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ABSTRACT 

 

A numerical study using the non-linear finite element analysis has been carried out to 

investigate the response of composite cylindrical shells subject to combined loading.  The 

interaction buckling curves of perfect composite cylinders subject to different combinations 

of axial compression, torsion, bending and lateral pressure are obtained.  The postbuckling 

analysis of composite cylinders with geometric imperfections of eigenmode-shape is 

carried out to study the effect of imperfection amplitude on the critical buckling load.  The 

initial buckling load of composite shells is substantially reduced by the existence of 

imperfections.  Here it is shown that the effects of imperfections are more apparent when 

the composite cylindrical shells are subject to combined loadings.  The results show that 

the buckling and non-linear response of geometrically imperfect shell structures subjected 

to complex loading conditions may not be characterized correctly by an elastic linear 

bifurcation buckling analysis.   

 

Keywords:   Composites, finite element method, buckling and postbuckling, laminated 

cylindrical shells, external pressure, axial compression, torsion, bending, combined loading 

 

NOMENCLATURE 

E11, E22, G12, 12  material constants 

L, r, t mength, radius and thickness of the overall cylindrical shell, 

respectively 

M bending moment 
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Mc critical bending moment of a perfect cylinder under bending 

alone 

P pressure 

Pc critical buckling pressure of a perfect cylinder under external 

pressure alone 

R    compressive axial load 

Rc critical buckling load of a perfect cylinder under axial 

compression alone 

T torque 

Tc critical buckling load of a perfect cylinder under torsion 

alone 

U (or ux),v (or uy),w (or uz) axial, circumferential and radial displacements, respectively 

x, y, z    axial, circumferential and radial coordinates, respectively 

x, y,z   rotation about the y, x, and z axes, respectively 

 

1. INTRODUCTION 

Laminated composite materials are increasingly being used in the aerospace, civil, marine, 

automobile, and other engineering industries.  This is due to their high strength and 

stiffness-to-weight ratios.  The phenomenon of progressive failure in laminated composite 

structures is yet to be understood, and as a result, reliable strategies for designing optimal 

composite structures for desired life and strength are in demand [1-3].   

 

In previous studies carried out by the first author [4-6], the effects of delamination on the 

buckling and postbuckling behaviour of composite cylindrical shells subject to axial 

compression and lateral pressure were investigated.  The loads were either applied 

individually [1-2] or were combined [3]. Despite the relatively widespread attention given 

to the problem of delamination in laminated composites, there is hardly any information 

available on the effect of delamination in a composite cylindrical shell under combined 

loading. However, this study could not be performed without deep insight into the 

behaviour of a typical intact composite cylinder, with or without geometric imperfections, 

subject to complex loading conditions. 
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Thin-walled circular cylindrical shells are very often loaded in a way that the three 

buckling membrane forces; axial compression, circumferential compression and shear, are 

not applied individually but in combination.  Therefore, a designer not only has to consider 

the buckling characteristics of a cylindrical shell under fundamental stress states, but also 

the interactive buckling. 

 

There is a reasonable amount of work on the instability response of laminated cylindrical 

shells under axial compression, pressure, external pressure, bending and torsion [7-17] 

applied individually. Ref. [18] consists of a comprehensive study on the stability of 

cylindrical steel shells under combined loading. Thus, very limited information on the 

instability response  of composite shells under combined loading is available [19-30] and 

most of it does not consider the postbuckling response which, if considered, will result in 

significant cost savings.  Most of the published data deals with the buckling response of 

compression-loaded composite shells. The early work of Manuel Stein [31] on the effects 

of geometrical imperfections on the stability of isotropic plates and shells must also be 

cited. 

 

The traditional method for designing thin-walled shell structures to resist buckling failure is 

to predict the buckling load of the shell using the analytical or numerical methods. This 

buckling load will then be reduced with an empirical reduction factor accounting for the 

imperfections of the structure. The other most realistic, but costly, approach is to analyse 

the actual imperfect shell structure as generated from measurements after fabrication and 

erection[11,12, 18, 28, 29, 32-34].  This imperfection data can be directly implemented into 

Finite Element (FE) models and then analysed.  The other most recent and feasible 

approach is to introduce a simple equivalent geometric imperfection which properly 

simulates the physical characteristics of the shell structure subject to buckling.  This 

equivalent geometric imperfection can be either of the eigenmode shape [23,26] or can be 

defined analytically [16, 21, 27]. However, the amplitude of the imperfection shape has a 

great influence on the non-linear response of the shell structure.  Therefore, imperfection 
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amplitude usually has to be calibrated against existing experimental databases for known 

shell buckling cases.  

