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Abstract
Background: Most analyses of microarray data are based on point estimates of expression levels and
ignore the uncertainty of such estimates. By determining uncertainties from Affymetrix GeneChip data and
propagating these uncertainties to downstream analyses it has been shown that we can improve results of
differential expression detection, principal component analysis and clustering. Previously, implementations
of these uncertainty propagation methods have only been available as separate packages, written in
different languages. Previous implementations have also suffered from being very costly to compute, and
in the case of differential expression detection, have been limited in the experimental designs to which
they can be applied.

Results: puma is a Bioconductor package incorporating a suite of analysis methods for use on Affymetrix
GeneChip data. puma extends the differential expression detection methods of previous work from the
2-class case to the multi-factorial case. puma can be used to automatically create design and contrast
matrices for typical experimental designs, which can be used both within the package itself but also in other
Bioconductor packages. The implementation of differential expression detection methods has been
parallelised leading to significant decreases in processing time on a range of computer architectures. puma
incorporates the first R implementation of an uncertainty propagation version of principal component
analysis, and an implementation of a clustering method based on uncertainty propagation. All of these
techniques are brought together in a single, easy-to-use package with clear, task-based documentation.

Conclusion: For the first time, the puma package makes a suite of uncertainty propagation methods
available to a general audience. These methods can be used to improve results from more traditional
analyses of microarray data. puma also offers improvements in terms of scope and speed of execution over
previously available methods. puma is recommended for anyone working with the Affymetrix GeneChip
platform for gene expression analysis and can also be applied more generally.
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Background
The analysis of microarray experiments typically involves
a number of stages. The first stage for analysis of Affyme-
trix GeneChip arrays is usually the application of a sum-
marisation method such as MAS5.0 or RMA in order to
obtain an expression level for each probeset on each array.
Subsequent analyses then use these expression levels, for
example to determine differentially expressed (DE) genes,
or to find clusters of genes and/or conditions. Although
there are a number of summarisation methods which can
give accurate point estimates of expression levels, few can
also provide any information about uncertainty in expres-
sion levels (such as standard errors). Even for methods
that can provide uncertainty information, this is rarely
used in subsequent analyses due to the lack of available
methods for dealing with such information. A large
amount of potentially valuable information is therefore
lost. Recently, there has been a growing trend for disre-
garding the probe-to-probeset annotation provided by the
array manufacturer in favour of so-called "remapped"
data (e.g. [1]). With remapped data the number of probes
in a probeset varies greatly, and hence making use of
within-probeset uncertainty is likely to be of even greater
benefit in this case. Here, we introduce the puma Biocon-
ductor package which makes a suite of uncertainty propa-
gation methods available to a general audience.

The multi-mgMOS method [2] uses Bayesian methods on
Affymetrix GeneChip data to associate credibility intervals
with expression levels. This was made available through
the Bioconductor package mmgmos. The noise-propaga-
tion in principal component analysis (NPPCA) method
[3] can propagate the expression level uncertainty to
improve the results of principal component analysis
(PCA). This method was made available as matlab code.
The probability of positive log ratio (PPLR) method [4]
can combine uncertainty information from replicated
experiments in order to obtain point estimates and stand-
ard errors of the expression levels within each condition.
These point estimates and standard errors can then be
used to obtain a PPLR score for each probeset, which can
then be used to rank probesets by probability of differen-
tial expression (DE) between two conditions. The PUMA-
CLUST method [5] uses uncertainty propagation to
improve results of a typical clustering analysis. PPLR and
PUMA-CLUST were made available as separate R pack-
ages, but were not released through Bioconductor. The
algorithmic details of multi-mgMOS, NPPCA, PPLR and
PUMA-CLUST are explored more fully in the next section.

While many microarray studies are concerned with iden-
tifying genes that are differentially expressed between two
levels of a single factor, for example between cancer and
non-cancer patients, microarrays are also increasingly
being used in more complex experimental designs where

more than one factor is varied. This is often achieved with
a factorial-designed experiment, where each combination
of the levels of each factor is tested. As well as enabling a
researcher to identify the effects of multiple factors in a
single experiment, a factorial design also enables the study
of the effect of interactions between different factors. The
PPLR method is not directly applicable to such experi-
ments.

