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In this work we report the stability of liquid crystalline phases of charged hard spherocylinders (CHSC) of aspect
ratio L/!¼5 at low temperatures using NPT Monte Carlo computer simulations. Following the methodology
used in previous work [C. Avendaño, A. Gil-Villegas, E. González-Tovar, J. Chem. Phys. 128, 044506 (2008);
Chem. Phys. Lett. 470, 67 (2009)], long-range coulombic interactions are handled using the Wolf method.
The supramolecular organization of CHSC is obtained by compression of a low-density isotropic state. The
system under consideration exhibits the expected isotropic, nematic, smectic-A, and crystal phases. However two
important phenomena emerge at low temperatures, namely the existence of an isotropic–nematic–smectic triple
point, with the ending of the nematic phase for lower temperatures, and the apparent hexatic arrangement of the
layers in the smectic phases. Assuming that the smectic-layers behave as quasi-bidimensional systems, lowering
the temperatures is possible to observe the formation of hexatic phases, which are detected analysing the structure
factor, order parameters and distribution functions. This hexatic ordering indicates that the CHSC phase
diagram presents a smectic-B phase at low temperatures.

Keywords: liquid crystals; computer simulation; Monte Carlo method

1. Introduction

Hard convex particles represent very simple models to
describe liquid crystalline (LC) materials [1]. Since the
pioneering work of Onsager it is well known that very
long rods interacting only via a hard-core potential
present an isotropic–nematic phase transition [2]. Such
transition is a characteristic phenomenon displayed by
real liquid crystals. For particles with finite aspect
ratio, computer simulation is a powerful tool to
provide exact results about the behaviour of the
existing phases. In order to study systems of elongated
molecules, one of the simplest geometries to consider
is that of the spherocylinder, which is composed of
a cylinder of length L capped at each end with a
hemispherical part of diameter !. Thus, the geometry
of this model is fully characterized by the aspect ratio
L*¼L/!. This system of hard spherocylinders (HSC)
has been investigated, for different values of L*, by
many authors [3–5]. In these works, the phase diagram
of HSC has been characterized and the existence of

isotropic (I), nematic (N), smectic-A (SmA) and
crystalline (K) phases has been firmly established
when L*" 4. On the other hand, real LC molecules
present different interactions, like charge–charge,
dipole–dipole and "#" interactions, in addition to
short-range repulsive forces [6]. In this context, and
looking for a more faithful model of substances that
could exhibit orientational and positional order (e.g.
ionic rodlike colloids, virus and other relevant bio-
materials), recently, we have presented a computer
simulation study of HSC interacting with a coulombic
potential [7], i.e. of charged hard spherocylinders
(CHSC). In [7] the phase diagram and the thermo-
dynamic and structural properties of an electroneutral
mixture of CHSC, with an aspect ratio of L*¼ 5,
were investigated along two isotherms at a relative
high temperature regime. Similarly for the cases of
non-polar HSC and HSC with central longitudinal
[8–10], central terminal [10–12], and central transverse
point dipoles [10,13], the CHSC system presents
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I, N, and SmA phases, although the ranges for which
the CHSC phases appear are modified by the partic-
ular effect of the coulombic interaction. Interestingly,
in the smectic configurations of CHSC a clear evidence
of ion pairing was found. This ion pairing phenome-
non is distinctive of charged systems (e.g. simple
electrolytes) and its origin can be traced back to the
electroneutrality condition assumed in this kind
of system. One of the conclusions offered in [7]
also pointed to the pertinence of a further study
of CHSC at the low temperature region and the
possible existence of an isotropic–nematic–smectic
triple point.

