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Abstract 
Soil biodiversity is immense, with an estimated 10-100 million organisms belonging to over 5000 
taxa in a handful of soil. In spite of the importance of soil biodiversity for ecosystem functions 
and services, information on soil species, from taxonomy to biogeographical patterns, is 
incomplete and there is no infrastructure to connect pre-existing or future data. Here, we 
propose a global platform to allow for greater access to soil biodiversity information by linking 
databases and repositories through a single open portal. The proposed platform would for the 
first time, link data on soil organisms from different global sites and biomes, and will be inclusive 
of all data types, from molecular sequences to morphology measurements and other supporting 
information. Access to soil biodiversity species records and information will be instrumental to 
progressing scientific research and education. Further, as demonstrated by previous biodiversity 
synthesis efforts, data availability is key for adapting to, and creating mitigation plans in 
response to global changes. With the rapid influx of soil biodiversity data, now is the time to take 
the first steps forward in establishing a global soil biodiversity information platform.  
 
 
1. Introduction  1 



 

 

Soils are increasingly recognized as crucial components of ecosystems and biodiversity  2 
(Wardle et al., 2004; Bardgett and Wardle 2010), and they represent unique compartments of 3 
terrestrial ecosystems by comprising components of the atmosphere, biosphere, hydrosphere, 4 
and lithosphere. Soil biodiversity supports many terrestrial ecosystem functions (Wall et al., 5 
2012) and delivers important ecosystem services such as food and fiber production, carbon 6 
sequestration, and degradation of pollutants (Wall et al., 2010; Wardle 2002). However, the data 7 
and information regarding diversity that lives in soil remains insufficiently catalogued and 8 
coordinated, and this limits our ability to fully assess the key role soil biodiversity plays in 9 
supporting terrestrial systems and ecosystem services. In contrast to soil systems, greater effort 10 
has been put towards cataloguing global diversity in marine and other terrestrial systems (Jetz 11 
et al., 2012; Appeltans et al., 2012; Canhos et al., 2014; Hudson et al., 2014) and into making 12 
these data free and open access (Guralnick et al., 2007; Wiezorek et al., 2012). Global efforts to 13 
synthesize biodiversity data have proven highly successful in the transfer of information, have 14 
improved our understanding of species ecology and distribution patterns, and allows for better 15 
monitoring and response plans to global change effects (Dirzo et al., 2014; Hampton et al., 16 
2013). Given that we are facing unprecedented environmental alterations through climate 17 
change, land use change, soil erosion, invasive species, desertification and pollution, a better 18 
understanding of the global distribution and drivers of soil biodiversity is urgently needed to 19 
forecast functional changes of terrestrial ecosystems and to develop appropriate management 20 
practices. Therefore, here we review the rationale behind and the benefits of bringing together 21 
soil biodiversity data and information through a single global data platform.  22 
 23 
Although it is known that soils are extraordinarily diverse, the scale of soil biodiversity is not yet 24 
fully understood (Wall et al., 2010). Global patterns of soil biodiversity are at most weakly 25 
documented (Decaëns 2010; Tedersoo et al., 2014), and the locations of many soil biodiversity 26 
hotspots have not been identified. Part and parcel to the plethora of hyperdiverse taxonomic 27 
groups, global patterns of soil biodiversity are thought to differ significantly from what is reported 28 
aboveground (Maraun et al., 2007; Decaëns, 2010; Ramirez et al., 2014; Tedersoo et al., 2012). 29 
For example, soil microorganisms do not respond to large-scale environmental gradients in the 30 
same way as metazoans and belowground biodiversity hotspots do not necessarily mirror 31 
aboveground biodiversity patterns (Fierer and Jackson 2006; Wu et al., 2011) Further, many 32 
species residing in soil remain taxonomically, phylogenetically, and functionally undescribed. 33 
This is most notable for microorganisms (McDonald et al., 2012) but it is also true for soil fauna 34 
(Bik et al., 2012; Behan-Pelletier 1999; Rougerie 2009). Therefore, categorizing species into 35 
discrete taxonomic units represents a challenge for soil biodiversity documentation where many 36 
of the species' characteristics and phylogenies are not yet available (Bardgett and van der 37 
Putten 2014). 38 
 39 
Regardless of these challenges, soil biodiversity research has dramatically increased over the 40 
last three decades, and the scope of soil biodiversity data is immense. Soil biodiversity data 41 
types range from classical specimen based collections (Burkhardt et al., 2014) to molecular and 42 
genomics samples (Gilbert et al., 2014). In between are a wide spectrum of community-43 
aggregated data (i.e. trophic levels to relative abundances) organism attributes (e.g. 44 
abundance, biomass and traits), and environmental measurements (e.g. georeference 45 
coordinates, biome type, soil characteristics and climatic variables). Like other biodiversity 46 
information, soil biodiversity data can be digital and available online, though much data remains 47 
‘dark’ – not digitized or not available (Heidorn 2008). Whether in a national repository, stored on 48 
a personal computer, or found in a museum drawer, the first step in any data synthesis project 49 
is to make dark data digitally accessible [Box 1] (Hill et al., 2012). Next is to establish a 50 
mechanism to link digitally available data globally (such as an online portal).  51 
 52 



