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Synonyms 

Degree-day methods 

Degree-day factor 

Degree-day total or positive degree-day sum 

 

Definitions 

Degree-day methods. The melting of snow and ice is 

assumed to be related to air temperature as long as air 

temperature is above a critical threshold, usually close 

to the melting point of ice. In particular, the amount of 

snow or ice melted at a certain place, during a certain 

period, is assumed proportional to the sum of positive 

temperatures (on the Celsius scale) at the same place 

and in the same period. The amount of melt is linked to 

this positive degree-day sum by the degree-day factor. 

In the present article, air temperature refers to 

conventional measurements made c. 2 m above the 

snow or ice surface, or extrapolated from a similar 

station in the same region.    

 

The melting of snow and ice and air temperature 

By the end of the 19th Century, the general importance 

of air temperature for the melting of snow and ice was 

widely recognized (Hann, 1903) although few data 

were then available. Finsterwalder and Schunk (p. 82, 

1887) assume “in the absence of direct observations” 

that ice ablation on a glacier depends on the length of 

the snow-free period and on the average temperature 

above the freezing point during that period. The 

product of these two factors is clearly related to our 

degree-day sum.  Finsterwalder and Schunk (1887) 

made no connection but temperature sums above some 

critical threshold were already widely used in 

discussion of temperature control of vegetation (Hann, 

1903). 

The full history of degree-day methods in hydrology 

remains to be written but the relation between 

snowmelt runoff and degree-day sums was already well 

known to Wilson (1941) who tried to explain it in 

thermodynamic terms. Early workers appear to have 

compared snowmelt runoff from a whole basin with the 

degree-day sum at a particular site so the numerical 

value of any factor linking the two variables has no 

general significance and is not usually published. The 

degree-day approach is still widely used for estimating 

runoff from melting snow although, significantly, De 

Walle and Rango (2008) do not include values of the 

degree-day factor in their detailed table of Snow 

Runoff Model (SRM) applications and results for 112 

case studies.  The TS-variable developed by Hoinkes 

and Steinacker (1975) is also based on the degree-day 

concept and gives a reasonably high correlation with 

annual mass balance series but, again, the numerical 

value of the factor linking the TS-variable to the annual 

balance is not given.  

Zingg (1951), de Quervain (1979) and Kuusisto (1984) 

estimate degree-day factors for seasonal snow by 

comparing data from snow stakes with air temperature 

data at the same site, and their degree-day factors can 

therefore be compared, see Hock (2003).  

The key role of air temperature in variations of glacier 

mass balance may seem obvious to us today but 

Hoinkes (1955) explicitly downplayed the role of air 

temperature in controlling glacier melt. Slater (1927) 

may have been the first worker to measure ablation and 

air temperature at the same location. Leaving aside the 

crudity of his instruments, his result is equivalent to a 

degree-day factor for melting ice of 9.1 mm d-1 K-1. 

From various glaciers in the former Soviet Union, 

Krenke and Khodakov (1966) suggest degree-day 

factors of 4.5 and 7 mm d-1 K-1 for snow and ice 
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respectively. Orheim (1970) also calculated degree-day 

factors for melting ice over two years on a Norwegian 

glacier and found values of 6.1 and 6.5 mm d-1 K-1, 

which are not included in Hock (2003). 

The measurement of daily melt on glaciers by Müller 

and Keeler (1969) in parallel with meteorological 

measurements was a significant development and 

allowed Braithwaite (1981) to model daily ablation in 

terms of air temperature and energy balance. He 

obtained an average degree-day factor of 6.3±1.1 mm 

d-1 K-1 for the four series studied, equivalent to a total 

of 123 days of record. Daily measurements of ice melt 

were made over a number of summer seasons (1979-

86) at two sites on the Greenland ice-sheet margin at 

Nordbogletscher (415 days) and Qamanârssûp sermia 

(512 days) (Braithwaite, 1995).  

 

Variations in degree-day factors 

There are substantial variations between degree-day 

factors at various sites on glaciers. For example, see 

extensive tables and discussion in Braithwaite (1995), 

Braithwaite and Zhang (2000), Hock (2003 and 2005), 

and especially some previously unpublished values 

from the high mountains of China in Zhang et al. 

(2006). These results are mainly based on melt data 

from stakes on glaciers but Braithwaite (2008) has also 

used a simple model to assess degree-day factor at the 

equilibrium line altitude (ELA) of 66 glaciers.  