Perhaps the most popular Bioconductor package for anal-
ysis of differential expression is limma [6]. limma requires
the creation of a design matrix, and optionally also a con-
trast matrix. A search through the archives of the Biocon-
ductor mailing list will reveal that one of the biggest
difficulties users have is the creation of these matrices.
Affymetrix users, however, will often have provided much
of the information required in these matrices in the form
of phenotype data using the affy package. As well as being
confusing for inexperienced users, the manual creation of
design and contrast matrices can also lead to human error.
Although the methods incorporated in the puma package
can often give improved results when compared to com-
peting methods, this can come at the cost of increased
computation time due to the parameter estimation meth-
ods involved. This is particularly the case with the varia-
tional EM algorithm used for combining the information
from replicates in the PPLR method, which can take many
hours to run for a typical analysis on a single machine.
Many users, however, will have access to the processing
power of multiple cores, either through access to a multi-
node cluster, through the use of multiple machines on a
local network, or simply through the use of multiple proc-
essors or a single processor with multiple cores on a single
machine.

Introduction to puma algorithms
multi-mgMOS and probe-level measurement error
Affymetrix GeneChips use multiple probe-pairs called a
probe-set to interrogate gene expression profiles. Each
probe-pair contains a perfect match (PM) probe and a
mismatch (MM) probe. The PM probe is designed to
measure the specific hybridisation of the target and the
MM probe measures the non-specific hybridisation asso-
ciated with its corresponding PM probe. However, micro-
array experimental data show that the MM probe also
measures the specific hybridisation signal in practice and
the intensities of both PM and MM probes vary in probe-
specific ways. This makes the identification of the true sig-
nal difficult. The probabilistic model multi-mgMOS [2]
assumes the intensities of PM and MM probes for a probe-
set both follow gamma distributions with parameters
accounting for specific and non-specific hybridisation,
and probe-specific effects. Let yijc and mijc represent the jth
PM and MM intensities respectively for the ith probe-set
under the cth condition. The model is defined by
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where Ga represents the gamma distribution. The param-
eter aic accounts for the background and non-specific
hybridisation associated with the probe-set and aic
accounts for the specific hybridisation measured by the
probe-set. The parameter bij is a latent variable which
models probe-specific effects.

The Maximum a Posteriori (MAP) solution of this model
can be found by efficient numerical optimisation. The
posterior distribution of the logged gene expression level
can then be estimated from the model and approximated

by a Gaussian distribution with a mean, , and a vari-

ance, vic. The mean of this distribution is taken as the esti-

mated gene expression for gene i under the condition c
and the variance can be considered the measurement error
associated with this estimate. The Gaussian approxima-
tion to the posterior distribution is useful for propagating
the probe-level measurement error in subsequent down-
stream analyses.

Including measurement uncertainty in finding DE genes
The PPLR method [4] includes probe-level measurement
error in a hierarchical Bayesian model to detect differen-
tially expressed (DE) genes. For a particular gene in PPLR,
the observed logged expression level for the ith replicate
under the jth condition is assumed to follow a Gaussian
distribution,

where μj is the mean logged expression level under condi-
tion j, λj is the inverse of the between-replicates variance
and vij is the probe-level measurement error, which can be
calculated from probabilistic probe-level analysis meth-
ods such as multi-mgMOS.

PPLR assumes that the parameters θ = {{μj}, {λj}} are

independent and  is shared across different condi-

tions to capture the gene-specific variability. The priors of
the parameters are:

where φ = {μ0, η0, α, β} are hyperparameters. Inference in
the PPLR model is carried out with a variational Expecta-
tion-Maximization (EM) algorithm. The estimated
parameters are then used to calculate a PPLR score for
finding DE genes.