 

 

Here we present an independent initiative to assess and store information on global soil 53 
biodiversity; to link species, environmental and other data and make data accessible at a global 54 
level. Our goal was to propose a system that could be linked to other biodiversity and 55 
ecosystem relevant databases, accommodate new and future methods and technologies, be 56 
useful to a wide array of end users (from the public to scientists to policy makers), and be free 57 
and open access.  58 
 59 

BOX 1: Digital soil biodiversity information is currently stored in a wide array of databases, 60 
warehouses, catalogues and other repositories, and contains various types of data (see 61 
Supp. Table 1 for a more extensive list of examples). 62 

 Catalogues: Taxonomy lists with descriptions of the organism. May have occurrence 63 
data and may contain images, videos or other media. (Example: Encyclopedia of 64 
Life) 65 

 Data Warehouse: An information system that links taxonomy (morphology and/or 66 
annotated sequences) and ecological information across databases and individual 67 
studies. (Example: Edaphobase)  68 

 Public or Private Databases: Species lists for a given study, experiment or location. 69 
May include any number of additional measured parameters such as soil 70 
environment measurements and climate information. (Example: Earth Microbiome 71 
Project)  72 

 Sequence Archives: Nucleotide sequences that provide valuable information on 73 
relevant organisms. These can be useful for determining phylogenies and functional 74 
characteristics of organisms. May follow standards of Genomic Standards Consortia. 75 
(Example: European Nucleotide Archive (ENA), National Center for Biotechnology 76 
Information (NCBI))  77 

 78 
Applied Advances 79 
It is now commonplace to concurrently survey soil biodiversity and explore the role these 80 
organisms play in ecosystem functions and global sustainability (Wall et al., 2012; Bardgett and 81 
van der Putten 2014). However, we still lack baseline values for soil biodiversity as well as 82 
reference values (either abundance ranges or occurrence) that may prove critical in assessing 83 
the current status of soils and implementing management and policy efforts to keeping soils and 84 
soil biodiversity in a so-called ‘normal operating range’ (Koch et al., 2013; Jackson et al., 2007). 85 
This will be particularly important as we continue to understand the impact of certain global 86 
changes on soil biodiversity and their interactions within functioning food webs (Blankinship et 87 
al., 2011; Garcia et al., 2014). For example, agricultural intensification reduces the abundance 88 
of soil fungi relative to bacteria, reduces earthworms, mycorrhizal fungi, and increases the 89 
numbers of plant parasitic nematodes (Tsiafouli et al., 2015). Less is known on effects of 90 
incipient changes, or changes that encompass temporally complex and indirect feedback 91 
effects, such as consequences of global warming, biological invasions, or habitat fragmentation 92 
(Dickie et al., 2014; Blankinship et al., 2011; Lindo et al., 2012).  93 
 94 
Reference values can be an important tool for determining the success of ecosystem restoration 95 
and comparing data across time scales (Frouz; et al., 2004; Kardol and Wardle 2012) and for 96 
detecting subtle trends in temporal soil biodiversity assessments (Bardgett 2005). Specific 97 
indicators that can be accessed from a global platform, such as disease-suppression (Mendes 98 
et al., 2011) and nutrient retention capacity of soil (de Vries et al., 2013), can also be used by 99 
land managers in order to calibrate and further improve sustainability of production methods, or 100 
used to develop rapid and economic soil biodiversity assessment tools for use by policy makers 101 
and end users (Bone et al., 2014; Wall et al., 2012). As demonstrated by the Global Biodiversity 102 