Moreover, in a later work [14] we extended the
investigation of coulombic rods by undertaking the
analysis of a mixture of CHSC (with charges located at
the centre or at the end of the spherocylinders) and
charged hard spheres (CHS), as an attempt to model
dispersions of electrified anisotropic molecules in the
presence of their counterions. Therein, and apart from
the recurrent ionic pairing phenomenon, a notable
fact now raised in the case of CHSC with a charge
placed at the centre, is the formation of columns of
spherocylinders in hexagonal order in the planes
perpendicular to the directors (i.e. an hexagonal
columnar phase). This interesting event then poses
the questions (a) are such phases exclusive of the
mixture CHSC þ CHS (i.e. if they are absent in
systems of pure CHSC), and (b) is the hexagonal
ordering in ionic LC induced by the Coulomb inter-
action and/or is the phenomenon detected by the fact
of looking for the quasi-bidimensional (quasi-2D)
planes in the smectic phases? It is worth mentioning
that, to the best of our knowledge, an hexatic phase
has not been observed yet in simulations or theories of
charged or dipolar hard spherocylinders.

Motivated by the findings of these foregoing papers
on CHSC, in the present communication we have
proceeded to study a binary electroneutral mixture of
CHSC at low temperatures, in order to perform a more
exhaustive characterization of the phase diagram and
of the associated thermodynamics and structural
features, complementing the previous Monte Carlo
investigation of [7].

2. Model and simulation details

The liquid crystalline behaviour of an electroneutral
1:1 charged hard spherocylinder (CHSC) system is
studied using isobaric–isothermal Monte Carlo
(NPT-MC) computer simulations. The interaction
between a pair of particles, which contains both

a hard body contribution and the coulombic term, is
given by [15,16]

uij ¼ uhbij ðrij,!i,!j Þ þ
qiqj
Drij

, ð1Þ

where qi is the charge of the particle i, D is the dielectric
constant of the surrounding media, rij is the inter-
particle vector between the centre of mass of particles i
and j, rij¼ jrijj, and !i denotes the orientation of the
principal molecular axis of particle i. The term uhbij in
Equation (1) is the hard body contribution between a
pair of hard spherocylinders represented as

uhbij ðrij,!i,!j Þ ¼
1, if rij 2 Vexð!i,!j Þ,
0, if rij =2Vexð!i,!j Þ,

!
ð2Þ

where Vex is the excluded volume between two
particles.

We introduce reduced units to describe the different
thermodynamic states. Reduced temperature and pres-
sure, as well as packing fraction, are defined as:
T*¼ kTD!/(zþz#e

2), P*¼Pvp/(kT ), and #¼Nvp/V,
where k is the Boltzmann constant, T is the absolute
temperature, ! is the diameter of the particles, zi is
the valence of species i, e is the protonic charge,
N is the total number of particles, V is the volume of
the system, P is the pressure, and vp¼"!3/6þ"!2L/4
is the molecular volume of each particle.

The simulations are started using a face centred
cubic lattice as an initial configuration [3,4,7]. It is
possible to construct an almost cubic simulation box
by carefully choosing the number of replicas of the unit
cell in the three cartesian coordinates. In this work the
simulation box was designed for a number of N¼ 1020
spherocylinders [4]. Once the initial lattice is con-
structed, NPT-MC simulations are performed at low
pressures to obtain a low density isotropic state at a
given temperature. Further compression of this initial
isotropic state is done to obtain high density thermo-
dynamic states within the isotherm.

As in our previous work [7,14,17,18] coulombic
interactions are handled using the Wolf method
[19,20], which has also been proved in other works
by different authors to be in good agreement with MC
predictions for homogeneous systems using the stan-
dard Ewald summation [21–24]. Although there has
been some controversy in relation to the use of the
Wolf method, this is related to the expression for the
force in Molecular Dynamics studies [22–25], and not
with the expression for the potential energy, which is
the only requirement for MC studies.

The expression within the Wolf approach to
account for the potential energy is a shifted and
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damped potential that is given by the following
expression:

UðRcÞ ¼
1

2

XN

i¼1

X

j 6¼i
ðrij 5RcÞ

qiqjerfcð$rijÞ
rij

# qiqjerfcð$RcÞ
Rc

" #

# erfcð$RcÞ
2Rc

þ $

p1=2
XN

i¼1
q2i

 !

