green) in the DMN. Scale bar represents 80 mm.

(F) Leptin-responsive Gpr50 promoter activity. Leptin (100 nM) elicited a significant increase in Gpr50-luciferase reporter activity in HEK293 cells stably ex-

pressing OB-Rb, but not in WT or OB-Ra-expressing cells. Induction of Gpr50 by leptin was also dependent on Jak2 and PI3K (Figure S4). Results are

normalized first to an internal renilla-luciferase control, then to the activity of vehicle treated cells. No alteration in Gpr50 reporter activity was observed

following leptin treatment of cells expressing the short (nonsignaling) form of the leptin receptor (Ob-Ra). Data is shown as mean6 SE with *p < 0.05 versus

control using a Student’s t test.

(G–I) Administration of leptin atmidnight (ZT17) prevented the fasting-induced drop inmetabolic rate inWTmice (G), yet did not alter the expression or depth

of torpor in the Gpr502/2 mice (H; 200 pmol, icv, n = 6/group). Dashed lines in (I) reflect VO2 recorded the previous day during ad libitum feeding.

(J and K) Leptin administration to fed WT mice increased Tb for approximately 6 hr (J; n = 6–8/group). The thermogenic response to leptin was significantly

attenuated in Gpr502/2 mice (J and K).

(L) To assess the effects of leptin on feeding, we administered leptin at the onset of the dark phase of the light cycle and ad libitum nocturnal food intake

monitored (200 pmol, icv, n = 8/group). The anorexic actions of leptin were maintained in Gpr502/2 mice. Data is shown as mean6 SE with *p < 0.05 versus

vehicle and #p < 0.05 versus WT using a two-way ANOVA and Bonferonni’s post hoc test.
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because leptin administration remained equally effective at
reducing nocturnal food intake in both genotypes (Figure 3L).
These results demonstrate that the feeding-related and
thermogenic actions of leptin can be clearly differentiated
and that only the latter is modulated by GPR50. A similar
segregation of the anorexic and thermogenic actions of leptin
has been demonstrated in mice in which melanocortin
signaling has been targeted [26–28]. Specifically, loss of the
MCR4 receptor blocks the effects of leptin on sympathetic
outflow to BAT, adipose gene expression, and fat mass,



Table 1. Impact of GPR50 on Transcriptional Response to Leptin

Condition Increased expression Decreased expression Total

Ob-Rb vs Ob-Rb + Gpr50 299 307 606

Ob-Rb vs Ob-Rb + Leptin 827 490 1,327

Ob-Rb vs Ob-Rb + Gpr50 + leptin 1,605 1,100 2,705

Ob-Rb + leptin vs Ob-Rb + Gpr50 + leptin 1,022 1,016 2,038

p < 0.05 considered a change in gene expression. Functional pathway analysis revealed that genes exhibiting a significant change in expression, following

leptin administration when cells express both Ob-Rb and Gpr50, are implicated in range of cellular processes, including amino acid transport, lipid meta-

bolism, and metabolic disease (Figure S5).
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whereas the anorexic actions of leptin are maintained [27, 28].
The ability of GPR50 to influence cellular responses to leptin
was assessed in vitro by gene microarray. This study revealed
that the proportion of genes showing a significant alteration in
expression following leptin treatment was substantially higher
(2,705 genes) in cells expressing Ob-Rb in combination with
Gpr50, compared with cells expressing Ob-Rb alone (1,327
genes) (Table 1; Figure S5).

Our work reveals a critical role for GPR50 in leptin signaling.
We show that Gpr50 expression is both responsive to leptin
and essential for the full impact of leptin signaling on energy
expenditure in vivo.

Depressed Expression of Hypothalamic TRH Underlies

Altered Thermogenesis
GPR50 exhibits an intense and restricted expression pattern
within the hypothalamus, a structure that is a major regulator
of BAT activity. Within the hypothalamus, the involvement of
arcuate nucleus (ARC) neurons in fasting and leptin responsive
thermoregulation is well established [29], and theARCprojects
heavily to both the PVN and DMN. Further, neuropeptide Y
(NPY) and melanocortin signaling have been directly impli-
cated in torpor [30, 31], and administration of the melanocortin
receptor agonist MTII elevates BAT thermogenesis and Tb

[32]. Yet surprisingly, Gpr502/2 and WT mice exhibit a similar
expression of ARC neuropeptides npy, agrp, pomc, and cart
(Figure S4). Further, administration of MTII did not dampen
torpor in the Gpr502/2 mice (Figures 4A–4C), despite blocking
torpor in other models [31]. Metabolic rate was increased by
MTII in fed Gpr502/2 mice (Figure S4), demonstrating that the
mice are not deficient in melanocortin sensitivity per se but
that GPR50 modulates its impact during fasting.