Including measurement uncertainty in principal components analysis
We write the measurement error, vi, as a vector capturing
the main technical sources of variance of the measured
expression level on each chip i. PCA can be viewed as the
maximum likelihood solution of a probabilistic factor
analysis model [7] and [3] add the measurement error, vi,
as an additional term in the observation noise of this
model,

Unlike standard PCA there is no longer a closed form
maximum likelihood solution and an iterative EM algo-
rithm is used for parameter estimation.

Including measurement uncertainty in mixture clustering

Similarly to NPPCA, PUMA-CLUST [5] includes the meas-
urement error of each data point in a standard Gaussian
mixture model. Suppose xi is the true expression level for

data point i. The kth component of the Gaussian mixture

model is modelled by p(xi|k; θk) =  (xi|μk, Σk). For the

measured expression level  the kth Gaussian compo-

nent can be augmented as

where diag(vi) represents the diagonal matrix whose diag-
onal entries starting in the upper left corner are the ele-
ments of vi.

This version of PUMA-CLUST treats each chip as an indi-
vidual condition. For replicated data we have developed
an improved method which propagates measurement
error to a robust Student's t mixture model. Once pub-
lished, this method will be incorporated into the puma
package

Contributions
The puma package combines the various methods
described above in a single, easy-to-use package, and over-
comes some of the shortcomings of these methods. puma
offers the following contributions:

• pumaDE – an extension of the PPLR method to the
multi-factorial case.

• The automated creation of design and contrast
matrices for typical experimental designs.

y a b

m a b

b c d

ijc ic ic ij

ijc ic ic ij

ij i i

~ ( , )

~ ( , )

~ ( , ),

Ga

Ga

Ga

+
+

a
fa (1)

x̂ ic

ˆ ~ ( , ),xij j j ijN m l n- +1 (2)

l j
-1

m m hj ~ ( , ),N 0 0
1- (3)

l a b~ ( , ),Ga (4)

ˆ ~ ( , ( )).xij
T

iN m s nWW I+ +2 diag (5)

N

x̂ i

p x k xi k i k k i( | ; ) ( | , ( ))q m n= +N S diag (6)
Page 3 of 10
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:211 http://www.biomedcentral.com/1471-2105/10/211
• pumaComb – an implementation of the method of
combining information from replicates [4] that is sig-
nificantly speeded up through the use of parallel
processing.

• pumaPCA – an R implementation of NPPCA, with
much improved execution speed over the previous
matlab version.

• Bringing together for the first time in a single pack-
age a suite of algorithms for propagating uncertainty
in microarray analysis, together with tools for plotting,
data manipulation, and comparison to other meth-
ods.

• Demonstration of uncertainty propagation methods
on "remapped" Affymetrix GeneChip data.

Implementation
puma is a Bioconductor package, and as such is free to
obtain, is available on all common computer platforms,
and is open source making the methods completely trans-
parent to the end-user. Most of the core algorithms have
been implemented in C code for speed, with the remain-
der of the package implemented in R. We have endeav-
oured to reuse as much existing Bioconductor code as
possible, in particular the use of common classes for hold-
ing data. This enables easier comparison of our methods
with other methods, and we encourage users to do this.

Multi-factorial extension of PPLR
The calculation of PPLR between two conditions is given
in equation (15) of [4]. In puma we have extended this to
arbitrarily complex contrasts. For example, the interaction
term between two 2-level factors can be calculated as:

where P(...|D) denotes the posterior probability after
observing data D, and μij corresponds to the mean expres-
sion when the two factors take values i and j.

Under the variational approximation developed in [4],
the mean of each condition has a Gaussian posterior dis-
tribution. Therefore the above integral is easily calculated.

Automated creation of design and contrast matrices
The puma package has been designed to be as easy-to-use
as possible for end users who have little experience with R
and Bioconductor. One particularly important manifesta-
tion of this is the automated creation of design and con-
trast matrices. The details of this are included in the puma
User Guide [8], but in essence the following contrasts are
deemed as potentially interesting within puma:

• All pairwise comparisons within each factor.

• Comparisons of one level vs all other levels for fac-
tors with three or more levels.

• All main effects of factors.