, ð3Þ

where Rc is the cut-off of the potential and $ is a
damping parameter that controls the range of the
effective potential. The first term on the right-hand
side of Equation (3) is the effective potential between a
pair of particles and the second term is a self-consistent
term. It has been shown in previous work that a single
pair of Rc and $ values are able to reproduce
thermodynamic and structural properties of a broad
number of charged systems ranging from simple
spherical electrolytes to charged liquid crystals
[7,14,17], when compared with the prediction made
by the Ewald method [15,16,26–28]. The value of the
Wolf parameters used are Rc¼ 0.5Lmin and $¼ 4.0/
Lmin, where Lmin is the shortest simulation box length.
A NPT MC cycle is defined as N trial displacements
supplemented with a trial change on the system
volume. In most of the simulations, between
1' 106# 2' 106 cycles are used to equilibrate the
system and usually the same number of cycles to collect
ensemble averages. Near to phase transitions, more
cycles are required to obtain reliable results. The
maximum allowed displacement, re-orientation and
change of volume are adjusted to reach acceptable
probabilities between 30–40%.

In order to detect the formation of mesophases,
different order parameters and distribution functions
may be used. The orientational order can be examined
from the second-rank Saupe order tensor Q, defined as
[1,29]:

Q ¼ 1

N

XN

i¼1

3

2
ûi ( ûi #

I

2

" #
, ð4Þ

where ûi is a unit vector along the molecular axis of
particle j, ( indicates the dyadic product, and I is the
second-rank unit tensor. Diagonalization of the tensor
produces three eigenvalues and their respective eigen-
vectors. The nematic order parameter S is defined as
the largest eigenvalue, and the corresponding eigen-
vector is often called the system director, n. The order
of the system can be monitored through the orienta-
tional correlation function g2(r), obtained as the
average value of the second-order Legendres’ poly-
nomial for the angle between a pair of particles [30].

In order to detect the formation of smectic phases,
the projection of the pair correlation function along
the director, gjj(rjj), is evaluated. This correlation
function provides information about the probability
of finding a molecule in cylindrical shells along the
director. The appearance of modulated peaks indicates
the formation of layers that characterize smectic
phases. The structure of the particles belonging to a
given layer can be monitored using the related projec-
tion of the pair correlation function perpendicular to
the director, g?(r?), which may help to identify the
arrangement of the particles in the plane of the layers.
Direct visualization of the order in different planes of
the system, specifically in the planes of the layers in
smectic phases, can be obtained by means of the
projection of the structure factor S?(q?) in the planes
of the layers themselves [14,31,32]. This is similar to
real scattering experiments, where different pat-
terns depending on the structure are obtained. The
structure factor is needed to recognize a possible
transition between liquid-like structure, that charac-
terizes smectic-A (SmA) phases, and hexatic-like
structure, typically of smectic-B (SmB) phases. The
structure factor is defined as

S?ðq?Þ ¼
1

N

X

n

X

m

exp {q? ) rnm
$ %

, ð5Þ

where q? is the projection of the wave number vector
in the plane perpendicular to the director and rnm is the
interparticle vector position. In a similar way, the
structure factors for different species, i.e. cation–cation
and cation–anion, are also useful to identify
the arrangement of the charges in the planes of the
layers. Finally, to support the information obtained by
the structure factor, we have calculated the hexagonal
bond orientational parameter, C6, which is defined as:

C6 ¼
&&PN#1

i¼1
PN

j4i pij expð{6%ijÞ
&&

PN#1
i¼1

PN
j4i pij

* +

, ð6Þ

where %ij is the angle between the vector rij joining the
centre of mass of the ith and jth molecules and a fixed
axis perpendicular to the director. The pre-factor pij,
simply restricts the summation only to the nearest
neighbour particles for a given particle, and is defined
in this work as

pij ¼
1, 1:105¼ rij 5¼ 1:75,

0, otherwise,

!
ð7Þ

where r?ij is the projection of the interparticle vector
position in the plane perpendicular to the director. This
parameter can take values in the range 0*C6* 1,
with C6¼ 1 being the case where the particles have a
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perfect hexagonal arrangement and C6¼ 0 in the
absence of such an ordering.

