
International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

56
http://hipore.com/ijsc

ENRICHING HETEROGENEOUS SERVICE COMPOSITION WITH A

SEMANTICALLY ENHANCED SERVICE DESCRIPTION LANGUAGE
Feifei Hang, Liping Zhao

School of Computer Science
The University of Manchester

Manchester, UK
{hangf, lzhao}@cs.man.ac.uk

Abstract
The emergence of Web 2.0 and its related technologies such as HTML5 has empowered end-users and made it
possible for them to compose their own Web applications. Yet, most of the current development has mainly
concentrated on the support of the composition of enterprise-oriented services and scientific workflows and little
effort has been made to support the composition of end user-oriented services. In addition, the lack of machine-
readable and high-level composite service description languages has prevented the end-users from sharing the
service composition knowledge. To overcome these limitations, this paper introduces “HyperMash”, a service
composition approach for end-users. HyperMash supports the composition of both RESTful and SOAP-based Web
services, and allows both types of service to be freely combined. A description language, called “Semantic-UiSDL”, is
used to automatically generate machine-readable and processable descriptions of composite services. Through this
language, HyperMash can provide service recommendations to end-users as a way of sharing and reusing their service
composition knowledge. This paper presents and illustrates the HyperMash approach and its major concepts and
components through real-life examples and empirical study.
Keywords: Heterogeneous Service Composition; RESTful Web Services; SOAP-Based Web Services; Mashup;
HyperMash; Semantic-UiSDL; Semantic Web; End-User Development

__

1. INTRODUCTION
With the advent of Web 2.0 and its related technologies

such as HTML5, more and more non-professional

programmers (thereafter called the “end-users” for short)

have participated in the Web development by creating their

own applications based on existing Web resources and

services. In the past years, these users have created a large

number of widget-based “mashups”, typically in the form of

Web pages, which combine, visualize or aggregate other

Web services (Wikipedia, 2013). Web browsers have been

the most popular means for end-users to access Web

resources and consume Web services (NetMarketShare,

2013).

To date, support for service mashups by end-users has

mainly focus on creating dashboard-like Web pages such as

personal Web portals, for displaying different types of

information, such as weather forecast, stock price report and

online world clock. By contrast, little effort has been made

to support end-users for creating data-oriented, ad-hoc Web

service mashups, such as travel navigators and personal

work plans. Our study shows that this shortfall is caused by

four major limitations of current service composition

approaches. The first limitation, as stated by Obrenovic and

Gasevic (2008), is that most of the existing development

environments for service-oriented solutions are not

appropriate for end-users as they require the expertise of the

professional programmers.

The second limitation, according to Hoang et al. (2010),

is that most of today’s service composition approaches only

support either RESTful or SOAP-based Web services.

Moreover, SOAP-based Web services are mainly developed

for the enterprise applications. According to the statistics

provided by Programmable Web

(www.programmableweb.com), 22% of the Web services

are SOAP-based. For example Programmable Web and

WebserviceX.Net (www.webservicex.net) provide a large

number of SOAP-based Web services such as postcode

finders, weather forecast and currency converters, which

have the great potential to be composed by end-users to

assist their daily work or personal needs. Yet, the lack of

support for end-user friendly composition approaches has

restricted these services from being fully used by individual

users.

Third, although a number of data-oriented service

composition platforms are available, they only support a

limited number of composition features. For example, the

users can compose RESTful Web services by using Yahoo!

Pipes (Yahoo!, 2013). However, until now, most of the

existing Web-based service composition platforms only

provide end-users with features for collecting and

aggregating the data retrieved from Web services. For

example, RESTful Web services expose their functions

through a set of uniform interfaces: GET, POST, PUT, and

DELETE (Fielding, 2000; Richardson & Ruby, 2007). But,

Yahoo! Pipes only supports the GET interface.

Consequently, it restricts the users from composing services

by using other interfaces.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

57
http://hipore.com/ijsc

Finally, most of the existing Web-based service

composition platforms do not automatically generate

semantic descriptions for user defined composite services.

In Yahoo! Pipes, for example, if an end-user is to compose a

composite service, he needs to manually write the

description of his composite service. According to

Danielsen and Jeffrey (2013), this shortfall can result in at

least two drawbacks: First, without automatically generated

semantic descriptions, the service composition platform will

not be able to understand the relationships between the

composed services and will therefore not be able to

automatically reuse the composition knowledge from the

existing composite services. Second, manual descriptions of

composite services may be incomplete.

This paper presents our attempt at addressing these four

limitations. We describe HyperMash, a heterogeneous

service composition approach with semantic enhancement.

