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Simulation of User Interaction for Performance Evaluation of 
Interactive Image Segmentation Methods

Emmanouil Moschidis1 and Jim Graham2 

Imaging Science and Biomedical Engineering, School of Cancer and Imaging Sciences, Stopford Building, 
The University of Manchester, Oxford Road, Manchester M13 9PT.

Abstract.  Interactive image segmentation  is  often  employed  in  the  context  of  medical  image analysis,  as  an 
alternative to automatic and manual image segmentation. In the last decade it has attracted a lot of attention due to 
the  advent  of efficient  algorithms able to  perform in interactive speed even for  large three dimensional  (3D) 
images. However, the human integration in the segmentation process restricts its repeatability and impedes its 
objective evaluation. Also, it inhibits the identification of the intrinsic properties of the  algorithms. In this paper 
we report  on a framework for performance evaluation of interactive image segmentation techniques,  which is 
based on simulated user interaction. This allows for the construction of reproducible and tractable experiments, 
which  can  form  the  basis  of  a  systematic  and  objective  performance  evaluation  framework  for  interactive 
segmentation methods. We demonstrate quantitative results using three interactive segmentation algorithms from 
the literature.

1 Introduction

In the context of medical image analysis, interactive image segmentation methods are often preferred to automatic or 
manual ones. Automatic methods usually fail to produce results that meet the expectations of a human, whereas 
manual  approaches  incorporate  tedious  marking-up  sessions  with  increased  cognitive  load.  Interactive  image 
segmentation appears to be the best compromise between automatic and manual methods due to its properties; it 
provides the user with enough control over the entire process so that s/he can achieve an arbitrary segmentation that 
meets her/his expectations, while it demands less effort than the manual approach.

An  interactive  image  segmentation  method  consists  of  the  following  components:  the  computational  part,  the 
interactive part and the graphical user interface (GUI) [1]. The GUI is the component that accepts the user's guidance 
for  action,  often  via  visual  programming components  (text-boxes,  drop-down menus,  sliders  etc.),  also  termed 
controls, or via direct image clicks (pictorial input). The interactive part translates the input given via the GUI into 
parameters that can be used by the computational part.  Finally, the computational part  uses a specific model to 
encode the information available in an image (e.g. graph, MRF etc.). Once the required parameters are provided by 
the interactive part, it performs calculations that lead to a segmentation outcome.

In interactive segmentation of medical images, an expert (usually a radiologist) is steering the segmentation process. 
The acceptance or rejection of the segmentation outcome depends solely on his perception of the result with respect 
to the actual anatomical structure, termed ground truth. This interaction, however, must be minimal, in order to allow 
for efficient analysis of the datasets in terms of time and effort (speed and cognitive load).  The most successful 
interaction pattern in the literature is the provision of pictorial input via brush strokes[5-8]. This pattern of interaction 
is  intuitive,  fast,  easy,  applicable  to  three  dimensions  (3D)  and  gives  the  user  the  ability  to  achieve  arbitrary 
segmentations. In  the context of such an interaction, the user is using a brush to mark specific groups of pixels 
(voxels in 3D), also termed as seeds, of an image as belonging to a specific class. For binary segmentation these 
classes are only two, foreground and background. In this study we focus on the task of binary segmentation in 3D 
medical images.

Two  main  problems  arise,  when  evaluating  interactive  segmentation  methods  with  the  brush  strokes  as  their 
interaction pattern: the lack of repeatability and the excessive input provision. The lack of repeatability is due to  the 
human integration in the segmentation process. The excessive input provision is due to the nature of brush strokes, 
which provide a large number of input seeds that make most methods perform well. These two problems impede the 
objective  performance  evaluation  of  various  aspects  of  interactive  segmentation  techniques.  We argue  that  the 
objectiveness of such an evaluation framework can be guaranteed by simulated automation of the user interaction and 
assessment of the performance of the selected methods with small number of input seeds. 