3. Results

In Table 1, the results for the packing fraction, #,
nematic order parameter, S, excess internal energy,
Uexc/NkT, and type of LC phase are presented for the
isotherm at T*¼ 0.2. The behaviour of the pressure,
P*, as a function of the packing fraction, #, is shown in
Figure 1. As a comparison, results for HSC [4], and for
CHSC at temperature T*¼ 0.5 [7] are also presented.
Upon compression starting from a low-density I state,
both an I–N and a N–SmA phase transition can be
observed. The former phase transition going from an
isotropic state (#¼ 0.414, S¼ 0.166) to a nematic state

(#¼ 0.434, S¼ 0.641), and the latter going from a
nematic state (#¼ 0.434, S¼ 0.641) to a smectic-A
phase (#¼ 0.480, S¼ 0.892). Snapshots of the different
LC phases observed at this temperature are presented in
Figure 2. The I–N phase transition can be easily
detected by means of the behaviour of the nematic
order, which is shown in Figure 3. In this figure,
a discontinuity of this parameter at the I–N phase
transition can be observed. This discontinuity is char-
acteristic of a first order phase transition. It is possible
to obtain further information analysing the orienta-
tional correlation function, g2(r). This correlation
function, depicted in Figure 4, has a fast decay to zero
for isotropic phases, and a non-zero limit value at long
distances for ordered phases. In the N phase, this limit
value is proportional to S2, i.e. g2(r!1) + S2 [3].
As reported in our previous work for CHSC [7], the
effect of the coulombic interactions is reflected in the
systematic lowering of the coexistence pressure with
respect to the non-coulombic case (see Figure 1).
Moreover, it is also observed at low temperatures that
the range of stability of the nematic phase also decreases
compared with CHSC at high temperatures and with
non-coulombic HSC. The effect of coulombic forces in
CHSC is to enhance the range of stability of the
isotropic phase compared with the non-coulombic HSC
case. However, this enhancement is reduced as the
temperature is decreased. This pattern has also been
observed in dipolar LC systems [9] and can be explained
as the consequence of the pairing of particles,
that reduces the effective aspect ratio of the cluster
of associated particles, destabilizing the nematic phase.

Table 1. NPT-MC simulation results for the pressure P*,
packing fraction #, order parameter S, excess internal energy
Uexc/NkT and type of liquid crystalline phase. Results for a
system of N¼1020 charged hard spherocylinders with L/!¼ 5
at a temperature of T*¼ 0.2.

P* # S #Uexc/NkT Phase

1.00 0.224 , 0.002 0.032 , 0.012 1.674 , 0.021 I
2.00 0.292 , 0.002 0.038 , 0.010 1.840 , 0.022 I
3.00 0.339 , 0.002 0.049 , 0.016 1.956 , 0.022 I
4.00 0.377 , 0.002 0.067 , 0.020 2.059 , 0.021 I
4.25 0.387 , 0.002 0.091 , 0.026 2.094 , 0.024 I
4.50 0.395 , 0.002 0.142 , 0.037 2.108 , 0.023 I
4.75 0.405 , 0.002 0.152 , 0.046 2.151 , 0.026 I
5.00 0.414 , 0.002 0.166 , 0.034 2.176 , 0.022 I
5.25 0.434 , 0.002 0.641 , 0.027 2.254 , 0.025 N
5.50 0.480 , 0.003 0.892 , 0.005 2.542 , 0.024 SmA
5.75 0.488 , 0.003 0.899 , 0.006 2.578 , 0.025 SmA
6.00 0.495 , 0.003 0.902 , 0.005 2.609 , 0.023 SmA
6.25 0.503 , 0.002 0.912 , 0.005 2.637 , 0.025 SmA
6.50 0.510 , 0.002 0.913 , 0.006 2.659 , 0.021 SmA
6.75 0.519 , 0.003 0.922 , 0.005 2.685 , 0.022 SmA
7.00 0.523 , 0.002 0.921 , 0.006 2.694 , 0.024 SmA
7.25 0.529 , 0.002 0.923 , 0.008 2.717 , 0.023 SmA
7.50 0.536 , 0.002 0.930 , 0.005 2.725 , 0.022 SmA
7.75 0.541 , 0.003 0.929 , 0.009 2.732 , 0.020 SmA
8.00 0.544 , 0.002 0.931 , 0.008 2.743 , 0.020 SmA
8.25 0.553 , 0.002 0.939 , 0.004 2.765 , 0.021 SmA
8.50 0.555 , 0.002 0.938 , 0.005 2.766 , 0.021 SmA
8.75 0.561 , 0.002 0.942 , 0.004 2.784 , 0.019 SmA
9.00 0.566 , 0.003 0.945 , 0.003 2.795 , 0.021 SmA
9.25 0.570 , 0.002 0.947 , 0.004 2.789 , 0.022 SmA
9.50 0.573 , 0.002 0.947 , 0.004 2.801 , 0.020 SmA
9.75 0.580 , 0.003 0.950 , 0.003 2.807 , 0.023 SmA
10.00 0.584 , 0.002 0.950 , 0.004 2.818 , 0.018 SmA
10.25 0.587 , 0.002 0.951 , 0.003 2.817 , 0.021 SmA
10.40 0.589 , 0.002 0.951 , 0.004 2.830 , 0.018 SmA
10.50 0.594 , 0.003 0.954 , 0.004 2.831 , 0.019 SmB
10.60 0.595 , 0.003 0.952 , 0.004 2.840 , 0.016 SmB
10.68 0.599 , 0.002 0.956 , 0.002 2.843 , 0.018 SmB
10.75 0.616 , 0.003 0.966 , 0.001 2.789 , 0.016 K
11.00 0.623 , 0.003 0.967 , 0.001 2.780 , 0.014 K