 

 

Information Facility and other global data synthesis efforts (Otegui et al., 2013), access and 103 
availability of data has helped to predict the impact of climate change (Warren et al., 2013), 104 
monitor invasive species (Gatto et al., 2013) and inform on issues like human health (Daszak et 105 
al., 2013) and food and farming (Vincent et al., 2013). Further, the efforts by GBIF and Map of 106 
Life (MOL) support the work of the CBD, IPBES, GEO-BON, and many others (see GBIF.org). 107 
The inclusion of soil biodiversity data in such global assessments is a highly important and 108 
necessary next step.  109 
 110 
Theoretical and research advances 111 
The prospect of accessing global soil biodiversity information through a single portal will create 112 
novel opportunities to develop, refine and test underlying ecological theory. The synthesis of 113 
biodiversity data across larger spatial scales and greater taxonomic breadth may uncover 114 
emergent properties that cannot currently be foreseen (Brose et al., 2012) and will give better 115 
insight into species’ ecological preferences and geographical ranges (Brose et al., 2004; 116 
Tedersoo 2014; Fierer et al. 2013). Here we identify five topic areas that, while not exhaustive, 117 
will be enhanced by a global data platform effort:  118 
 119 
(1) Macroecology and biogeographical patterns: Characterizing global patterns is of paramount 120 

importance for conservation of soil biodiversity and global change scenarios on the 121 
functioning of soil systems in a future world. A comprehensive view of biogeographic 122 
patterns will be critical to reveal important scientific questions, to discover where and why 123 
there are hot spots of biodiversity, to identify the drivers of belowground diversity, and will 124 
ultimately boost the use of macroecological approaches in soil ecology research (Fierer et 125 
al., 2013; Tedersoo et al., 2014).  126 

(2) Biodiversity maintenance and loss: A synthesis of soil biodiversity data will help identify 127 
drivers and mechanisms underlying both the maintenance and loss of biodiversity in soil and 128 
dependent terrestrial systems. The support that belowground diversity gives to aboveground 129 
diversity is drastically underestimated, and by overlaying belowground and aboveground 130 
biodiversity patterns we can better assess the impact of biodiversity losses. Further, these 131 
efforts may prove especially important in terms of invasion ecology, identifying which groups 132 
are prone to invade (e.g. earthworms (Hendrix et al., 2008)), and the mechanisms facilitating 133 
invasion (e.g. Dickie et al., 2014) and prevention efforts. 134 

(3) Ecosystem functions and services: Soil organisms co-determine a plethora of provisioning 135 
and regulating ecosystem services (Wardle et al., 2004; Lavelle et al., 2006), but the 136 
appreciation of their functional significance remains deficient due to their cryptic nature and 137 
overlapping functions (Setälä et al., 2005). While conventional anthropogenic land 138 
management practices often have aimed to optimize certain (single) ecosystem functions or 139 
services (Cardinale et al., 2012), soil biodiversity exemplifies the value of multifunctional 140 
ecosystems (Wagg et al., 2014; Setälä et al., 2014). Recent evidence shows that the 141 
structure and composition of the soil community and the presence of specific functional 142 
groups, is key to delivering a range of ecosystem services, such as N retention and C 143 
storage (de Vries et al., 2013; Lange et al., 2015). 144 