The automation of the variety of cognitive actions performed by the user is of course a difficult task. It is hard to 
automate the causal relationships associated with every action in the segmentation process. Moreover, it is debatable 
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what a human considers as a normal or natural interaction. However, having a simulation that mimics realistically the 
human interaction is of great importance, since the experiments that are based on it can provide insight regarding the 
true interaction as well. In section 2 we propose a set of patterns for achieving this goal. In section 3 we present the 
evaluation framework used in our study and the metrics associated with it. In section 4 we report some preliminary 
results  from  the  use  of  the  suggested  framework  for  the  performance  evaluation  of  three  recent  interactive 
segmentation methods in 3D, the GraphCuts [5,6], the RandomWalker [7] and the GrowCut [8]. This is also the first 
time that implementations of the latter two algorithms are reported in 3D. GraphCuts is a graph-based method that 
treats a graph as a flow network. The cut on the graph that separates the foreground seeds from the background seeds 
is given by the saturated edges in the network with the use of the MinCut/MaxFlow theorem. Random Walker is also 
a  graph-based  method,  which calculates  the  probability that  a  random walk,  which initiates  from an  undefined 
(unclassified) pixel, will reach a seed point, given the bias that it cannot cross high gradient edges. GrowCut is based 
on the Cellular Automata model. It considers all pixels in an image as living cells with certain label and strength. 
Each cell is attacked by its neighbours and in case the attacking force is higher than its strength, the cell changes its 
label to that of the attacking cell.

2 Simulated User Interaction

We identify two main patterns of user interaction, the random clicks and the careful seed selection. In the first case 
the user is selecting quickly and rather randomly foreground and background seeds. In the second one, s/he is trying 
to carefully select seeds that best represent the foreground and the background. We believe that in the former case the 
seeds have equal probability to come from any place within the 3D volume, whereas in the latter case most of the 
seeds will be selected from places near to the object boundaries. Based on this hypothesis, the strategy we follow for 
automating the user interaction is the following:

Random Clicks:  In order to simulate this pattern of user interaction, we save the indices of the foreground and 
background seeds defined in the ground truth. Consequently we randomly select seeds (indices) that are uniformly 
spread within these vectors as background and foreground seeds. That way, these seeds will be relatively uniformly 
spread throughout the ground truth background and foreground volume.

Careful Seed Selection: In order to simulate this pattern of user interaction, we identify the seeds from the ground 
truth that belong to the surface of the object of interest and those lying one voxel outside its surface (outer boundary). 
The seed indices are saved in two vectors.  Consequently,  we randomly select  seeds (indices) that are uniformly 
spread within the outer boundary vector for background and the object surface vector for foreground. 

Variability of User Interaction: In order to accommodate the variability that characterises the human interaction, 
we displace the foreground and background seeds, as determined by the ground-truth, in random directions by fixed 
distances. In order to accommodate both low and high variability we select a variable displacement of 2 i  , where 
i∈[0,8];  when i=0 the seed is only displaced to its immediate neighbour, whereas when i=8 it is displaced by 256 
positions. It is obvious that for low values of i we simulate an interaction with low imprecision, whereas with high 
values of i we simulate an interaction with high imprecision. 

3 Evaluation Framework

Taking into account the evaluation frameworks that exist in the literature [2-4] we suggest an evaluation framework 
for interactive segmentation that is summarised in the following components:

Ground Truth:  In this study we use real medical images, since they provide more challenges for a segmentation 
algorithm than artificial ones. More specifically we use a 3D (83×80×104) MR brain image and the task is to segment 
the brain ventricles. The surrogate of truth is given by manual delineation of the anatomy of interest by one expert. Of 
course, ideally one would like to have multiple segmentations  from multiple experts. However, this segmentation is 
used as a relative evaluation estimate, acknowledging the fact that this may not be the ideal surrogate of ground truth.

Accuracy: In order to assess the accuracy of the methods, we evaluate the segmentation outcome provided by the 
computational  part  of the algorithms for  a  specified number of  input  seeds.  The result  is  compared  against  the 
surrogate of ground truth and the correctly and misclassified voxels are identified.  The confusion matrix is then 
created, in which voxels are divided into true and false positives (TP, FP) and true and false negatives (TN, FN). The 
metric for segmentation accuracy is defined as:



Accuracy = 100 × 
∣TP∣∣TN∣

∣TP∣∣TN∣∣FP∣∣FN∣
 %    (1)

In addition, a 3D distance transform is used  to provide the maximum and the mean distance from the boundary 
points estimated by the segmentation algorithm to the boundaries provided in the ground truth [3]. This is considered 
as information complementary to the accuracy metric.