0.56 0.58 0.60 0.62
8.5

9.0

9.5

10.0

10.5

11.0

11.5

0.2 0.3 0.4 0.5 0.6
η

0

2

4

6

8

10

12

P* I (T* = 0.5)

N (T* = 0.5)
SmA (T* = 0.5)
I (T* = 0.2)
N (T* = 0.2)
SmA (T* = 0.2)
SmB (T* = 0.2)
K (T* = 0.2)

Figure 1. Pressure, P*, as a function of the packing fraction
for a system of 1020 CHSC of aspect ratio L/!¼ 5 obtained
by NPT-MC simulations. Open and shaded symbols corre-
spond to temperatures T*¼ 0.5 [7] and T*¼ 0.2, respectively.
The lines correspond to the HSC data reported by
McGrother et al. [4].
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To fully define the N–SmA phase transition, the
nematic order parameter, S and the orientational
correlation function are not enough, and additional
statistical functions are required to characterize the
longitudinal layer’s correlations, typical of smectic
phases. Two standard choices can be used: the smectic
order parameter, &, which is the first order Fourier
representation of the density along the direction of the
layers [33–35], and the projection of the pair correla-
tion function along the director, gjj(rjj). In this work,
the latter has been chosen and is given in Figure 5,
where we can see a clear formation of modulated peaks
produced by the layering of the system at high densities
in the smectic phases. The separation between neigh-
bour peaks is proportional to the layering spacing,
which is slightly higher than about 6!, i.e. slightly
higher than the total length of the particles. Pre-
transition layering in the N state can also be observed

in Figure 5. In order to characterize the smectic phases,
we have analysed the behaviour of the projection of the
pair correlation function perpendicular to the director,
g?(r?). This is shown in Figure 6, which clearly
indicates the presence of a SmA phase since the
correlation decays, with a lack of long-range order
for values of the pressure up to P*¼ 10.40. Analysing
the overall behaviour of the data presented in Figure 1,
it can be observed that reducing the temperature tends
to increase the range of stabilization of the SmA phase.
This behaviour is enhanced for the ion-pairing of the
central charges, increasing the alignment of the parti-
cles in layers. The same stabilization of the smectic
phase was observed for HSC with central longitudinal
dipoles [9].