(4) Community ecology: Soil communities are notoriously complex and conventional community 145 
ecological theory may be challenged by the spatially complex habitat soil organisms live in 146 
(Ettema and Wardle 2002). Multitrophic soil biodiversity assessment may help to refine 147 
existing soil food web models (Digel et al., 2014). Further, global-scale information on the 148 
co-occurrence of different taxa in soil will shed light on the relative significance of trophic vs. 149 
non-trophic interactions in soil, top-down vs bottom up forces and their interplays (Moore et 150 
al., 2004) and ecological network perspectives may provide useful tools to clarify 151 
interactions among the different soil functional groups and to certain ecosystem functions 152 
(Barberán et al., 2011; Morriën and van der Putten 2013). 153 



 

 

(5) Aboveground-belowground interactions: As our knowledge of belowground communities 154 
increases, so too does our awareness of the important, complex interactions between soil 155 
organisms and aboveground biodiversity (Hooper et al., 2000). By revealing belowground 156 
biodiversity patterns, we can gain better insight into the linkages between above- and 157 
belowground systems. Plus, soil biodiversity data will be made more valuable if it can be 158 
clearly linked to with data pertaining to aboveground communities (such as through the Map 159 
of Life or GBIF).  160 

 161 
A proposed framework 162 
Our ability to address a range of applied and theoretical questions, or to assess biogeographical 163 
patterns, is to a large extent limited by access and integration of the available data. Currently, 164 
there is no single repository or platform that allows access to soil biodiversity information, 165 
across all species, or at a global scale. Therefore, we propose a framework to initiate linking 166 
different databases and repositories via the internet (Fig 1). The end platform will be both a 167 
database and a free, open access portal to link various national and local data sources around 168 
the world. Linking data from existing databases is not trivial, nor is it a new challenge (Jetz et 169 
al., 2012). Previous efforts such as GBIF and MOL have demonstrated that because there are 170 
no required guidelines or consistency between studies or pre-established databases, minimum 171 
standards and classifications must be identified. Soil biodiversity standards must then be 172 
harmonized with the global standards already in place (e.g. Wieczorek et al., 2012; Yilmaz et al., 173 
2011). While applying even simple standards will lead to the omission of some studies and data, 174 
quality of the data will be valued over quantity, ultimately resulting in a higher quality synthesis.      175 
 176 
Integration and access to soil biodiversity data will be accomplished in three phases: discovery, 177 
standardization and a final user interface: 178 
 179 

Phase I - “Discover” where soil biodiversity data is housed: This phase will be two-fold; 180 
first to establish a taxonomy list - a list of organisms living in the soil, and second to 181 
inventory soil biodiversity information. The taxonomy list will be shared with the Global 182 
Biodiversity Information Facility (GBIF) to tag preexisting soil related biological 183 
observations that can thereon be searched and queried (much like the Global Mountain 184 
Biodiversity Assessment (GMBA) (gmba.unibas.ch)) and allow for easier integration of 185 
new data. The ‘taxonomy list’ and an inventory of soil biodiversity information will be 186 
made available through the Global Soil Biodiversity Initiative (GSBI). It is in this stage 187 
that data quality will be also assessed, a complicated issue all biodiversity data studies 188 
must deal with. We propose to follow guidelines set forth and established by GBIF.  189 
 190 
Phase II - Establish a standardization framework by which to link past, present and 191 
future data: Besides taxonomic synonyms it also will be necessary to develop and 192 
implement thesauri for the various information fields (i.e. regarding habitat or climate 193 
parameters, methods etc.). Standardized ontologies are necessary to link between 194 
different data sources and into GBIF (Supp. 1) and other global data centers (such as 195 
MOL, ISRIC, EOL, Genebank and others). Furthermore, to allow data comparability from 196 
the individual data sources, standardization of numeric (abundances, pH values, etc.) 197 
and nominal (i.e., habitat types, soil types) data will be crucial. Concurrently, we must 198 
also establish the minimum set of parameters needed, and formalize data copyright 199 
privacy and licensing rules. Together these efforts will provide the critical foundation and 200 
quality criteria on which to build the platform.  201 
 202 