 

This paper deals with the buckling and postbuckling analysis of perfect and imperfect 

composite cylindrical shells subject to combined loading.  The loading cases considered are 

axial compression, lateral pressure, torsion and bending, either applied individually and in 

combination. At most, the combination of three different types of loadings are considered.  

First, the interactive buckling curves of a typical cylindrical shell subject to different 

combinations of the preceding mentioned load cases are obtained.  Whenever possible, the 

results are compared with corresponding numerical or analytical studies presented by other 

authors.  The postbuckling response of composite cylinders with geometric imperfections 

of eigenmode-shape is carried out to study the effect of imperfection amplitude on the 

critical buckling load, when the loads are applied either individually or in combination.  

The analysis has been carried out using ABAQUS 6.4 [35], which is available on the 

mainframe computer, Bezier, at the Manchester Computing Centre. 

 

2. BUCKLING AND POSTBUCKLING ANALYSIS USING THE FINITE 

ELEMENT METHOD 

 

Fig. 1 shows a typical cylindrical shell subjected to simultaneous loading of axial 

compression, R, torque, T, bending moment, M, and lateral pressure, P.  Throughout this 

study the external pressure is assumed to be positive and the internal pressure is assumed 

to be negative.  Fig. 1a shows a differential element of a perfect cylindrical shell segment 

with the coordinate axes.  The axial coordinate is x, the circumferential coordinate is y, 

and the thickness coordinate normal to the shell surface is z.  The circumferential 

coordinate can be replaced by y=r. The axial load(R) is a uniform compressive force 

applied at the ends of the shell.  The internal or external pressure is also uniformly 

distributed on the inner or outer surface of the shell, respectively.  To apply pure bending 

or torsional moments, using the coupling technique in ABAQUS, all the nodes on each 

end cross-section were kept on the same respective plane.  Then two concentrated loads 

in opposite directions were applied in the x direction or z direction to simulate bending or 
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torsion, respectively.  See Figs.1c and 1e.  This method of loading will ensure that the 

shell is subject to pure bending or torsion and the end cross-sections remain on the same 

planes after deformation, which properly models the actual experimental conditions.  

Also, the two concentrated loads applied would not create a very high local stress 

concentration.   

 

For the finite element analysis of a typical cylindrical shell, a single layer of shell elements, 

designated S8R in ABAQUS, can be employed and the corresponding buckling and 

postbuckling analysis can be performed.  S8R is an eight noded shear deformable shell 

element with reduced integration, which allows large rotations and small strains.  The 

number of shell elements which were used for the modelling of the cylindrical shells 

throughout this study was 2500.   

 

The first stage in the simulation is a linear eigenvalue buckling analysis.  In simple cases, 

linear eigenvalue analysis may be sufficient for design evaluation; but geometrically 

nonlinear static problems sometimes involve buckling or collapse behaviour, where the 

load-displacement response shows a negative stiffness and the structure must release 

strain energy to remain in equilibrium.  Several methods [35-39] are available for 

modelling such behaviour.  One method is to treat the buckling response dynamically, 

therefore, modelling the response, with inertia effects included, as the structure snaps.  

This approach can be carried out by restarting the terminated static procedure and 

switching to a dynamic procedure when the static solution becomes unstable.  Another 

approach for finding static equilibrium states, during the unstable phase of the response, 

is the modified RIKS method available in ABAQUS.  The Riks method is based on 

moving with fixed increments along the static equilibrium path in a space defined by the 

displacements and a proportional loading parameter.  This method is used for cases where 

the loading is proportional, therefore, the load magnitudes are governed by a single scalar 

parameter.  Arc length methods such as the Riks method are global load-control methods 

that are suitable for global buckling and postbuckling analyses; they do not function well 

when buckling is localized.  Another method is to use dashpots to stabilize the structure 

during a static analysis.  ABAQUS offers an automated version of this stabilization 
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approach for the static analysis procedures. This method has been successfully used in the 

earlier studies of the first author [4-5] for the analysis of delaminated composite shells 

where buckling is mostly localized. 