HyperMash attempts to overcome the first limitation by

providing a Web-based, end-user friendly composition

platform, which enables end-users to specify their desired

services through a workflow diagram. To overcome the

second limitation, HyperMash supports the composition and

combination of both RESTful and SOAP-based services. To

overcome the third limitation, HyperMash provides the full

set of RESTful interface features. To address the fourth

limitation, HyperMash uses a semantic composite service

description language, called Semantic-UiSDL, for

automatically describing user-defined composite services.

HyperMash intends to make two major contributions to

service composition and description:

 The support of an on demand heterogeneous service

composition platform, which allows end-users to

create their own composite services by combining

RESTful services with SOAP-based services at

runtime.

 The provision of a semantically enhanced composite

service description language (i.e. Semantic-UiSDL),

which enables the sharing and reusing of the existing

service composition knowledge.

To validate and demonstrate HyperMash, we have

developed a prototype system and successfully tested this

system on a large number of examples.

This paper proceeds as follow: Section 2 discuses some

of closely related work. Section 3 presents the architectural

framework of the HyperMash approach. Section 4 and 5

present the underlying concepts, enabling technologies, and

working principles of two major HyperMash system

components - Service Recommender and Service Composer

- respectively. The HyperMash prototype is illustrated in

Section 6, whereas the accuracy of service recommendation

in HyperMash is evaluated in Section 7. Finally, Section 8

draws some conclusions to our work.

2. RELATED WORK

To further highlight the limitations of current service

composition approaches, this section reviews some well-

known work in the field.

2.1 SERVICE COMPOSITION APPROACHES
With the development of Web 2.0 and SOA, a great

number of service composition approaches have been

developed. In this paper we present and discuss the

strengths and weaknesses of some of the existing

approaches in the contexts of service composition and end-

user development (EUD).

AMICO:CALC. To support end-users with native

calculating abilities, several spreadsheet-based approaches

(Hoang et al., 2010) have been proposed over the past years.

As stated by Obrenovic and Gasevic (2008), AMICO:CALC

has been designed as a plugin to several existing spreadsheet

systems to provide users the ability of composing services

by means of creating spreadsheets. When building an ad-hoc

composite service, users are required to fill table cells with

the predefined AMICO:CALC formulas. Meanwhile, the

original formulas of each spreadsheet system are remained

in the approach, which means that users can also manipulate

the received data from the component services by using the

native formulas and functions such as finding the minimum

and maximum value among all.

However, we identified the following two major

shortcomings of AMICO:CALC:

 Due to the nature of spreadsheet, users have to learn

a certain number of formulas before being able to

utilize them in composing Web services. In other

words, as concluded by Hoang et al. (2010), this

spreadsheet-based approach can only be helpful to

skilled users rather than novices.

 To use AMICO:CALC, users have to install

corresponding plugins to extend the original

spreadsheet systems to gain the ability of composing

Web services. However, it would increase the

barrier of using AMICO:CALC as plugin

installations are strictly not allowed on many types

of mobile devices.

Yahoo! Pipes. As a well known and end-user friendly

approach, Yahoo! Pipe (Yahoo!, 2013) allows users to

create ad-hoc composite services by drawing workflow

diagram. Since Yahoo! Pipes becomes a very developed

service composition platform over the past few years, it is

nowadays being recognized as a benchmark approach by a

large number of researchers and developers.

By using “pipes”, users can easily aggregate data

provided by different services in Yahoo! Pipes. However,

we witnessed the weaknesses of this approach in the

following two aspects:

 Because Yahoo! Pipes is primarily designed to

compose RESTful services, users are not able to

consume SOAP-based services in Yahoo! Pipes.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

58
http://hipore.com/ijsc

 Due to the lack of the full range support of RESTful

interfaces, Yahoo! Pipes can only access Web

services through the HTTP verb “GET”.

Other Approaches. To support end-users, Marmite

(Wong & Hong, 2007) and DashMash (Cappiello et al.,

2011) are proposed to facilitate the creation of ad-hoc

composite services. As can be seen from Table 1, both of

these approaches are focusing on RESTful Web services.

Yet, only an incomplete set of HTTP verbs is supported by

these approaches. In other words, none of them provides

sufficient features to support the full feature set of RESTful

services.

Similarly, IBM DAMIA (Simmen, Altinel, Markl,

Padmanabhan, & Singh, 2008) also provide similar

functions and support to cover a limited set of RESTful

features. However, it requires the expertise of professional

users to utilize this approach. By contrast, JOpera (Pautasso,

2009) is proposed to provide full range of support to all the

HTTP verbs used by RESTful services. However, as an

Eclipse-based system, JOpera cannot be used on many types

of mobile devices.

Meanwhile, SOA Extension with Mashup (Liu, Hui, Sun,

& Liang, 2007) is proposed to support the composition of

SOAP-based services. According to Liu et al. (2007), end-

users are once again neglected by this approach.