The ion-pairing effect in the smectic phases is
interesting and requires further attention. Smectic
layers behave as quasi-2D systems, where different

Figure 2. Snapshots for different configurations for a system of 1020 CHSC of aspect ratio L/!¼ 5 at temperature T¼ 0.2
obtained by NPT-MC simulations. The configurations correspond to (a) the highest-density isotropic state (P*¼ 5.00), (b) the
nematic state (P*¼ 5.25), (c) the lowest-density smectic-A state (P*¼ 5.50), and (d) the highest-density smectic-A phase
(P*¼ 10.40).
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structured patterns appear. It is possible to observe a
transition between disorder and quasi-long range
order, characterized by a power-law decay of the
sixfold orientational correlations [31,36,37], signalling
the presence of an hexatic ordering, i.e. the possible
formation of a smectic-B (SmB) phase. This hexatic
phase appears as an intermediate phase between a
disordered-liquid and an hexagonal crystalline phase,
and has been observed in experiments in thermotropic
LC systems [38–41], LC films [41–43], colloidal LC
systems [44,45], and chiral rod-like viruses [46], to give
some examples. In molecular simulation the hexatic

behaviour in smectic phases has also been observed in
parallel soft spherocylinders [47,48], in a bead necklace
model [49], and in Gay–Berne particles [50–54].
However, the last system is still a matter of
debate [55]. Since metastable hexatic phases can be
observed in strict 2D systems [32], a proper size-effects
study is required to be implemented in order to

0 1 2 3 4 5 6 7 8 9
r⊥/ σ
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I (high)
N
SmA (low)
SmA (high)
SmB
K

g ⊥
(r
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)

Figure 6. Projection of the radial distribution function
perpendicular to the director, g?(r?), for a system of 1020
CHSC of aspect ratio L/!¼ 5 at temperature T*¼ 0.2
obtained by NPT-MC simulations. The data depicted are
for the highest-density isotropic state (P*¼ 5.00), the
nematic state (P*¼ 5.25), the lowest-density smectic-A
state (P*¼ 5.50), the highest-density smectic-A phase
(P*¼ 10.40), the hexatic phase (P*¼ 10.60), and the
lowest-density crystal state (P*¼ 10.75).
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Figure 5. Projection of the radial distribution function
parallel to the director, gjj(rjj), for a system of 1020 CHSC
of aspect ratio L/!¼ 5 at temperature T*¼ 0.2 obtained by
NPT-MC simulations. The data depicted are for the highest-
density isotropic state (P*¼ 5.00), the nematic state
(P*¼ 5.25), the lowest-density smectic-A state (P*¼ 5.50),
and the highest-density smectic-A phase (P*¼ 10.40).
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Figure 4. The orientational correlation function, g2(r), for a
system of 1020 CHSC of aspect ratio L/!¼ 5 at temperature
T*¼ 0.2 obtained by NPT-MC simulations. The data
depicted are for the highest-density isotropic state
(P*¼ 5.00), the nematic state (P*¼ 5.25), the lowest-density
smectic-A state (P*¼ 5.50), and the highest-density smectic-
A phase (P*¼ 10.40).
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Figure 3. Nematic order parameter, S, as a function of
the pressure, P*, for a system of 1020 CHSC of aspect ratio
L/!¼ 5 at temperature T*¼ 0.2 obtained by NPT-MC
simulations.
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Figure 7. Snapshots for different high-density layered states, and the projections of the total, S?(q?), and charge–charge,
S?(q?)þþ, structure factors at temperature T*¼ 0.2. The figures correspond to (a) the highest-density smectic-A state
(P*¼ 10.40), (b) the lowest-density hexatic state (P*¼ 10.50), (c) the highest-density hexatic state (P*¼ 10.68), and (d) the
lowest-density crystal state (P*¼ 10.75).
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determine the stability of the SmB phase observed for
the CHSC system studied here.

We have analysed the behaviour of the smectic
phases in CHSC for further compression of the system
at the same isotherm of T*¼ 0.2 to investigate whether
or not this system presents hexatic ordering. For this
purpose, we have calculated the projection of the
structure factor S?(q?) in the planes of the layers,
which is close to the scattering experiments in real
systems, and by calculating the hexagonal bond
orientational order-parameter, C6. The projections of
the structure factor, S?(q?), the related S?,þþ(q?,þþ),
and the snapshots for selected layers for different
smectic and crystalline phases are shown in Figure 7.
In Table 2 and in Figure 8, we present the values for
the hexagonal bond-orientational order parameter as a
function of the pressure. At high pressure (P*" 10.75)
the system tends to form as a crystalline (K) structure,
where the well-defined Bragg’s peaks typical of hexag-
onal order can be observed. The crystalline structure is
also given by g?(r?) (see Figure 6), where the long
range positional order of the particles in the layers is
evident. For pressures in the range 10.50*P** 10.68,
we have observed that the hexagonal Bragg’s peaks
disappear, but the hexagonal-like order is still present.
This is typical behaviour of hexatic ordering, where
the long-range translational order is lost, but the
long-range orientational order remains. However,
it’s very well known that in 2D the effect of the fluc-
tuations are enhanced compared to the 3D case,
and further finite-size effects analysis will be
needed in order to confirm that the system is not in
a metastable region [32]. As can be seen in Table 2,
for the isotherm of T*¼ 0.5 the hexatic ordering was
not observed.