• All interaction terms (up to three way) between fac-
tors.

Parallelisation
We have parallelised the most time-consuming step of a
typical puma analysis (running the function pumaComb)
by making use of the R package snow. The use of snow
means that the parallel processing can be carried out on a
large number of different architectures including multi-
core processors, multi-processor machines, clusters run-
ning various versions of MPI and heterogeneous networks
running PVM.

Using puma
multi-mgMOS [2] is implemented in the function mmg
mos. The NPPCA method [3] is implemented in the func-
tion pumaPCA. The probability of positive log ratio
(PPLR) method of [4] is implemented in the functions
pumaComb (for combining information from replicates)
and pumaDE (for determining differential expression
from the combined information). PUMA-CLUST [5] is
implemented in the function pumaClust. Each of these
functions is described in separate sections in Results and
Discussion.

We have implemented a separate Bioconductor experi-
mental data package pumadata which contains example
data sets that can help new users get up to speed with
using puma. puma can be installed by first installing the
latest version of R, and then running the following two
commands from the R command line:

> source("http://bioconductor.org/bio-
cLite.R")

> biocLite("puma")

Similarly, pumadata can be installed with
the following command:

> biocLite("pumadata")

Results and discussion
Accounting for Uncertainty in Probeset Summarisation
The first step in a typical analysis is to load in data from
Affymetrix CEL files, using the ReadAffy function from
the affy package [9]. puma makes extensive use of pheno-
type data, which maps arrays to the condition or condi-
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tions of the biological samples from which the RNA
hybridised to the array was extracted. It is recommended
that this phenotype information is supplied at the time
the CEL files are loaded. If the phenotype information is
stored in the AffyBatch object in this way, it will then
be made available for all further analyses. Details of how
to include such phenotype information are included in
the puma User Guide [8].

The recommended summarisation method to use within
puma is multi-mgMOS [2]. The following code shows how
to use this method on an example data set included in the
pumadata package. We also create a summarisation using
RMA [10] for comparison.

> library(pumadata)

> data(affybatch.estrogen)

> eset_estrogen_mmgmos <- mmgmos(affy
batch.estrogen)

> eset_estrogen_rma <- rma(affy
batch.estrogen)

mmgmos takes significantly longer to run than rma. The
above commands took 225 and 4 seconds respectively to
complete on a 2.93 GHz Intel Core 2 Duo MacBook Pro.
multi-mgMOS performs well on the affycomp benchmark
[11,12], giving the best score for 3 of the 14 measures (5.
Signal detect slope, 6. low.slope and 9. Obs-intended-fc)
on the HGU95 spike-in data set, and 1 of the 14 measures
(10. Obs-(low)int-fc slope) on the HGU133 data set (data
correct as of June 1, 2009).

Propagating Uncertainty in Principal Component Anal-
ysis

A useful first step in any microarray analysis is to look for
gross differences between arrays. This can give an early
indication of whether arrays are grouping according to the
different factors being tested. This can also help to identify
outlying arrays, which might indicate problems, and
might lead an analyst to remove some arrays from further
analysis. Principal components analysis (PCA) is often
used for determining such gross differences. puma has a
variant of PCA called Propagating Uncertainty in Microar-
ray Analysis Principal Components Analysis (pumaPCA)
which can make use of the uncertainty in the expression
levels determined by multi-mgMOS. The following code
shows what samples have been hyrbridised to each array,
and then runs both pumaPCA and standard PCA (using
prcomp) on the results obtained from the summarisation
steps in the previous section. Following this, the 8 arrays

used are plotted on the first two principal components
using each method.