SOA4ALL (Krummenacher, Norton, Simperl, &

Pedrinaci, 2009; Lecue, Gorronogoitia, Gonzalez,

Radzimski, & Villa, 2010) makes the giant leap towards the

combination of both RESTful and SOAP-based Web

services. However, the approach requires users to be at least

skilled and does not support all the RESTful interfaces.

The approaches discussed in this section are summarized

in Table 1.

2.2 SERVICE DESCRIPTION LANGUAGES
Service descriptions are important part of Web services

as they describe the specifications, behaviors and other

aspects of the services. Service descriptions can be either

machine generated or human-crafted (Danielsen & Jeffrey,

2013).

With the development of Semantic Web, more and more

companies and organizations have started to enhance their

originally human-readable service descriptions by adding

machine-readable semantic elements. However, this shift

always requires the expertise of professional programmers

and therefore could be extremely challenging for end-users.

In this section, we present five commonly used service

description languages.

Natural Language. In the realm of end-user service

composition, natural language is playing a major role for

describing services. Due to the nature of natural language,

people can easily describe a service in their native language

or even whatever language they can use. Figure 1 shows a

set of composite services that described in natural language

by end-users on Yahoo! Pipes.

However, as stated by Danielsen and Jeffrey (2013),

natural language description are primarily written for human.

In other words, as claimed by Semantic Web community

(Bizer, 2009; Torma S, March 2008), natural language

descriptions normally are not machine-readable, which

means machines, precisely computers, can learn nothing

from those human-readable descriptions, especially the

relationships between each component services.

WSDL & WADL. As a very well developed and mature

service description language, WSDL (W3C, 2001) allows

developers describing SOAP-based Web services

systematically. Based on XML, this structured language

Table 1. A Comparison of Some Common Service Composition Approaches

Approach

User group Web services & features supported

Cross-

device
IT-expert

Skilled

user
End-User

SOAP-

based

RESTful

Uniform

Interfaces
HATEOAS

AMICO:CALC X X - X - - -

SOA4ALL X X - X O N/A O

Jopera X X - - X - -

Yahoo! Pipes X X - - O - X

SOA Extension

with Mashup
X X - X - - N/A

Marmite X X X - O - N/A

DashMash X X X - O - N/A

IBM DAMIA X X - - O - N/A

(X) means the dimension is directly supported or required; (O) means the dimension is partially supported; (-) means the

dimension is not supported; (N/A) means the dimension is not mentioned in related publication.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

59
http://hipore.com/ijsc

enables machines to understand the core aspects of Web

services such as the specifications, the exposed API, and

even QoS information. Nevertheless, due to the lack of

semantic annotations, WSDL cannot elaborate the

relationships between each of the related descriptive

information of Web services. Moreover, WSDL normally is

not capable for describing composite services as it can

hardly describe the relationships and interactions between

the components services of a composite service.

Similarly, WADL (W3C, 2009) is proposed as a

description language for RESTful Web services since the

dramatic development of REST related techniques.

However, its drawbacks could also be observed in the

absence of semantic annotations for services and the lack of

abilities on describing composite services.

OWL-S. The Semantic Web is always being defined as

the approach of bringing a machine-readable mechanism to

Web resources including Web services. The DARPA Agent

Markup Language (a.k.a. DAML) (Office, 2006) extends

XML and Resource Description Framework (RDF) (W3C,

2004) to provide a set of constructs for creating machine-

readable ontologies and markup information. The

contribution of DAML program in Semantic Web is the

Web Ontology Language for Services (OWL-S) (Coalition,

2003). OWL-S is a Web ontology which enables automatic

service discovery, invocation, composition, interoperation,

and execution monitoring (Ankolekar et al., 2002).

However, since OWL-S models services by using a

three-party ontology (i.e. service profile, service model,

service grounding), the data payload in transferring OWL-S

descriptions at runtime could be way too large for end-users.

Also, as claimed by industry players, it is still extremely

difficult to embrace OWL-S in real world nowadays.

WIfL. As proposed by Danielsen and Jeffrey (2013),

WIfL leverage the power of RDFa (W3C, 2013a) to

introduce semantic annotations into hypertext-based

descriptions of RESTful Web services. By adopting WIfL,

the originally human-readable hypertext descriptions also

become machine-readable.

However, since WIfL is developed for annotating

RESTful services, it cannot describe SOAP-based services.

Furthermore, as another description language for single raw

service, WIfL has yet to be equipped with the ability to

describe composite services.

3. THE ARCHITECTURAL FRAMEWORK OF

HYPERMASH
HyperMash is a Web-based system that can be used

through a Web browser. The HyperMash architectural

framework consists of three layers (Figure 2): the Web-

based User Interface Support layer, the Service Composition

Engine layer and the Middleware System layer. These layers

and their major system components are described in the

following sections.