ARC neurons project heavily to corticotropin-releasing
hormone (CRH) and thyrotropin-releasing hormone (TRH)-ex-
pressing neurons of the PVN both directly and via the DMN
[33, 34]. These populations are important in regulating energy
balance and drive neuroendocrine and autonomic outputs of
the hypothalamus. Quantification of CRH and TRH expression
revealed clear differences between WT and Gpr502/2 mice
(Figures 4D and 4E). In contrast to WT mice, fasting did not
elicit a rise in CRH expression in the PVN of Gpr502/2 mice.
Constitutive expression of TRH was also significantly lower
in Gpr502/2 mice compared with WT mice. Fasting further
inhibited TRH expression in both genotypes. TRH was also
significantly reduced in the anterior hypothalamus of KO
mice when compared with WT mice (Figure S3), but transcrip-
tional changes were not universal, because CRH expression in
the amygdala and TRH expression in the DMN did not differ
significantly between genotypes. Central TRH administration
increases BAT activity [35, 36], suggesting that depressed
expression of TRH in the PVN and AH ofGpr502/2mice under-
pins their hypometabolic phenotype. Central administration of
RX77368 (a stable analog of TRH) blocked torpor in Gpr502/2
mice (Figures 4F–4H) indicating that attenuated TRH is indeed
a causal mechanism in the thermogenic responses of the
Gpr502/2 mice.
GPR50, Ob-Rb, and MCR4 receptors are all highly ex-

pressed in the DMN (here and [37–40]), suggesting that loss
of GPR50 in the DMN contributes to decreased thermogenesis
under normal and fasted conditions, as well as the attenuated
response to leptin and MTII. That we did not observe any
differences in the expression of npy, agrp, pomc, or cartwithin
the ARC of WT and Gpr502/2 mice is in accord with a central
role for the DMN in altered thermogenic response of the KO
mice. We envision that GPR50 neurons in the DMN modulate
thermogenesis via brainstem sites that innervate BAT [41–43]
and/or by modulating TRH-expressing neurons in the hypo-
thalamus. The absence of GPR50-IR in the PVN (Figure S1)
necessitates that the influence of GPR50 on TRH expression
in the PVN is indirect; the most likely route being via DMN
neurons known to contact CRH and TRH neurons in the PVN
[34]. Through this pathway, GPR50 would serve to modulate
DMN relay of fasting- and leptin-related signals to other hypo-
thalamic and brainstem nuclei.

Conclusions

In seasonal species, rhythmic torpor bouts are not controlled
by proximal changes in food supply but require long-term
metabolic adaption, which accompanies seasonal changes
in daylength (photoperiod). Physiological responses to photo-
period cycles are driven by melatonin. Our studies now reveal
that GPR50, an ortholog of the avianmelatoninMel1C receptor
[44], has evolved a new role: as a critical modulator of adaptive
thermogenesis and torpor. That we have now linked reduced
expression of Gpr50 with heightened torpor response in three
models, Siberian hamsters [45], leptin deficient (ob/ob) mice,
andGpr50 knockout mice, implies that GPR50 normally serves
to repress entry into a hypometabolic state by modulating
thermal responses to energy signals such as glucose and
leptin.

Experimental Procedures

Animals and Surgical Procedures

Gpr502/2 mice were generated by DeltaGen (CA, USA) and obtained via

AstraZeneca (Alderley Park, Cheshire, UK) [9]. Ob/ob mice were purchased

from Charles River (UK). Age-matched or littermate male mice were used in

all experiments andmaintained under a 12-12 hr light-dark schedule, unless

stated otherwise. Studies were licensed under the Animals Act of 1986 and

local animal welfare committee. Implantation of intracerebroventricular (icv)

guide cannulae and remote telemetry probes (DataScience International,

The Netherlands) was as previously described [46].

Indirect Calorimetry, 2-DG, and Blood Glucose

Metabolic gases (O2 and CO2) were measured using indirect calorimetric

cages (Columbus Instruments, Columbus, OH, USA). Icv injection of mouse

leptin (200 pmol; Sigma), RX77368 (2 ng, gift from Professors Geoffrey

Bennett and Fran Ebling, University of Nottingham), T3 (8 ng, Sigma) or



Figure 4. Association of Torpor with Depressed TRH Expression in the Hypothalamus

(A–C) Administration of MTII at midnight (ZT17) increasedmetabolic rate in fastedWTmice (A and C) but did not alter the expression or depth of torpor in the

Gpr502/2 mice (B and C; 1 nmol, icv, n = 4–6/group). Data is shown as mean 6 SE with *p < 0.05 versus vehicle and #p < 0.05 versus WT using a two-way

ANOVA and Bonferonni’s post hoc test.

