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We study the low-lying energy spectrum for the SU(N) one-plaquette problem by use of a maximal-tree gauge 
and angular variables. We show that the one-plaquette problem reduces to a problem of N fermions on a circle, 
which is solved numerically. 

1. I N T R O D U C T I O N  

In order to solve a field theory from first prin- 
ciples, one must deal with the large number of 
degrees of freedom involved. Monte Carlo tech- 
niques are the preferred approach, and state-of- 
the-art numerical results for masses and other 
static ground-state properties for QCD all orig- 
inate from Euclidean field theory treated using 
Monte Carlo methods. However, some questions 
cannot readily be answered in Euclidean field the- 
ory, and sometimes the relation between the real- 
time (Hamiltonian) results and their Euclidean 
counterpart is not clear. The vacuum wave func- 
tional, for example, can only be defined in a 
Hamiltonian approach. 

Although the QCD vacuum is rich with non- 
perturbative phenomena, which leave their im- 
print on the particles which interact strongly, it 
is invariant under space-group transformations. 
Therefore, the many degrees of freedom of the 
system are restricted to a subset invariant un- 
der these space symmetries. The coupled cluster 
method [1] naturally uses theses symmetries, as 
one can restrict the wave functional to contain 
correlation operators that depend not on the ab- 
solute position but only on the relative orienta- 
tion of the correlated partners (i.e., plaquettes). 
Similarly, the vacuum is invariant under gauge 
transformations which can be implemented from 
the start. 

However, we must construct a Hamiltonian 
which requires that the gauge is fixed so the 
canonical variables can be determined, and the 
theory quantised. In the continuum theory this 
problem can only be dealt with perturbatively. 
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On the lattice we can use the maximal-tree gauge 
fixing [2], which results in a proper set of conju- 
gate variables. 

Eventually, we can determine the ground-state 
energy for different trial wave functionals that can 
be improved systematically within the coupled 
cluster method. In order to filter out the spe- 
cial properties of SU(3), we study SU(N) gauge 
theories for several values of N. For present pur- 
poses we restrict ourselves to a relatively simple 
wave functional, in order to investigate useful rep- 
resentations of the problem. 

2.  T H E O R Y  

In the maximal-tree gauge the links [3] on a 
maximal tree, which connects all lattice sites in 
an unique way (Fig. 1), are associated with the ir- 
relevant gauge degrees of freedom. The remaining 
links, {m}, when connected with a path from and 
to the origin (Fig. 1), are the canonical variables, 
Xm, of the Hamiltonian theory in the colourless 
sector [2]. The electric operator E~ associated 
with the link I on the maximal tree can be trans- 
formed by a body-frame rotation, such that when 
acting on the X-variables one of the following the 
relations, depending on the position of the link, 

=-i ox  , = , 

1 E~Xm = -1)~aX,n + ~X,nA (1) 
2 

where I is part of the path leading up to the the 
link m in the first case, part of the path from 
the link m back to the origin in the second case, 
and part of both paths in the third case. There- 
fore the electric operator generate long-distance 
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Figure 1. A particular choice of maximal tree. Figure 2. A contour, from and to the origin, as- 
sociated with a canonical variable. 

interactions between two variables Xm and Xm, 
associated with two links m and m' on the lattice. 

After establishing the independent variables, 
Xm, and the canonically conjugate variables, E~, 
we can investigate some simple trial wave func- 
tionals. Two wave functionals spring immediate- 
ly to mind; the sum and the product of functions 
of one-plaquette [3] variables: 

({U}lr~/ = ~ / ( ~ V ~ )  , (2) 
plaquettes 

({V}[II) = I I  f(Trg~) , (3) 
plaquettes a 

where the products of links, Ua, around a pla- 
quette can be expressed as products of X's  and 
Xt's. Both wave functionals lead to the direct 
sum of one-plaquette problems, as the cross term 
in the electric operator vanishes under integration 

# 

(II[[E~ In f(TrU~)][E~ In f(TrU~)]lH ) = 0 (4) 

For the one-plaquette problem the functions de- 
pend on the eigenvalues xi of U only [4]. It can 
be expressed in a basis of group characters [5], 
labelled by the partition A1 > "." > )~N ----- 0,  

which are the eigenstates of the electric opera- 
tor. However, for the weak-coupling limit it is 

useful to notice that the group characters are 
ratios of determinants det[x~J]/det[x~-l], where 

~-1 and x~ ~ denote the entries of the matrix, x i 
and the one-plaquette problem can be mapped 
onto an N-fermion problem on a circle if we in- 
troduce angular variables exp{i~bi} = xi, satisfy- 
ing the constraint ~ = 1  ¢i = 0. We multiply the 
original, symmetric wave function by det[x~ -1] to 
generate a completely antisymmetric wave func- 
tion. This simplifies the Hamiltonian consider- 
ably. The electric operator yields the kinetic en- 
ergy of N particles on a circle minus their centre- 
of-mass energy. 

3. R E S U L T S  A N D  C O N C L U S I O N S  

For the low-lying spectra shown in Fig. 2 we 
solve the linear eigenvalue equations numerically. 
For an accuracy of six decimal places we require 
a basis with approximately 100-200 eigenstates 
of the electric operator. For SU(2), the spectrum 
is given by the odd characteristic values of the 
Mathieu equation. For N = 3, 4, and 5, the spec- 
tra are much richer. They include both crossings, 
indicating the presence of a symmetry, and avoid- 
ed crossings. These features are being investigat- 
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ed. 
The extension of this approach to include spa- 

tial correlations is also under investigation. The 
simplicity of the angular variables formulation is 
promising for more elaborate wave functionals [1]. 
We hope that the one-plaquette wave functional 
can serve as a first step in describing a spatially 
correlated wave functional. 
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Figure 3. The spectra for the SU(2), SU(3), 
SU(4), and SU(5) one-plaquette problem, after 
subtraction of the linear term g-4. 
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