3.1 WEB-BASED USER INTERFACE SUPPORT
This layer consists of a GUI, a visual editor and a set of

supporting tools. Through the GUI and visual editor, end-

users can define a sequence of Web services on the fly by

means of drawing graphical workflow diagrams. Figure 3

shows a workflow diagram the end-user can create by using

Figure 1. Natural Language Service Descriptions on Yahoo! Pipes

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

60
http://hipore.com/ijsc

the GUI and visual editor of HyperMash. A detailed

illustration of using HyperMash for service composition is

given in sections 6.

This layer provides the following tools for Web service

composition: (1) a local database for keeping personal data

and information of end-users; (2) a geo-location detector for

retrieving the physical location of end-users at runtime; (3) a

collection of multimedia widgets for rendering and

displaying online videos or audios; and (4) a set of data

processors for manipulating the runtime dataflow of the

composite services.

3.2 SERVICE COMPOSITION ENGINE
This layer consists of two systems called “Service

Recommender” and “Service Composer”. The function of

Service Recommender is to automatically generate machine-

readable composite service description documents and help

end-users to retrieve the described composition knowledge

on the fly. The Service Composer is designed to compose a

set of Web services according the end-user defined

workflow and provide runtime monitoring and substituting

supports.

The Service Recommender consists of two components –

Semantic Composite Service Description Generator

(SCSDG) and SPARQL Semantic Querying Engine (SSQE).

By adopting Semantic-UiSDL (see Section 4), SCSDG can

automatically describe the composite services defined by

end-users in a machine-readable manner. By doing so, the

composition knowledge involved in the composite services

can be therefore retrieved by SSQE to enable the reuse of

the existing composition knowledge.

The Service Composer can compose RESTful and

SOAP-based services separately as well as together.

Meanwhile, inside of the Service Composer, the three

connectors – M4REST Connector, M4SOAP Connector and

Availability Checker Connector are respectively responsible

for invoking and communicating with the corresponding

components in the middleware system, described in Section

5, to correctly monitor, consume and manipulate the

primitive Web services at runtime. When a primitive service

is detected as unavailable by the Service Monitor at runtime,

the Service Substitutor will help end-users to find alternative

services to replace the failed one. Also, the Service

Composer can differentiate different types of Web services

according to Semantic-UiSDL, presented in Section 4.

3.3 MIDDLEWARE SYSTEM
This layer consists of the following three subsystems:

M4REST, M4SOAP and Availability Checker. M4REST

(Middleware for RESTful Web Services) supports the full

set of the RESTful service interface functions.

M4REST consists of four separate components,

respectively supporting the GET, POST, PUT, and

DELETE functions exposed by RESTful Web services.

M4SOAP (Middleware for SOAP-based Web Services)

aims at wrapping and unwrapping SOAP messages and

invoking RPC-like procedures for invoking SOAP-based

Web services at runtime.

The Availability Checker checks the availability status of

the requested Web services and sends this information to the

Service Monitor.

Since the Service Composition Engine is the most

important layer in the entire HyperMash architecture, the

underlying concepts, enabling technologies, and working

principles of its inside systems (i.e. Service Recommender

and Service Composer) are presented in detail in Section 4

and 5, respectively.

4. SERVICE RECOMMENDATION BASED ON

SEMANTIC-UISDL
To better support end-users in the HyperMash approach,

the Service Recommender is designed to help end-users to

retrieve and reuse the composition knowledge of the

existing composite services on the fly. By utilizing Semantic

Web standards and technologies, we developed a Resource

Description Framework (RDF) based service description

language, called Semantic-UiSDL, to semantically describe

the composite services defined by end-users. Since

Semantic-UiSDL is adopted in SCSDG in HyperMash, all

the composite services can be automatically and

semantically annotated.

Figure 2. The Architecture of HyperMash

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

61
http://hipore.com/ijsc

In this section, we present the requirements and

vocabulary of Semantic-UiSDL, and illustrate how

Semantic-UiSDL can be queried by a standard SPARQL

semantic querying engine to provide service

recommendations.

4.1 LANGUAGE REQUIREMENTS OF SEMANTIC-UISDL
As stated in Section 2, by looking at example service

composition platforms and the service description languages

they use, we discovered some features of composite service

descriptions in the existing end-user oriented service

composition platforms.

Firstly, the authoring workflow of composite service

descriptions is being done manually. For example, in Yahoo!

Pipes, all the composite services have to be manually

described by end-users in the form of natural language. The

common artifact of this manual authoring workflow is

human-readable hypertext page itself, which motivates our

interest in making the composite service descriptions

machine-readable.

Secondly, the details of the composite services do not

necessarily align with the contents of the human-crafted

descriptions. In a large number of extreme cases, according

to our observation, the descriptions provided by the author

(i.e. an end-user) of the composite services do not even

mention any relevant information on the behaviors or

purposes of the services.

Thirdly, it is quite common that with the changes made

on the composite services, their descriptions became out-of-

date. Some end-users always neglect the importance of

keeping their composite service descriptions up-to-date.