Repeatability:  In order to assess the repeatability, we assess the effect of the pertubation of the input seeds on the 
segmentation result.  For a selected number of input seeds, the seeds are pertubed by a variable measure. For every 
pair of segmentation VS1 ,VS2  the relative overlap (RelOv), known as Tanimoto coefficient [4], is then calculated as: 

 RelOv =
V S1∩V S2

V S1∪V S2
 = 

∣TP∣
∣TP∣∣FP∣∣FN∣

         (2)

Efficiency:  In order to assess the efficiency of the interactive segmentation methods, which is related to the speed 
and the cognitive load of the overall segmentation process, the following questions are posed: “how much interaction 
does the method require for a plausible segmentation?”, “how precise must the user be during the input provision?” 
and finally “how fast does the computational part process the input and provide results?”. The amount of interaction 
that is required, till the user achieves the desirable outcome, is calculated in terms of clicks or input seeds. The fewer 
input seeds (low cognitive load)  that  are  required  for  the segmentation task,  the higher  is  the efficiency of  the 
algorithm. With respect to the second question, an efficient algorithm does not demand precise pictorial input from 
the user (low cognitive load), in order to deliver a plausible segmentation. Therefore, a repeatable method is also 
efficient. Finally, the speed of the segmentation's provision by the computational part of the interactive segmentation 
method is reported in seconds. 

4 Experiments and Results

Accuracy: In order to assess the accuracy of the computational part of the three selected interactive segmentation 
methods, we varied the number of input seeds, both foreground and background, from 1 to 30. Figure 1 depicts the 
effect of the alteration of the number of seeds on the accuracy of the computational part of the algorithms along with 
the observed variation for 30 different random seed initialisations per seed number, for the simulation of both cases 
of user interaction. Figure 2 depicts the maximum observed voxel-based distance of the surface of the segmentation's 
outcome from the ground truth surface along with its variation. The same seed initialisation was used for all the 
algorithms. At this point, it is worth recalling that the measured accuracy is considered with respect to the surrogate 
of truth, which is provided by human annotation and which  may well incorporate errors. Finally, in order to assess 
the performance of each algorithm in terms of speed (computational efficiency) the time that was required for the 
completion of the segmentation task was recorded. The average elapsed time for each experiment is shown in table 1.

Figure 1: Diagrams of accuracy for variable number of seeds for seeds  with “Random Clicks” (left) and “Careful 
Seed Selection” (right). The error bars represent the ±1.96 × (standard error) of the mean.

It can be seen in figure 1 that even for a small number of seeds, the accuracy of GraphCuts and RandomWalker is 
high. One should not interpret a high score in accuracy as an almost perfect segmentation. The overall score is  biased 
towards  large  values  by the large  number of  true negatives  (correctly classified  background voxels).  When the 
number of seeds is increased, the accuracy of these two algorithms remains steady.  GrowCut demonstrates larger 
variations and inferior accuracy to them. Lastly in the case of Careful Seed Selection the algorithms perform worse, 
possibly because the surface of the organs does not comprise a good seeds candidate due to partial volume effects. 
This will be further discussed in the repeatability assessment section.
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The diagrams in figure 2 complement the information depicted in figure 1, as they provide the maximum distance of 
the segmented object surface from the ground truth surface. RandomWalker gives boundaries that demonstrate small 
distance from the ground truth boundaries, whereas GraphCuts provides some voxels as foreground, which have high 
distance from the ground truth boundaries. GrowCut provides a lot of erroneous segmentations that contribute to low 
accuracy but also to large maximum distance from the ground truth. This is due to leakages of the foreground in 
difficult areas, where background input seeds are not present and therefore the leakage cannot be prevented.

Figure 2: Diagrams of maximum distance from the ground truth surface for variable number of seeds with “Random 
Clicks” (left) and “Careful Seed Selection” (right). The error bars represent the ±1.96 × (standard error) of the mean.

Repeatability:  During this experiment,  the number of seeds was increased from 1 to 5  and then it  was further 
increased using a step of 5. Then, for each number of seeds, the initial selected seeds were pertubed, as described in 
section 2, in order to allow for the accommodation of the user variability.  Finally the relative overlap of the resulting 
pairs (36 pairs for each case of different number of seeds) was calculated according to equation 2. The results of this 
experiment are depicted in figure 3.

Figure 3:  Diagrams of the overlap measure (tanimoto score) for variable number of seeds  with “Random Clicks” 
(left) and “Careful Seed Selection” (right). The error bars represent the ±1.96 × (standard error) of the mean.