Degree-day factors are generally lower for snow and 

higher for ice (Table 1). Monthly estimates of degree-

day factors for melting ice at Nordbogletscher and 

Qamanârssûp sermia (Braithwaite, 1995) describe time 

variations in degree-day factor. Similarly, time 

variations are illustrated by a 28-year series of snow 

melt data from Weissfluhjoch, Switzerland (de 

Quervain, 1979). Degree-day factors listed by Hock 

(2003) for both ice (32 sites) and snow (18 sites) 

illustrate variations between different locations and 

periods. Results from Braithwaite (2008) reflect 

different locations (66 glaciers) but also different 

methods based on either winter balance or “winter 

balance plus summer precipitation” from Ohmura et al. 

(1992). 

From Table 1 it is clear that degree-day factors for ice 

and snow are not precise single values, even at the 

same place. Variations in degree-day factor in Table 1 

are denoted by standard deviations but field data 

(Krenke and Khodakov, 1966) and analysis of the 

energy balance (Braithwaite, 1995) both suggest that 

very high degree-day factors for ice should only occur 

at low temperatures and not at random.  The generally 

lower degree-day factor for melting snow compared 

with ice is mainly due to higher albedo which reduces 

the energy available for melting (Braithwaite, 1995), 

while time variations at the same locations presumably 

reflect differing weather conditions as expressed by 

variations in the surface energy balance.  

Insofar as we can expect the different terms in the 

energy balance to vary geographically and temporally 

(Braithwaite, 1995 and Guðmundsson et al. 2009), we 

may expect some systematic variations in degree-day 

factor and there is some evidence for this. Zhang et al. 

(2006) claims a clear geographic variation in degree-

day factor for ice from low values (2 to 3 mm d-1 K-1) 

in the relatively continental Tien Shan in NW China to 

high values (15 mm d-1 K-1) in the relatively maritime 

mountains of south China. Fausto et al (2009) have 

suggested different degree-day factors for ice over 

colder and warmer parts of the Greenland ice sheet, i.e. 

15 and 7 mm d-1 K-1 respectively. Huss and Bauder 

(2009) claim to detect multi-year variations in glacier-

averaged degree-day factor for Swiss glaciers (roughly 

equal to the degree-day factor for snow?) which they 

explain in terms of secular variations in global 

radiation.  

 

Estimation of degree-day sums 

The calculation of degree-day totals from raw 

temperature data is a trivial one of summing all the 

positive temperatures in a time series and a computer 
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can do this easily. However, it would be very laborious 

to find and store long series of daily, or better sub-

daily, temperature data if all we want to do is to 

calculate monthly or annual sums. Braithwaite (1985) 

therefore suggested that monthly degree-day totals can 

be calculated from monthly mean temperature by 

assuming that temperature is normally distributed 

within the month with standard deviations of about ±2 

to ±4 K. The advantage of this approach is that 

monthly mean temperatures are now more widely 

available in digital form for individual climate stations, 

or for cells in a gridded climatology like that of New et 

al. (1999). 

Reeh (1991) extended the approach of Braithwaite 

(1985) by noting that monthly mean temperatures can 

be approximated by a sine curve around the annual 

mean temperature if the annual temperature range is 

prescribed. Temperatures at any particular time are 

then assumed to be Normally distributed around the 

sine curve. Carlov and Greve (2005) revisit the 

calculations of Braithwaite (1985) and Reeh (1991) and 

propose a much more efficient algorithm suitable for 

the many repeated calculations needed for long-term 

simulations of the Greenland ice sheet.        

 

Degree-day models 

A degree-day model is one where snow and ice melt 

are calculated according to the degree-day method, for 

example as opposed to the energy-balance model, 

although extra procedures are needed to account for 

snow accumulation and refreezing of melt water. 

According to Hock (2003), degree-day models are 

widely used for four reasons: (1) wide availability of 

air temperature data, (2) relatively easy interpolation 

and forecasting possibilities for air temperature, (3) 

generally good model performance despite their 

simplicity and (4) computational simplicity.  

The reported success of the degree-day approach to ice 

and snow melt at two sites in Greenland (Braithwaite 

and Olesen, 1989) inspired Reeh (1991) to further 

develop the model and test it with the limited amount 

of data from other sites in Greenland. Huybrechts et al. 