Based on these features, our requirement on Semantic-

UiSDL is that it should automatically generate and update

machine-readable descriptions of the composite services

created in HyperMash.

4.2 LANGUAGE VOCABULARY OF SEMANTIC-UISDL
Semantic-UiSDL extends UiSDL (Hang & Zhao, 2013)

with semantic annotations. UiSDL is a Service Composition

Ontology Description Language. It captures high-level

service composition concepts used for describing the

composite services, which may contain either RESTful or

SOAP-based services or both. An example of the UiSDL

service description is given in Figure 3.

However, due to the lack of semantic annotations,

UiSDL is not machine-readable. This means the service

composition system cannot understand the relationships

between each of the description concepts exiting in the

composite services. To overcome this drawback, we have

enhanced UiSDL with semantic annotations based on

standard Resource Description Framework (RDF).

Semantic-UiSDL is the result of the enhancement.

Figure 4 illustrates the vocabulary of Semantic-UiSDL.

As shown in the figure, we utilize the standard Dublin Core

Metadata Element Set (a.k.a. dc) (Initiative, 2012) to

describe the general information (e.g. title, creator, identifier)

of each composite service, while the more detailed and

concrete concepts are described by Semantic-UiSDL (SU)

vocabulary.

As elaborated in Figure 4, each composite service in

HyperMash consists of at least one component service that

can be either RESTful or SOAP-based. Also, whatever

Figure 3. An Example of UiSDL Description

Figure 4. Semantic-UiSDL Vocabulary

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

62
http://hipore.com/ijsc

types the component service is, it always contains a set of

descriptive keywords (a.k.a. tags) to briefly categorize the

service and a group of user-level QoS information (Jingwen

& Nahrstedt, 2004) to fulfill the context-awareness

requirements of end-users.

Figure 5 shows the RDF graph of the example composite

service described in Semantic-UiSDL. In this graph, each

rectangle represents a concrete descriptive value of the

composite service such as su:title. Each circle indicates the

properties that is described as a resource such as su:url for

RESTful services.

By describing certain descriptive properties as resources,

it conceptually starts to build a web of composite services

with linked resources (a.k.a. linked-data) among them.

Figure 6 shows a visualized web of composite services and

the relationships between their component services after

adopting Semantic-UiSDL.

As can be seen from Figure 6, in the Semantic-UiSDL

web the composite services are semantically connected

together through the shared component services in between.

For example, a component service “Google Maps” could be

composed by a composite service “Earthquake Locator” and

another composite service such as “Post Office Finder”.

Therefore, the detailed composition knowledge of the

existing composite services can be discovered and reused by

HyperMash.

4.3 QUERYING SEMANTIC-UISDL WITH SPARQL

ENGINE

As one of the most important features of semantic

service description languages, Semantic-UiSDL enables

both end-users and machines to understand the relationships

(a.k.a. composition knowledge) between each one of the

composite and primitive services.

Since Semantic-UiSDL is based on RDF, we use

SPARQL (W3C, 2013b), a widely accepted language for

querying RDF documents, to retrieve the composition

knowledge from Smenatic-UiSDL documents in

HyperMash.

Figure 7 shows a part of the Semantic-UiSDL document

of the composite service example as illustrated in Figure 3.

Figure 6. A Semantic-UiSDL Composite Services Web

Figure 5. The RDF Graph of a Semantic-UiSDL document

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

63
http://hipore.com/ijsc

To query the URL, for example, of all the component

services involved in the composite services, we use the

SPARQL code as shown in Figure 8 to fetch the URL

resources from the document. The result of the querying is

also shown in Figure 8.

With Semantic Web and SPARQL, we can perform

more complex tasks on querying Semantic-UiSDL

documents. Figure 9 elaborate how we can find out the

URLs of all the component services that contain the

keyword “UoM” in the example composite service.

5. THE PROCESS & WORKING PRINCIPLES

OF SERVICE COMPOSER
The Service Compoer enables service composition in

five processing steps. This section describes the process of

Service Composer and the working principles underlying

this process.

1) Defining a Workflow

The runtime working process of Service Composer starts

from the creation of the workflow diagram made by end-

users. To create a workflow diagram in HyperMash, end-

users can easily define the sequence of the workflow of their

ad-hoc composite service by means of drag-n-drop graphical

representations of the primitive Web services and

connecting the Web services by using pipelines in the visual

editor as Figure 10 shows. Thereafter, the Service Composer

will assemble the primitive services according to the end-

user defined workflow, and inform SCSDG in the Service

Recommender to generate Semantic-UiSDL documents to

record the composition knowledge of this composite service.

2) Starting the Runtime Synchronization Mechanism

When the user-defined workflow is executed, the Service

Composer begins to iterate through all the selected Web

service and follow the HTML5-enabled runtime

synchronization mechanism elaborated in Figure 11.