GraphCuts demonstrates very high repeatability even for a small number of seeds. Its performance is lower for very 
low number of seeds but increases when the latter increases (left diagram of figure 3). RandomWalker demonstrates a 
similar  performance,  although  the  minimum number  of  seeds  demanded  for  repeatable  results  is  higher.  Also, 
although its performance increases with the number of seeds, it only becomes comparable to GraphCuts when 30 
seeds are selected.  The performance of GrowCut is lower than the other two methods. The overlap score is low 
(50%), even for a high number of seeds (20-30). This is due to uncontrollable region growing, when the pertubed 
seeds are placed to positions that promote leakage (partial volume effects). An interesting observation is the slight 
degradation  of  GraphCuts'  performance  when the  number  of  seeds  increase  beyond  5.  This  may be  caused  by 
“invalid” seeds that belong to the surrogate of ground truth but not to the actual object of interest. The right diagram 
in figure 3,  may support  this argument, as it rather suggests that the algorithms fail to demonstrate a repeatable 
performance. Nevertheless, even in these circumstances, GraphCuts seems to achieve relatively repeatable results for 
seeds between 15 and 30. This failure mode probably occurs because some of the surface (boundary) voxels, which 
are suggested as foreground  voxels by the surrogate of truth, may be background pixels in reality or just boundary 
voxels that do not share voxel intensity similarities with the inner part of the object.  This could also explain the 
fluctuations of the performance of GraphCuts in the left diagram of figure 3; some of the seeds also come from the 
ground truth surface. If this surface consists of a number of “invalid” seeds, these seeds will affect negatively the 
segmentation. However, this would happen in a rather unpredictable (random) fashion, since the selection of seeds is 
a random process.
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Efficiency:  The  performed  experiments  provide  enough  information  to  answer  the  questions  regarding  the 
algorithmic efficiency (section 3). Figure 1 shows that both GraphCuts and RandomWalker can achieve plausible 
segmentation, even with low number of input seeds. In addition, GraphCuts does not demand precise seed placement. 
In fact, the resulting segmentation is the same even for large variations of the seed placement.  RandomWalker seems 
to possess this property as well but for a higher number of input seeds. GrowCut is not able to cope with alterations of 
the seed placement. Also, from the obtained results, it is questionable whether there is a critical number of seeds that 
will guarantee a good segmentation. Therefore, the cognitive load required by GrowCut is higher than the other two 
methods, since some seed initialisations are better than others. As a consequence, the user should spend more time 
and  effort,  in  order  to  provide  the  algorithm  with  “good”  input  seeds  or  to  correct  inaccurate  segmentation 
suggestions by the computational part of the technique. In terms of computational speed, among the implementations 
that  we possess,  GraphCuts  is  the  most  computationally  efficient  method,  whereas  RandomWalker  is  the  most 
computationally expensive. GrowCut is slower than the former and faster than the latter. The time that was required 
by each method was relatively constant over a range of numbers of seeds. Table 1 summarises the recorded average 
segmentation time of the methods during the two variations of the accuracy experiment. 

Method Average Time ± 1.96 × standard error (secs) Average Time  ± 1.96 × standard error (secs)

GraphCuts 13.1 ± 2.7 28.3 ± 12.0

RandomWalker 975.6 ± 9.0 1013.6 ± 12.3

GrowCut 82.4 ± 5.5 91.5 ± 3.0

Table  1: Average  time required  by each  algorithm for  the  segmentation  task of  the  accuracy experiment  with 
“Random Clicks” (middle) and “Careful Seed Selection” (right). 

5 Conclusions

The experimental results presented in the previous sections, show that the suggested evaluation framework can assist 
towards  the  assessment  of  interactive  segmentation  algorithms  in  3D.  The  obtained  results  are  tractable  and 
reproducible. Also, the simulated interaction seems to cover the most significant variations of human interaction. The 
experiments that have already been performed, provided useful information regarding the performance of the tested 
techniques with respect to accuracy, repeatability and efficiency. GraphCuts proved to be the most efficient method 
among the three that were assessed for the specific task assigned in our study. From the experiments performed, it 
was shown that the seed selection exactly from the object's surface is problematic. In order to verify this statement, 
the same experiments will be repeated by excluding the surface from being a candidate for foreground seed selection. 
This work will continue with further experiments that will reveal the different characteristics of these three methods.
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