> pData(eset_estrogen_mmgmos)

estrogen time.h

low10-1.cel absent 10

low10-2.cel absent 10

high10-1.cel present 10

high10-2.cel present 10

low48-1.cel absent 48

low48-2.cel absent 48

high48-1.cel present 48

high48-2.cel present 48

> pumapca_estrogen <-
pumaPCA(eset_estrogen_mmgmos)

> pca_estrogen <-
prcomp(t(exprs(eset_estrogen_rma)))

> par(mfrow = c(1, 2))

> plot(pumapca_estrogen, legend1pos =
"right", legend2pos = "top",

+ main = "pumaPCA")

> plot(pca_estrogen$x, xlab = "Component
1", ylab = "Component 2",

+ pch = unclass(as.fac
tor(pData(eset_estrogen_rma)[,

+ 1])), col = unclass(as.fac
tor(pData(eset_estrogen_rma)[,

+ 2])), main = "Standard PCA")

pumaPCA is much more computationally demanding
than standard PCA. The above pumaPCA and prcomp
calls took 31 and 0.03 seconds respectively to complete
on a 2.93 GHz Intel Core 2 Duo MacBook Pro. We can see
from the phenotype data that this experiment has 2 fac-
tors (estrogen and time.h), each of which has two levels
(absent vs present, and 10 vs 48), hence this is a 2 × 2 fac-
torial experiment. For each combination of levels we have
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two replicates, making a total of 2 × 2 × 2 = 8 arrays. It can
be seen from Figure 1 that the first component appears to
be separating the arrays by time, whereas the second com-
ponent appears to be separating the arrays by presence or
absence of estrogen. Note that grouping of the replicates
is much tighter with multi-mgMOS/pumaPCA. With
RMA/PCA, one of the absent.48 arrays appears to be closer
to one of the absent.10 arrays than to the other absent.48
array. This is not the case with multi-mgMOS/pumaPCA.
We have seen similar patterns in other experiments (data
not shown).

Identifying differentially expressed genes
There are many different methods available for identify-
ing differentially expressed (DE) genes. puma incorporates
the Probability of Positive Log Ratio (PPLR) method [4].
The PPLR method can make use of the information about
uncertainty in expression levels provided by multi-
mgMOS. This proceeds in two stages. Firstly, the expres-
sion level information from the different replicates of
each condition is combined using the function puma
Comb to give a single expression level (and standard error
of this expression level) for each condition. Following
this, differentially expressed genes are determined using
the function pumaDE. The following code determines DE
genes from the estrogen data using multi-mgMOS/PPLR,
and also, for comparison purposes, using RMA/limma.

> eset_estrogen_comb <- puma
Comb(eset_estrogen_mmgmos)

> pumaDERes <- pumaDE(eset_estrogen_comb)

> limmaRes <- calculate
Limma(eset_estrogen_rma)

Note that running the pumaComb command is typically
the most time-consuming step in a typical puma analysis.
As an example, the above command took 78 minutes to
run on a 2.93 GHz Intel Core 2 Duo MacBook Pro. The
computation time of this step can be decreased signifi-
cantly when computed in parallel. Figure 2 shows typical
run times when using different numbers of compute
nodes on a Beowulf cluster. The pumaDE and calcu
lateLimma commands each took less than a second to
run.

Because this is a 2 × 2 factorial experiment, there are a
number of contrasts that could potentially be of interest.
puma will automatically calculate contrasts which are
likely to be of interest for the particular design of a data
set. For example, the following command shows which
contrasts puma will calculate for this data set.

> colnames(statistic(pumaDERes))

Comparison of pumaPCA and standard PCAFigure 1
Comparison of pumaPCA and standard PCA. First two components after applying pumapca and prcomp to the 
estrogen data set processed by multi-mgMOS and RMA respectively.
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[1] "present.10_vs_absent.10"

[2]"absent.48_vs_absent.10"

[3] "present.48_vs_present.10"

[4]"present.48_vs_absent.48"

[5] "estrogen_absent_vs_present"

[6] "time.h_10_vs_48"

[7]
"Int__estrogen_absent.present_vs_time.h_1
0.48"

Here we can see that there are seven contrasts of potential
interest. The first four are simple comparisons of two con-
ditions. The next two are comparisons between the two
levels of one of the factors. These are often referred to as
"main effects". The final contrast is known as an "interac-
tion effect". In more simple cases, where there are just two
conditions, puma will create just one contrast.