4. Conclusions

In this work we have presented the study at low
temperatures for CHSC of aspect ratio L/!¼ 5 using
NPT-MC simulations. As observed in our previous
work, coulombic forces enhance the range of stability
of both the I and SmA phases, in a similar way as
observed for HSC with central longitudinal dipoles [9]
and CHSC at temperatures T*" 0.5 [7]. It has also
been observed that the range of stability of the N phase
is reduced considerably, which indicates the presence
of a triple point at lower temperatures. A further free
energy analysis for this issue is required in order to
trace the phase diagram, using, for example, the
Gibbs–Duhem technique [5,56–58]. The same destabi-
lization of the N phase was also observed in dipolar
HSC, where the effect of dipole pairing decreases the
aspect ratio of the cluster of associating particles,
bearing in mind that for short HSC (L/!* 3.2) the
N phase is not observed. At high pressure, between
the SmA and K phases, we have detected the formation
of a smectic phase with hexatic order (SmB phase) in
the planes of the layers. This effect has been detected
analysing the projection of the structure factor in these
planes, where the Bragg’s peaks in the K phases tend to
disappear (loss of translational order), and the
hexagonal-like order still remains. However, a further
analysis is required in order to determine the stability
of this phase, since the system used in this study is
not large enough to give a definitive conclusion.
Finally, another effect that deserves to be studied in
detail is the role that could be played by the flexibility
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SmA (T* = 0.2)
SmB (T* = 0.2)
K (T* = 0.2)

Figure 8. Hexagonal bond-orientational order parameter,
C6 as a function of the pressure, P*, for a system of 1020
CHSC of aspect ratio L/!¼ 5 at temperature T*¼ 0.2
obtained by NPT-MC simulations.

Table 2. Hexagonal bond-orientational order parameter,
C6, calculated for the CHSC system in layered phases, as a
function of the reduced pressure, P*, at temperatures
T*¼ 0.2 and T*¼ 0.5.

P* C6 (T*¼ 0.2) C6 (T*¼ 0.5)

6.75 0.032 , 0.017 0.029 , 0.015
7.50 0.034 , 0.018 0.034 , 0.018
8.25 0.036 , 0.017 0.037 , 0.022
9.00 0.046 , 0.025 0.042 , 0.023
9.50 0.050 , 0.025 0.055 , 0.028
10.00 0.076 , 0.032 0.065 , 0.035
10.40 0.073 , 0.034 0.110 , 0.050
10.50 0.136 , 0.069 0.086 , 0.037
10.60 0.187 , 0.060 0.745 , 0.020
10.68 0.285 , 0.050 0.766 , 0.015
10.75 0.643 , 0.026 0.765 , 0.016
11.00 0.705 , 0.021 0.773 , 0.015

34 G. Jiménez-Serratos et al.

D
ow

nl
oa

de
d 

by
 [ 

] a
t 0

1:
40

 2
7 

A
pr

il 
20

12
 



of liquid crystal molecules on the stability of the
phases, as previously reported by several authors
[12,59–61]. Flexible tails in hard rod-like particles
tend to enhance the stability of smectic and crystalline
phases, suppressing the nematic phase [12]. However,
the addition of a terminal dipole at the end cap
(opposite the flexible tail) does not suppress any of the
LC phases observed in HSC. Primitive models of
flexible LC systems could be investigated using CHSC
molecules with flexible tails as an initial representation,
to compare with real rod-like ionic liquid crystals.
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