 

In the current study the Riks method has been employed.  It should be noted that the 

initial small deflection that is necessary to make the structure buckle was established by 

imposing an imperfection based on the first buckling mode. The imperfection amplitude 

varied from 0.01t to t, where t is the thickness of the shell.   

 

Fig. 2 shows the first buckling mode of a graphite-epoxy cylindrical shell subject to axial 

compression, torsion, bending and external pressure, applied individually.  The 

dimensions of the clamped shell are L/r=5 and r/t=30.  For the lamina engineering 

constants of the selected materials throughout this study refer to Table 1.   

 

In a recent study [4], the interaction buckling curve of the preceding laminated cylindrical 

shell with clamped ends subjected to simultaneous axial compression and external pressure, 

was obtained.  The loading case of axial compression combined with internal pressure was 

also considered.  In order to examine the effect of the stacking sequence on the buckling of 

delaminated cylinders, two different stacking sequences   T100/90/0 , 

 
T222 0/90/45/45/90/0  , respectively, were chosen for the analysis.  For the stacking 

sequence of [0/90/0]10T, three different materials; graphite-epoxy, kevlar-epoxy and boron-

epoxy were considered. Fig. 3 shows the interaction buckling curves, relating pressure 

(P/Pc) and axial compressive load(R/Rc),  through a range of values of P, from buckling 

under external pressure(P=Pc) to internal pressure (P=-Pc), for the selected materials.  Rc 

and Pc are the critical axial compressive load and critical external pressure of a perfect 

cylinder under axial compressive load alone and external pressure alone, respectively.  The 

results show that for the selected materials, of the stacking sequence 1, the trends of the 

variation of the interaction curves are similar.  Therefore, it can be concluded that the 

material properties do not have a significant influence on the variation of the interaction 

buckling curve. Next, the effect of the stacking sequence of the laminate on the shape of 

the interaction buckling curve was investigated.  Fig.3 also shows the interaction buckling 
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curve for the stacking sequence of  
T222 0/90/45/45/90/0  with the graphite-epoxy 

material properties.  For the sake of brevity, and clarity of presentation, the results for the 

kevlar-epoxy and boron epoxy cylinders with the aforementioned stacking sequence were 

obtained but were not presented.  However, they had similar trends as the interaction curve 

of the graphite-epoxy.  By comparing the interaction buckling curves of the graphite-epoxy 

cylinder with the two different stacking sequences, it can be observed that the shape of the 

interaction buckling curve is mainly influenced by the stacking sequence.  The difference 

between the interaction curves is less evident when the cylinder is subject to internal 

pressure and more apparent when the cylinder is subject to high level of external pressure. 

Fig. 4a shows the first buckling mode of the cylinder subject to combined axial 

compression and external pressure. 

  

In this study the interaction buckling curves of the preceding cylinder with graphite-epoxy 

material properties and stacking sequence of   T100/90/0 , for bending moment(M/Mc) 

against pressure (P/Pc) and torsion(T/Tc) against pressure (P/Pc), are obtained (Fig. 5).  The 

interaction buckling curve of the same cylinder, for axial compression (R/Rc) against 

pressure (P/Pc), is also shown in Fig. 5.  Mc and Tc are the critical buckling loads when the 

cylinder is subject to pure bending or pure torsion, respectively.  It can be observed that the 

buckling curves of the bending vs pressure and axial compression vs pressure have similar 

trend of variation.   However, the buckling curve for the torsion shows that the external 

pressure greatly reduces the critical torsional moment.  Generally speaking, for the three 

buckling curves, the critical buckling load increases when the cylinder is subjected to 

internal pressure and the critical load has almost a linear variation with respect to the 

increase of the internal pressure. Figs. 4b and 4c show the first buckling mode of the 

cylinder subject to combined bending-external pressure and  torsion-external pressure, 

respectively.  