As one of the basic requirements of composing Web

services, the procedure of accessing and consuming the

composed Web services should be asynchronous. By default,

JavaScript, which is widely used to create dynamic Web

pages and Web applications, has already obtained the ability

of raising HTTP request asynchronously with the help of

XMLHttpRequest (W3C, 2013c). However, there is a

significant shortcoming in accessing multiple Web services

directly through XMLHttpRequest, as it causes the creation

of a large number of threads at runtime. For example, if

there are 20 Web services involved in a composite service, it

will generate 20 threads when consuming these Web

services.

Figure 7. Example Semantic-UiSDL Document

Figure 8. A Simple Semantic-UiSDL Querying Example

Figure 9. A More Complex Semantic-UiSDL Querying

Example

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

64
http://hipore.com/ijsc

By leveraging the power of HTML5 technologies, we

utilize HTML5 Web Worker (W3C, 2012) as the means of

realizing asynchronous procedures while maintaining a

reasonable number of threads, i.e., only three threads – one

for the main thread, one for checking availability, and

another one for consuming and manipulating Web services,

at runtime.

3) Monitoring the Availability of the Requested Web

Service

Shown in Figure 11, once the whole synchronization

mechanism is started, the service composition engine

initializes the HTML5 Web Worker containing Availability

Checker Connector by posting a certain message through

standard APIs to create the running thread for monitoring

Web services.

The returned availability information is transferred to the

Service Monitor for the availability analysis. If the Service

Monitor finds the target component Web service is

unavailable, it will inform the Service Substitutor to provide

end-users a list of suggestions for replacing the unavailable

Web service and highlight its corresponding part in the

workflow diagram in the visual editor. Afterwards, the

workflow will be terminated.

4) Consuming the Component Web Service

If the requested Web service is available at runtime, the

other Web Worker will be invoked to initialize the thread

for consuming Web services.

As shown in Figure 12, depending on the type of the

requested component service, either M4REST Connector or

M4SOAP Connector will communicate with the

corresponding middleware system and component to

consume the Web service.

5) Finalizing the Runtime Synchronization

Mechanism

Once the returned information is received from the

requested component service, the information will be

buffered in the Service Composer. If there are no more

component services involved in the workflow, the Service

Composer will display the buffered information in the GUI

to show the compositional result to end-users. Otherwise,

the Service Composer will move on to the next primitive

service involved and repeat the above steps.

6. ILLUSTRATING THE HYPERMASH

APPROACH
To illustrate the HyperMash approach, we have

developed a prototype system. The system was developed

by using HTML5, JavaScript, RDF, and PHP, and is hosted

on a standard Apache server 1 to prove its viability on

standard Web configurations.

The way HyperMash is used depends on the purpose of

the end-users. Below is a typical use example of HyperMash.

Tom is an office worker who wishes to integrate his

daily work plan created by a SOAP-based Web service with

a RESTful on-line map service to help him to know where

1 http://feifeihang.info/hypermash

Figure 10. Creating a Workflow Diagram in HyperMash

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

65
http://hipore.com/ijsc

to go for his remaining works. He can perform this

integration through the following steps:

Step 1: Importing both the RESTful and SOAP-based Web

services into the service composition platform by

providing the URL and WSDL addresses.

Step 2: Receiving semantic suggestions from the Service

Recommender to facilitate service composition.

Step 3: Picking the desired Web services by clicking the

corresponding graphical labels.

Step 4: Creating the desired workflow by simply

connecting the graphical nodes in the visual editor.

Step 5: Selecting the desired function that he wants to use

to retrieve his work plan from the SOAP-based

service.

Step 6: Clicking “Save…” in the main GUI to save the ad-

hoc composite service.

Step 7: Clicking “Run” in the main GUI to execute the ad-

hoc composite service.

Additionally, since the HyperMash approach is based on

standard Web technologies, he can now even use his ad-hoc

composite service on his mobile devices.

Figure 13 shows the ad-hoc composite service created

by Tom and its runtime execution result.

7. EVALUATING THE ACCURACY OF SERVICE

RECOMMENDATION IN HYPERMASH
By adopting Semantic-UiSDL, HyperMash can better

support end-users to compose services by reusing the

existing service composition knowledge. In this section, we

present our work on evaluating the accuracy of service

recommendation in HyperMash.

Figure 13. UoM Navigator

Figure 12. Middleware System Connectors

Figure 11. Runtime Synchronization Mechanism

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

66
http://hipore.com/ijsc

7.1 EVALUATION METHOD
According to Chen et al. (Chen et al., 2011), Precision

and Recall are two widely adopted metrics in the

Information Retrieval domain. Thus, we use the below

formulas to evaluate our work.

In the above formulas, succ(c) is the number of the

relevant services retrieved, succ(h) is the total number of

services retrieve, and sum(s) is the sample size.