Suppose we are particularly interested in the interaction
term. We saw above that this was the seventh contrast
identified by puma. The following commands will identify
the gene deemed to be most likely to be differentially
expressed due to the interaction term by the RMA/limma
approach. We then plot the expression levels of this gene
in the four conditions as determined by RMA and multi-
mgMOS.

> topLimmaIntGene <- topGenes(limmaRes,
contrast = 7)

> par(mfrow = c(1, 2))

> plotErrorBars(eset_estrogen_rma, top
LimmaIntGene)

> plotErrorBars(eset_estrogen_mmgmos,
topLimmaIntGene)

The gene shown in Figure 3 would appear to be a good
candidate for a DE gene. There seems to be an increase in
the expression of this gene due to the combination of the
estrogen = absent and time = 48 conditions. The within
condition variance (i.e. between replicates) appears to be
low, so it would seem that the effect we are seeing is real.
The plot of Figure 4 tells a somewhat different story.
Again, we see that the expected expression level for the
absent:48 condition is higher than for other conditions.
Also, we again see that the within condition variance of
expected expression level is low (the two replicates within
each condition have roughly the same value). However,
we can now see that we actually have very little confidence
in the expression level estimates (the error bars are large),
particularly for the time = 10 arrays. Indeed the error bars
of absent:10 and present:10 both overlap with those of
absent:48, indicating that the effect previously seen might
actually be an artifact.

Parallelisation speed-upFigure 2
Parallelisation speed-up. Execution times for a typical run 
of the pumaComb function using different numbers of nodes.
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Example of an apparently DE gene identified using RMA/limmaFigure 3
Example of an apparently DE gene identified using 
RMA/limma. RMA expression levels for the gene deter-
mined by RMA/limma to be most likely to be differentially 
expressed due to the interaction term in the estrogen data 
set.
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The following code determines and plots the gene most
likely to be differentially expressed due to the interaction
term using multi-mgMOS and pumaDE. This analysis was
not possible using previous implementations of multi-
mgMOS and PPLR, as the PPLR method was only able to
determine differential expression between two levels of a
single condition.

> toppumaDEIntGene <- topGenes(pumaDERes,
contrast = 7)

> plotErrorBars(eset_estrogen_mmgmos,
toppumaDEIntGene)

Figure 5 shows the gene determined by multi-mgMOS/
PPLR to be most likely to be differentially expressed due
to the interaction term. There appears to be lower expres-
sion of this gene due to the combination of the estrogen =
absent and time = 48 conditions. Unlike with the gene
shown in the plot of Figure 4 there is no overlap in the
error bars between this condition, and the other condi-
tions. Hence, this would appear to be a better candidate
for a gene differentially expressed due to the interaction
term. The combination of multi-mgMOS and PPLR (as
implemented in the functions mmgmos and pumaComb/

pumaDE) gave the strongest performance amongst 42
combinations of summarisation and DE detection meth-
ods in version 1.1 of the AffyDEComp benchmark [13].

Clustering with pumaClust
The following code will identify seven clusters from the
output of mmgmos:

> pumaClust_estrogen <- puma
Clust(eset_estrogen_mmgmos,

+ clusters = 7)

Clustering is performing
.........................................
............................

Done.

The result of this is a list with different components such
as the cluster each probeset is assigned to and cluster cent-
ers. The following code will identify the number of
probesets in each cluster, the cluster centers, and will write
out a csv file with probeset to cluster mappings:

Casting doubt on the example gene identified as DE using RMA/limmaFigure 4
Casting doubt on the example gene identified as DE 
using RMA/limma. multi-mgMOS expression levels for the 
gene determined by RMA/limma to be most likely to be dif-
ferentially expressed due to the interaction term in the 
estrogen data set. Note that multi-mgMOS provides error 
bars as well as point estimates for the expression levels.
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Example showing benefits of using multi-mgMOS/PPLR for differential expression detectionFigure 5
Example showing benefits of using multi-mgMOS/
PPLR for differential expression detection. Expression 
levels and error bars (as calculated by multi-mgMOS) for the 
gene determined most likely to be differentially expressed 
due to the interaction term in the estrogen data set by mmg-
mos/pumaDE.
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> summary(as.fac
tor(pumaClust_estrogen$cluster))