 

In a study by Simitses el al [21], the nonlinear analysis of imperfect metallic and laminated 

cylinders under bending and axial compression, using the finite element analysis, was 

carried out.  In their paper they have presented interactive buckling curves, axial 

compression vs bending, of a boron-epoxy cylindrical shell (L/r=1.0 and r/t=354) with the 
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stacking sequence of [45/-45]s.  Fig. 6-i shows the buckling curve produced by Simiteses et 

al in reference [21] which has a linear variation.  Fig. 6-i also shows the buckling curve, 

axial compression vs bending, of the same cylinder obtained in this study. It can be 

observed that the relationship between critical loads of cylinders under compression and 

bending is almost linear except those of the laminated cylinder under a very high 

compression load. 

 

Meyer-Piening et al [30] presented the buckling loads of Carbon Fibre Reinforced 

Polymer[CFRP] composite cylinders under combined axial and torsion loadings. In their 

work they have compared their experimental results with the corresponding analytical 

results.  Here the FE results of the current study have been compared with the 

corresponding analytical solution.  Fig. 6-ii shows the interactive buckling curves for a 

CFRP composite cylindrical shell (L/r=2.04 and r/t=200) with the stacking sequence of 

[53/38/22/90/30] used by Meyer-Piening et al and also the buckling curve obtained 

in this study.  It can be observed that the trends of variation of both results are similar. 

However, the FE results show slightly higher buckling loads than the analytical solution. 

 

Next, the linear buckling analysis was performed on a graphite epoxy cylindrical shell 

[L/r=5, r/t=30 and (0/90/0)10T] subject to axial compression, bending and external pressure.  

Each analysis was performed in three different steps.  For each combined loading case, 

initially a live pressure load was applied to the shell, then a bending moment was applied to 

the pressurized shell in the second step and in the final step the critical axial compressive 

load was determined.  Using ABAQUS it is also possible to apply the bending moment in 

the first step and the pressure in the second step and finally determine the critical axial 

compressive load.    

 

Fig. 7 shows the interaction buckling curves, axial compression(R/Rc) vs bending(M/Mc), 

at different pressure levels.  The pressure level varies from cP75.0  to cP93.0 . It can be 

seen that the internal pressure increases the critical buckling load and onset of the buckling 

mode.  However, for high values of the external pressure the critical buckling load 

decreases dramatically.   The buckling curves for the pressure level of P<0.5Pc are almost 
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linear except those of the laminated cylinder under very high compression load. The 

buckling curves for the pressure levels of P>0.5Pc have a parabolic shape.    

 

A similar set of results has also been obtained for the combined loadings of axial 

compression, torsion and lateral pressure. Fig. 8 shows the interaction buckling curves, 

axial compression(R/Rc) vs torsion (T/Tc), at pressure levels varying from cP75.0  to 

cP93.0 .  It can be seen that the internal pressure increases the critical buckling load and 

onset of the buckling mode.  However, for high values of the external pressure the critical 

buckling load decreases drastically.  It can be observed that for the pressure level of  P>0. 

each buckling curve consists of two lines intersecting at T/Tc 0.4.  For T/Tc >0.4 the rise 

of the internal pressure slightly increases the critical axial load.  This rate of increase is 

relatively higher for T/Tc <0.4.   

 

Fig. 9a shows the first buckling mode of a graphite epoxy cylinder subject to axial 

compression, bending and external pressure.  Fig. 9b shows the first buckling mode of the 

same cylinder subject to axial compression, torsion and external pressure. 

 

Next, the postbuckling analysis was performed.  The imperfection amplitude varied from 

0.01t to 1t.   Fig. 10 shows the load-shortening response (R/Rc vs Ux/t) of the preceding 

cylinder when it is subject to axial compression alone.  The effect of geometric 

imperfection is clearly evident.  It can be observed that for a small imperfection amplitude, 

the critical load can be significantly greater than the critical buckling load of the perfect 

cylinder subject to the same loading conditions.  For larger imperfection amplitudes, 

initially the evolution of the displacements produced by the applied load is very smooth but 

as soon as the global instability develops the displacements dramatically increase with the 

increase applied axial compressive load, indicating the complete loss of load-carrying 

capacity of the structure.  