7.2 DATA COLLECTION
We recruit a group of Master’s students who have no

professional knowledge of SOA to be our test users. We

gave the students a 15-minutes tutorial on how to use

HyperMash and asked them to create composite services to

assist five different daily activities by using Semantic-

UiSDL service recommendation and traditional and manual

service retrieving, respectively. Each activity consists of a

number of processes that needed to be achieved by primitive

services. For example listed in Table 2, Task 1 is the activity

“navigation”, which contains the primitive services for

detecting current location, locating destination, showing

route map on a map service, etc.. To better evaluate our

system, all the primitive services that needed to be

composed in the new composite services are already be used

in a set of pre-created composite services in HyperMash to

fully generate the RDF graphs for providing semantic

Table 2. The Accuracy Comparison on Manually Service Retrieving and Semantic-UiSDL-Based Service

Recommendation

Table 3. Precision and Recall of Two Approaches

Figure 14. Performance Comparison of Two Service

Retrieving and Recommendation Approaches

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

67
http://hipore.com/ijsc

suggestions. The archived result of our experiment on

average is listed in Table 2.

7.3 RESULTS ANALYSIS
Table 3 shows the calculation results of Precision and

Recall against the data we collected. These results are also

visualized in the form of bar chars in Figure 14.

As shown in Figure 14, it is clear that the service

recommendation based on Semantic-UiSDL shows a higher

accuracy than the manually service retrieving approach,

which is commonly adopted in the existing end-user service

composition systems such as Yahoo! Pipes. The exceptional

case in Precision on Task 5 is due to the fact that the

Semantic-UiSDL-based service recommendation retrieved

more services (7 on average) from the repository, but

contains an irrelevant candidate.

8. CONCLUSION
In this paper, we have identified four major limitations

in current service composition approaches and service

description languages, and proposed the HyperMash

approach to address these limitations. Specifically, the first

limitation has been addressed by providing a Web-based,

end-user friendly composition platform. To overcome the

second limitation, HyperMash enables the composition and

combination of both RESTful and SOAP-based services.

HyperMash provides the full set of RESTful interface

features support to overcome the third limitation. Finally,

Semantic-UiSDL enables automatically descriptions of user-

defined composite services, and allows the sharing and

reusing of the existing service composition knowledge. In so

doing, we claim that this paper has made an important

contribution to the area of end-user service composition.

In the paper, we have described HyperMash approach in

detail and shown, through realistic examples and empirical

study, that they have the potential to be used in practice.

Our work, however, still suffers from the following

shortcomings:

 Although our prototype system can already help end-

users easily compose and manipulate Web services, it

still provides limited support for automatically mediating

the transferred data at runtime.

 Semantic-UiSDL does not automatically include the

user-level QoS information of primitive services and this

information needs to be manually added to the

description.

Our future work will address these shortcomings. In

addition, we will investigate the best practice and design for

supporting HATEOAS for RESTful Web services and

enhance HyperMash with the appropriate security

mechanism. We intend to evaluate our work more

thoroughly, through user studies and real world experiments.

9. REFERENCES

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott,

D., Mcllraith, S., Narayanan, S., Paolucci, M., Payne, T., Sycara, K. (2002).

DAML-S: Web Service Description for the Semantic Web. In The

Semantic Web — ISWC 2002 (Vol. 2342, pp. 348-363): Springer Berlin

Heidelberg.

Bizer, C. (2009). The Emerging Web of Linked Data. Intelligent Systems,

IEEE, 24(5), 87-92. doi: 10.1109/MIS.2009.102

Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D.,

Francalanci, C. (2011). DashMash: A Mashup Environment for End User

Development. In Web Engineering (Vol. 6757, pp. 152-166): Springer

Berlin Heidelberg.

Chen, L., Hu, L., Zheng, Z., Wu, J., Yin, J., Li, Y., Deng, S. (2011).

WTCluster: Utilizing Tags for Web Services Clustering. In Service-

Oriented Computing (Vol. 7084, pp. 204-218): Springer Berlin Heidelberg.

Coalition, The OWL Services. (2003). OWL-S: Semantic Markup for Web

Services. Retrieved 27 December 2013, from:

http://www.daml.org/services/owl-s/1.0/owl-s.html.

Danielsen, P. J., Jeffrey, A. (2013). Validation and Interactivity of Web

API Documentation. Paper presented at the Proceedings of 2013 IEEE 20th

International Conference on Web Services, Santa Clara, USA.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-

based Software Architectures. University of California, Irvine.

Hang, F., Zhao, L. (2013). HyperMash: A Heterogeneous Service

Composition Approach for Better Support of the End Users. In Web

Services (ICWS), 2013 IEEE 20th International Conference on (pp. 435-

442). IEEE.