(D and E) Expression ofCRH (D) and thyrotropin releasing hormone (TRH) (E) were quantified in the PVN ofWT andGpr502/2mice under fed (top) and fasted

(bottom) conditions by in situ hybridization histology (n = 8/group). WT mice exhibited a significant induction of CRH expression in response to fasting,

whereas no such change was observed in Gpr502/2 mice (D). A significant decrease in TRH expression was observed in the PVN of WT mice upon fasting

(E). TRH expression in ad libitum fedGpr502/2mice was significantly lower than that of WTmice and was reduced further upon fasting (F). Data is shown as

mean 6 SE with **p < 0.01 versus fed and #p < 0.05 versus WT using a two-way ANOVA and Bonferonni’s post hoc test. Scale bar represents 800 mm.

(F–H) Central administration of the TRH agonist RX77368 (2 mg, icv) to fasted WT (n = 4/group; F) and Gpr502/2 mice (n = 8/group; G) prevented the fasting-

induced drop in VO2 inGpr502/2 mice (H). Data is shown as mean6 SE with **p < 0.01 versus vehicle and #p < 0.05 versus WT using a two-way ANOVA and

Bonferonni’s post hoc test.
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vehicle (0.9% NaCl) were delivered in 1 ml over a period of 30 s. During 2-DG

(Sigma) administration, food was removed and circulating glucose

measured by tail tip bleed with an Optimum Plus glucose meter (Abbott

Laboratories, UK). Mice were acclimated to calorimetric cages, handling,

and blood collection for 2 days prior to study.

In Situ Hybridization and Real-Time Quantitative PCR

Tissues were processed as previously described [1, 47]. Primers used for

generating riboprobes (in situ) and qPCR probes are listed in the Supple-

mental Information. TRH, CRH, and Dio2 probes were kindly provided by

Dr. Perry Barrett (University of Aberdeen, UK). Products were cloned into

p-GEMT Easy Vector (Promega, Madison, USA), riboprobes synthesized

with 33P-UTP (MP Biomedical, USA), and hybridization visualized by film

autoradiography (Kodak BioMax MR film, Kodak, USA). Optical density

was determined using 3–4 sections/mouse/area. QPCR was performed

using the Platinum SyBR Green Kit (Invitrogen). Housekeeping genes 18S

rRNA or cyclophilin were used as controls.

Immunohistochemistry

Brains were removed and fixed for 48 hr in Bouin’s fixative (Sigma).

Frozen sections (20–30 mm) were blocked with serum followed by primary

and secondary antibodies (see Supplemental Experimental Procedures).
Omission of primary or secondary antibody resulted in no positive

immunoreaction.

Reporter Gene Activation Assay

HEK293 stable cell lines expressing human OB-Rb or OB-Ra were cotrans-

fected with a Gpr50 luciferase reporter plasmid (257 bp upstream of Gpr50

start codon; 250 ng) and a Renilla luciferase plasmid (25 ng). Cells were then

treated with or without leptin (100 nM) for 6 hr after 1 hr pretreatment with or

without 50 mM AG490 or 50 mM Wortmanin (Sigma). Luciferase activity was

normalized to renilla activity.

m-Array Experiments

HEK293 cells stably expressing OB-Rb were transfected with a Gpr50

expression plasmid or mock transfected and treated with or without leptin

(100 nM) for 6 hr. RNA was purified and validated (using Agilent RNA6000

nano chip kit; Bioanalyzer 2100). Complementary DNA was produced, end

labeled with biotin, hybridized to GeneChip� human Gene (Affymetrix),

and scanned using theGCS3000 7G. Imageswere analyzedwith Expression

Console software (Affymetrix). Robust multichip average (RMA) was

normalized using the RMA option of Expression Console and subjected to

statistical analysis. Pathway analysis was performed with the Ingenuity

program.
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Supplemental Information

Supplemental Information includes five figures and Supplemental

Experimental Procedures and can be found with this article online at

doi:10.1016/j.cub.2011.11.043.
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21. López, M., Varela, L., Vázquez, M.J., Rodrı́guez-Cuenca, S.,
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