 

Fig. 11 shows the bending moment (M/Mc) vs end rotation(y) of the preceding cylinder 

when it is subject to the bending moment alone.   The results show that for a small 

imperfection amplitude, the critical buckling load is almost the same as the critical 
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buckling load of a perfect cylinder.  Obviously for larger imperfection amplitudes the 

critical buckling load drops sharply, however, in comparison with the axial loading case the 

cylinder subject to bending is less imperfection sensitive. 

 

Fig. 12 shows the torsion (T/Tc) vs angle of twist (x) of the above cylinder when it is 

subject to torsion alone, for different imperfection amplitudes.  The results show that the 

cylinder has almost the same response, irrespective of the imperfection amplitude.  

Therefore, it can be said that when the cylinder is subject to torsion alone it is virtually 

imperfection-insensitive.  This agrees with the analytical results of Simitses el al [17] and 

experimental results of Meyer-Piening et al [30]. 

 

Next, the postbuckling response of the above cylinder subject to combined axial 

compression and bending moment was obtained.  For each combined loading case, initially 

a live bending moment was applied  to the shell, then the axial compressive load was set to 

increase up to 1.2 times the critical axial compressive load of a perfect cylinder, subjected 

to axial compressive load alone.  Figs. 13a, b and c show the load-shortening response 

(R/Rc vs Ux/t) of the cylinder subject to the preloading of 0.1Mc, 0.2Mc and 0.4Mc, 

respectively. A similar set of results are obtained for the cylinder subject to combined axial 

compression and torsion. For each combined loading case, initially a live torsion was 

applied to the shell, then the axial compressive load was set to increase up to 1.2 times the 

critical axial compressive load of a perfect cylinder, subjected to axial compressive load 

alone.  Figs. 14a, b and c show the load-shortening response (R/Rc vs Ux/t) of the cylinder 

subject to the preloading of 0.1Tc, 0.2Tc and 0.4Tc, respectively.  Fig. 15-a compares the 

postbuckling response of the cylinder subject to combined axial compression and bending, 

for the imperfection amplitudes of 0.01t and 0.5t, for the preloadings of 0.1Mc, 0.2Mc and 

0.4Mc, respectively.  Fig. 15-b compares the postbuckling response of the cylinder subject 

to combined axial compression and torsion, for the imperfection amplitudes of 0.01t and 

0.5t, for the preloadings of 0.1Tc, 0.2Tc and 0.4Tc, respectively.  Figs. 16a and 16b show 

the collapse load of the cylinder with respect to the increase of the imperfection amplitude, 

for the combined axial compression-bending and axial compression-torsion cases, 
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respectively. The collapse load is the maximum load which the structure can support. The 

following observations have been made from this study. 

 

The results show that for the lower values of the preloading and imperfection amplitudes of 

less than 0.1t, the response of the shell is almost imperfection-insensitive.  For the large 

values of the preloading and large imperfection amplitudes, the prebuckling stiffness drops 

drastically, the structure becomes imperfection-sensitive and the postbuckling response 

becomes more stable.  The stability of the postbuckling response of the cylinder subject to 

combined axial compression and torsion is more apparent.  It can also be observed that for 

the combined axial compression and torsion, for small imperfection amplitudes, the elastic 

limit of the axial compressive load is almost independent of the value of the preload. For 

the case of combined axial compression and bending, the collapse load decreases with the 

increase of the imperfection amplitude and the preloading value.  For the case of combined 

axial compression and torsion, for the same preloading value, the collapse load decreases 

with the increase of the imperfection amplitude.  However, for the same imperfection 

amplitude the collapse load increases with the increase of the preloading value. 

  

3. CONCLUDING REMARKS 

Computational analysis using the finite element method has been carried out to study the 

response of perfect and imperfect composite cylindrical shells under combined loading.  

The interaction buckling curves of perfect composite shells subject to different 

combinations of axial compression, bending, torsion and lateral pressure are obtained.  

The postbuckling analysis of composite cylinders with geometric imperfections of eigen-

mode shape is carried out to investigate the effect of imperfection amplitude on the 

critical buckling load. 

 

The results show that a very small imperfection amplitude does not appreciably alter the 

critical load of a perfect geometry under the same loading condition.  For the combined 

loading case, it was observed that the internal pressure increases the critical buckling load 

and onset of the buckling mode.  For high values of external pressure, the critical 

buckling load decreases dramatically. The results show that under torsion, laminated 
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cylindrical shells are less sensitive to geometric imperfections than they are under 

compression or bending.  It was observed that the shape of interaction buckling curves 

depends significantly on the laminate stacking sequence.  Consequently, a laminate can 

be tailored depending on its loading conditions to resist buckling and postbuckling 

collapse. 