Hoang, D. D., Paik, H. Y., Benatallah, B. (2010). An analysis of

spreadsheet-based services mashup. In Proceedings of the Twenty-First

Australasian Conference on Database Technologies-Volume 104 (pp. 141-

150). Australian Computer Society, Inc..

Initiative, Dublin Core Metadata. (2012). Dublin Core Metadata Element

Set, Version 1.1. Retrieved 11 October 2013, from

http://dublincore.org/documents/dces/

Jin, J., Nahrstedt, K. (2004). QoS specification languages for distributed

multimedia applications: A survey and taxonomy. Multimedia, IEEE, 11(3),

74-87.

Krummenacher, R., Norton, B., Simperl, E., Pedrinaci, C. (2009). Soa4all:

enabling web-scale service economies. In Semantic Computing, 2009.

ICSC'09. IEEE International Conference on (pp. 535-542). IEEE.

Lécué, F., Gorronogoitia, Y., Gonzalez, R., Radzimski, M., Villa, M.

(2010). SOA4All: an innovative integrated approach to services

composition. In Web Services (ICWS), 2010 IEEE International

Conference on (pp. 58-67). IEEE.

Liu, X., Hui, Y., Sun, W., Liang, H. (2007). Towards service composition

based on mashup. In Services, 2007 IEEE Congress on (pp. 332-339).

IEEE.

NetMarketShare (2013). Browser Market - Market Share for Browsers,

Operating Systems and Search Engines. Retrieved 22 January 2010, from

http://marketshare.hitslink.com/report.aspx?qprid=0

Obrenovic, Z., Gasevic, D. (2008). End-user service computing:

spreadsheets as a service composition tool. Services Computing, IEEE

Transactions on, 1(4), 229-242.

DARPA's Information Exploitation Office (2006). The DARPA Agent

Markup Language. Retrieved 18 January 2013, from

http://www.daml.org/

Pautasso, C. (2009). Composing restful services with jopera. In Software

Composition (pp. 142-159). Springer Berlin Heidelberg.

Richardson, L., Ruby, S. (2008). RESTful web services. O'Reilly.

International Journal of Services Computing (ISSN 2330-4472) Vol. 2, No. 3, July-Sept. 2014

68
http://hipore.com/ijsc

Simmen, D. E., Altinel, M., Markl, V., Padmanabhan, S., Singh, A. (2008).

Damia: data mashups for intranet applications. In Proceedings of the 2008

ACM SIGMOD international conference on Management of data (pp.

1171-1182). ACM.

Torma, S., Villstedt, J., Lehtinen, V., Oliver, I., Luukkala, V. (March 2008).

Semantic web services–a survey. Retrieved 27 December 2013, from

http://www.cs.hut.fi/u/sto/B158.pdf

W3C (2001). Web Services Description Language (WSDL). Retrieved 18

January 2013, from http://www.w3.org/TR/wsdl

W3C (2004). Resource Description Framework (RDF). Retrieved 18

January 2013, from http://www.w3.org/RDF/

W3C (2009). Web Application Description Language (WADL). Retrieved

18 January 2013, from http://www.w3.org/Submission/wadl/

W3C (2012). Web Worker. Retrieved 18 January 2013, from

http://www.w3.org/TR/workers/

W3C (2013a). RDFa Core 1.1 - Second Edition. Retrieved 10 October 2013,

from http://www.w3.org/TR/rdfa-syntax/

W3C (2013b). SPARQL 1.1 Overview. Retrieved 11 October 2013, from

http://www.w3.org/TR/sparql11-overview/

W3C (2013c). XMLHttpRequest Level 2. Retrieved 18 January 2013, from

http://www.w3.org/TR/XMLHttpRequest/

Wikipedia (2013). Mashup (web application hybrid). Retrieved 24 January

2013, from http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)

Wong, J., Hong, J. I. (2007). Making mashups with marmite: towards end-

user programming for the web. In Proceedings of the SIGCHI conference

on Human factors in computing systems (pp. 1435-1444). ACM.

Yahoo! (2013). Yahoo! Pipes. Retrieved 18 January 2013, from

http://pipes.yahoo.com/pipes

 Authors

Feifei Hang is a PhD candidate in the

School of Computer Science at the

University of Manchester. His main

research area is in investigating the

best practice for and developing

supporting approaches to support

service composition for end-users in

the context of Web 2.0. His research

interests also include: services

computing, cloud computing, end-user development, and

user experience in emerging Web technologies.

Liping Zhao is an academic member

of School of Computer Science at the

University of Manchester. Her

research focuses on the discovery and

development of reusable software

patterns, symmetries and models, and

the application of these fundamentals

to model-driven development and

service-oriented computing. A pioneer

in service sciences, she co-funded and led the first academic

network on service sciences in the UK. Her contribution to

software patterns and the service sciences agenda has earned

her three IBM Faculty Awards.