(1991) then used the degree-day model to calculate 

mass balance forcing for their model of ice dynamics 

for the whole Greenland ice sheet, assuming degree-

day factors of 3 and 8 mm d-1 K-1 for snow and ice 

respectively. Many of the current models of Greenland 

mass balance follow Huybrechts et al. (1991).  

Laumann and Reeh (1993), Jóhannesson et al. (1995), 

Jóhannesson (1997), Marshall and Clarke (1999), 

Braithwaite and Zhang (2000), Braithwaite et al. 

(2002), De Woul and Hock (2005), Raper and 

Braithwaite (2006), Anderson et al. (2006), Braithwaite 

and Raper (2007), Liu et al. (2009), Shea et al. (2009), 

Hughes and Braithwaite (2008) and Rasmussen and 

Wenger (2009) use different variants of the degree-day 

model to calculate mass-balances of glaciers outside 

Greenland. The relevant degree-day factors are either 

found by tuning models onto field data or are 

prescribed. In general, modelled accumulation depends 

upon the degree-day factor for snow, and mass-balance 

sensitivity depends upon the degree-factor for ice 

(Braithwaite and Raper, 2007). Balance gradients near 

the ELA depend on both degree-day factors with 

higher gradient in the upper ablation area and lower 

gradient in the lower accumulation area (Braithwaite 

and Raper, 2007). This predicted nonlinearity of the 

balance gradient is in reasonable agreement with 

observations (Furbish and Andrews, 1984: Rea, 2009). 

Many workers use a simpler approach than the degree-

day model whereby glacier melt is assumed to be a 

function of summer mean temperature. With 

appropriate choice of averaging period, e.g. June-

August, May-September or May-October, the summer 

mean temperature mainly represents the effects of 

above-freezing temperatures. For example, Krenke and 

Khodakov (1966) assume a power-law relation 

between melt and summer mean temperature and their 

equation was used in constructing the World Atlas of 

Snow and Ice Resources (Kotlyakov et al., 1997). 
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Other workers follow Ahlmann (1924) in using an 

exponential relation to link melt to summer mean 

temperature (Nesje and Dahl, 2000). As the degree-day 

model predicts a family of curves linking melt to 

summer mean temperature (Reeh, 1991: Braithwaite, 

2008) these different approaches are not in serious 

conflict as long as it is accepted that there can be no 

single curve linking melt to summer mean temperature.      

 

Summary and outlook 

There is generally a relation between the melting of 

snow and ice and air temperature which can be 

modelled using degree-day methods. No doubt the 

relative merits of degree-day and energy-balance 

methods will continue to be discussed but more climate 

data from glaciers in different climatic regions should 

be collected using modern data loggers that can be left 

unattended for long periods. At the same time, running 

degree-day and energy models in parallel may also be a 

fruitful line for future work in trying to understand the 

possible variations in degree-day factor. In particular, 

the role of sublimation in the energy balance of very 

high mountains in the Andes and High Asia deserves 

further study as does the effect of debris cover. 

 

Roger J. Braithwaite 
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 Table 1. Mean and standard deviation of degree-day factors for melting ice or snow (from Braithwaite, 2008). 

Location Type Degree-day factor mm d-1 K-1 

  Mean St. devn. Sample 

Nordbogletscher  

Braithwaite (1995) 

Glacier ice 6.9 ±1.1 Nearly daily data for 14 

months  

Qamanârssûp sermia  

Braithwaite, 1995) 

Glacier ice 7.8 ±1.0 Nearly daily data for 21 

months  

Hock (2003) Glacier ice 8.9 ± 3.7 32 sites 

Weissfluhjoch, Switzerland 

De Quervain (1979) 

Seasonal snow on 

land 

4.2 ±1.0 28 melt seasons 

Hock (2003) Snow on glaciers 5.1 ± 2.2 18 sites 

Braithwaite (2008) using data from 

Ohmura et al. (1992) 

(1) Winter balance 

(2) Winter balance plus summer       

       precipitation 

(1) and (2) Combined 

 

Snow at ELA 

Snow at ELA 

 

Snow at ELA 

 

3.5 

4.6 

 

4.1 

 

±1.4 

±1.4 

 

±1.5 

 

66 glaciers 

66 glaciers 

 

2 × 66 glaciers 

 

 