 

The results show that the elastic limit load can be achieved only for very small 

imperfection amplitudes and in such a case, imperfection sensitivity can be predicted.  

When the magnitude of the initial imperfection amplitude becomes larger, the 

prebuckling stiffness decreases dramatically and the postbuckling path becomes stable.  It 

was observed that the effects of imperfections are more apparent when the composite 

cylindrical shells are subject to combined loadings. 

 

It is shown that computationally generated design curves can summarize the initial 

buckling loads of composite shell structures subject to combined loading.  The curves 

should be useful for future design of shell structures subject to complex loading 

conditions.  However, more research is needed to establish generally applicable, safe and 

correct guidelines for a purely numerical buckling design. 

 

The modelling approach established in this work offers high potential for further 

development.  So far, the material properties are assumed to be linear.  However, the 

structure of the model offers convenient extension to nonlinear behaviour.  In this study, 

only the geometric imperfections are considered.  Therefore, it would be desired to study 

the imperfections including shell-wall thickness variations and local shell-wall ply gaps 

associated with the manufacturing process.   The non-uniform distribution of the applied 

loads and various boundary conditions can also be studied. 
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d) External pressure  e) Bending 
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Fig. 2 First buckling mode of a perfect graphite-epoxy cylindrical shell(L/r=5, r/t=30) subject to a)Axial compression b) bending 

c) torsion and d)external pressure, applied individually 

a) b) 

c) 
d) 
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Fig. 4 First buckling mode of a perfect graphite-epoxy cylindrical shell(L/r=5, r/t=30) subject to  

a) Axial compression (R=0.8Rc) and external pressure(P=0.62PC) 

b) Torsion (T=0.25Tc) and external pressure (P=0.84Pc)   

c) Bending (M=0.73Mc) and external pressure (P=0.75Pc) 

a) 

c) 

b) 

b) 
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Fig. 9 First buckling mode of a perfect graphite-epoxy cylindrical shell(L/r=5, r/t=30) subject to  

a)Axial compression (R=0.54Rc), bending(M=0.3Mc) and external pressure(P=0.75PC) 

b) Axial compression (R=0.72Rc), Torsion (T=0.1Tc) and external pressure (P=0.375Pc)   

a) 

b) 



Tafreshi, A. & Bailey, Colin G., Sep.  2007 In : Composite Structures. 80, 1, p. 49-64 16 p. 
 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tafreshi, A. & Bailey, Colin G., Sep.  2007 In : Composite Structures. 80, 1, p. 49-64 16 p. 
 

29 



Tafreshi, A. & Bailey, Colin G., Sep.  2007 In : Composite Structures. 80, 1, p. 49-64 16 p. 
 

30 



Tafreshi, A. & Bailey, Colin G., Sep.  2007 In : Composite Structures. 80, 1, p. 49-64 16 p. 
 

31 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13  Axial compressive load vs end shortening of a graphite 

epoxy cylindrical shell for different initial imperfection amplitudes, 

with a preloading of a) M=0.1Mc   b) M=0.2Mc    c)M=0.4Mc 

L/r=5, r/t=30, [0/90/0]s 
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Fig. 14  Axial compressive load vs end shortening of a graphite epoxy 

cylindrical shell for different initial imperfection amplitudes, with a 

preloading of a) T=0.1Tc   b) T=0.2Tc    c)T=0.4Tc 

L/r=5, r/t=30, [0/90/0]10T 
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Table 1 Lamina engineering constants for the selected materials 

 

Material No. EL/ET LT GLT/ET GTT/GLT ET(GPa) 

Graphite-epoxy 40 0.25 0.5 1.0 5.17 

Kevlar-epoxy 15.6 0.35 0.56 1.0 5.5 

Boron-epoxy 11.11 0.21 0.24 1.0 18.61 

Caron fibre 

reinforced 

polymer(CFRP) 

14.188 0.31946 0.654 1.0 8.7079 

 

 