> matplot(t(pumaClust_estrogen$centers))

> write.csv(pumaClust_estrogen$cluster,
file = "pumaClust_clusters.csv")

Examples of improved performance on real and simulated
data sets of PUMA-CLUST when compared with a stand-
ard Gaussian mixture model (MCLUST) are given in [5]

Analysis using remapped CDFs
There is increasing awareness that the original probe-to-
probeset mappings provided by Affymetrix are unreliable
for various reasons. Various groups have developed alter-
native probe-to-probeset mappings, or "remapped CDFs",
and many of these are available either as Bioconductor
annotation packages, or as easily downloadable cdf pack-
ages. One of the issues with using remapped CDFs is that
many probesets in the remapped data have very few
probes. This makes reliable estimation of the expression
level of such probesets even more problematic than with
the original mappings. Because of this, we believe that
even greater attention should be given to the uncertainty
in expression level measurements when using remapped
CDFs than when using the original mappings. In the puma
User Guide [8], we give an example of using a remapped
CDF package created using AffyProbeMiner [1]. We show
that, as with the standard Affymetrix annotation, we can
improve results of both PCA and DE detection using puma
methods on the remapped data.

Application beyond Affymetrix microarray data
Although the methods within puma were originally
designed for use with Affymetrix microarray expression
data, there is considerable scope for application beyond
this domain. This is particularly so for the functions
pumaComb, pumaDE, pumaPCA and pumaClust. puma
Comb and pumaDE can be used in situations where the
probability of a difference between means is required
from data which has associated standard errors. One
directly related application is the analysis of Illumina Bea-
dArray data. Rather than using multi-mgMOS to deter-
mine standard errors of expression levels as is
recommended with Affymetrix data, the empirical stand-
ard errors output by Illumina's BeadStudio software, or
the Bioconductor package beadarray [14] can be used
directly with pumaComb and pumaDE to determine differ-
entially expressed genes. More generally, pumaComb and
pumaDE can be used as an alternative to a t-test to deter-
mine probabilities of differences between means of data
from different classes, where those data have both point
estimates and standard errors associated with those esti-
mates. Similarly, pumaPCA and pumaClust can be

applied more generally as alternatives to methods such as
standard PCA and standard clustering algorithms respec-
tively.

Conclusion
The puma package makes use of uncertainty propagation
to give improved performance when compared to more
traditional methods of differential expression detection,
principal component analysis and clustering. The package
can be used for analysis of Affymetrix GeneChip data, but
can also be applied more generally. The package extends
previous work by extending the PPLR method to the
multi-factorial case, and by implementing the NPPCA
algorithm for the first time in R. The package also incor-
porates a large number of features which make anlaysis
easier and quicker to run, including parallelisation of the
pumaComb function, automated creation of design and
contrast matrices, and tools for plotting, data manipula-
tion, and comparison to other methods. puma is available
freely from Bioconductor.

Availability and requirements
• Project name: puma

• Project homepage: http://www.bioinf.manches
ter.ac.uk/resources/puma/

• Operating systems: Platform independent

• Programming language: R, C

• Other requirements: R

• License: LGPL except puma uses donlp [15] which
has the following conditions of use:

1. donlp2 is under the exclusive copyright of P.
Spellucci (e-mail:spellucci@mathematik.tu-darm-
stadt.de) "donlp2" is a reserved name

2. donlp2 and its constituent parts come with no
warranty, whether expressed or implied, that it is
free of errors or suitable for any specific purpose. It
must not be used to solve any problem, whose
incorrect solution could result in injury to a per-
son, institution or property. It is at the users own
risk to use donlp2 or parts of it and the author dis-
claims all liability for such use.

3. donlp2 is distributed "as is". In particular, no
maintenance, support or trouble-shooting or sub-
sequent upgrade is implied.

4. The use of donlp2 must be acknowledged, in
any publication which contains results obtained
Page 9 of 10
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