Short read sequence data: In the case of microbial marker gene sequence data 203 
(either 16S, 18S, ITS or similar) it is difficult to extract taxonomic information for a 204 



 

 

number of reasons (otu picking methods, chimeras, read length, Orgiazzi et al., 205 
2014). Plus due to the enormous amount of sequence data, reprocessing the full 206 
datasets would not be tractable. Therefore, we propose to link short read 207 
sequence data by location, rather than by taxon identification. This is based on 208 
the fact that there is currently no consensus on the correct protocol for handling 209 
these data, and integrating processed sequence data would introduce substantial 210 
methodological artifacts (Caporaso et al., 2010). Instead, our approach allows 211 
convenient access to these data linked to geography and allows users to process 212 
the data of interest using a consistent protocol based on individual research 213 
questions.  214 

 215 
Phase III - Establish a user-friendly interface that allows for the integration and 216 
comparison of soil biodiversity data - here called ‘Soil Portal’: The portal will be designed 217 
specifically for manipulation and analyses of the data in order to address the theoretical 218 
questions outlined above and to provide stakeholders with the type of information 219 
needed for management and policy decisions. It is in this phase that we would finally be 220 
able to combine collection data across taxonomic groups, spatial scales and research 221 
experiments. As demonstrated previously (Hill et al. 2012), users are reluctant to use 222 
any interface that costs time, therefore, we propose a platform that would offer 223 
researchers a set of tools, rewards for contributing their data to the community- such as 224 
data analyses tools, DOIs for data publication, and a link to other initiatives and data 225 
portals. 226 

 227 
 228 
Outlook 229 
In order to progress this project, first, buy-in from the community of soil biologists is required; 230 
our goal is to galvanize and guide soil ecologists to make their data available. Researchers can 231 
continue to upload data from their home repositories, data will not have to be uploaded more 232 
than once, and there is no need to support a single, comprehensive database - a monetarily 233 
expensive and time consuming task. The framework is designed so that participation in the 234 
effort to liberate individual datasets will only require minor changes to how researchers work 235 
(i.e. time for data input and training for students and young scientists), but has the potential for 236 
great individual rewards such as more publications (e.g. ‘data papers’), increased exposure 237 
leading to invitations and collaborations, as well as reciprocal access to a wealth of data from 238 
colleagues. Admittedly, in addition to the technical challenges outlined in the introduction, the 239 
main limiting factor of this proposal will be resources. Specifically, time and funds must be 240 
invested upfront to move this effort forward in an efficient way. 241 
 242 
Conclusion 243 
In response to unprecedented global environmental changes and the drastic impacts on 244 
biodiversity (Sala et al., 2000), there is a sense of urgency to bring together global biodiversity 245 
information that will provide the basis to determine the species and communities that are 246 
particularly vulnerable to change and extinctions (Jetz et al. 2012; Cardinale et al 2012; Scholes 247 
2008) and focus conservation and management practices (Turner et al., 2015). The organisms 248 
that live in the soil are no exceptions. The focus of the outlined framework goes beyond species 249 
information, and therefore a major challenge and goal will be to integrate the different 250 
information types whereby a range of ecological questions can be addressed. Soil biodiversity 251 
information is of broad interest to other disciplines, including plant ecologists, agriculturalists, 252 
invertebrate ecologists, carbon and climate modelers, and would open new unique opportunities 253 
for collaboration between the groups. As such, we have designed a framework that will interface 254 
with other disciplines through GBIF and the like. In addition to data access and standardization, 255 



 

 

a priority of this effort will be analytical and visualization tools for end users. Beyond progressing 256 
scientific research these tools should help to communicate results and bring the interest of a 257 
larger, more general audience. All together, access to rapidly accumulating soil biodiversity 258 
information across the globe has the potential to improve research and elevate soil ecology to 259 
be on par with our understanding of aboveground systems. 260 
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Figures:  502 
 503 
Figure 1: Integration and access to soil biodiversity data will be accomplished in three phases: 504 
(I) discovery, (II) standardization and (III) a final user interface, and the timing of these phases 505 
will be directly related to the effort and resources put in to the framework.  506 
 507 
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