
DQ
2
S - A Framework for Data Quality-Aware Information

Management

Sandra de F. Mendes Sampaio
a
, Chao Dong

b
 and Pedro Sampaio

c1

a School of Computer Science, The University of Manchester, Oxford Road, Manchester, UK, M13 9PL,
s.sampaio@manchester.ac.uk

b Innovation Technology Department – China Youth Development Foundation - 51 Wangjing West Road, Chaoyang
District, Beijing, 100102, P.R.China

dongchao@cydf.org.cn
c Manchester Business School, The University of Manchester, Booth Street West, Manchester M15 6PB

p.sampaio@manchester.ac.uk

Abstract

This paper describes the design and implementation of the Data Quality Query System

(DQ2S), a query processing framework and tool incorporating data quality profiling

functionality in the processing of queries involving quality-aware query language

extensions. DQ2S supports the combination of performance and quality-oriented query

optimizations, and a query processing platform that enables advanced data profiling queries

to be formulated based on well established query language constructs, often used to interact

with relational database management systems. DQ2S encompasses a declarative query

language and a data model that provides users with the capability to express constraints on

the quality of query results as well as query quality-related information; a set of algebraic
operators for manipulating data quality-related information, and optimization heuristics.

The proposed query language and algebra represent seamless extensions to SQL and

relational database engines, respectively. The constructs of the proposed data model are

implemented at the user’s view level and are internally mapped into relational model

constructs. The quality-aware extensions and features are extremely useful when users need

to assess the quality of relational data sets and define quality constraints for acceptable data

prior to using candidate data sources in decision support systems and conducting big data

analytical tasks.

Keywords: Information Management, Data Quality, Query Language Extensions, Data Profiling, Decision

Support Systems, Big Data.

1. Introduction

According to IDC, an explosive growth in the demand for “Big Data” analytics is

predicted as the digital universe continues to expand (Gantz & Reinsel, 2012). To capture

the opportunities arising from big data, data quality issues need to be addressed to enable

the execution of the analytical tasks and tools to support users in unlocking the valuable

knowledge patterns available from querying large data sets. Therefore, research in data

quality including traditional techniques for data cleansing, assessment and measurement

of data quality need to be adapted to this new trend.

The challenges that big data imposes over data quality research and practice include not

only the fact that, if data is truly “big”, then traditional main memory methods become

unsuitable for use, but also the fact that the data being used is not well known to its users.

1
 Corresponding Author

The latter can be addressed by profiling the data to reveal errors and guide data cleansing

or data repairing processes. The result of data profiling is the generation of metadata that

can also be used to measure the quality of a data set against previously established

constraints and data quality benchmarks. While basic data profiling can be performed by

simply eye-balling database tables, more advanced data profiling can be performed by

key-word-searching in data sets or using dedicated data profiling tools (Naumann, 2014).

To facilitate the process of profiling and analysing large data sets, this paper proposes a

comprehensive framework for combining data management with data profiling for data

cleansing, by allowing users to seamlessly model and store quality-related data properties

in the database and associate them with their respective data; this information is used to

profile the data in preparation for data cleansing, considering multiple data quality

dimensions. The framework provides the following advantages:

• Allows users to query not only data, but also its quality-related information and

generate a profile. This is achieved by the use of the DQ
2
L query language, a

seamless extension to SQL, and an interface to the database which hides from

users the complexities related to the presence of the stored quality-related

information and data profiling algorithms. Both language and interface provide an

intuitive means of associating data with quality-related data via an extended

relational data model whose constructs are internally mapped into relational

model constructs.

• Allows users to request the quality of data to be measured according to an

extensible set of data profiling algorithms applied over the available quality-

related information. These algorithms represent an extension to the database

engine, but are dedicated to the calculation of data quality scores.

• Allows users to apply filters when querying the data, based on both the stored

quality-related information and on data quality scores calculated during query

processing.

• Provides a complementary functionality for information quality management that

can be bundled as a seamless architectural extension to mainstream database

management systems.

Regarding the information quality management perspective adopted by the framework

discussed in this paper, latest research by Illari (Illari, 2014), whilst acknowledging that

information quality (IQ) is generally defined as information that is 'fit for purpose', also

indicates that IQ researchers agree that several dimensions of IQ, and even some aspects

of IQ itself, are purpose-independent. Therefore, in our approach, we pursue to represent

a set of IQ dimensions that are widely used across several application domains and which

can be effectively and efficiently incorporated into an automated information

management framework/system. Both perspectives are complementary and are often

observed in practice where domain independent and domain specific tools and techniques

are applied towards tackling complex data quality problems.

The key contribution arising from our approach is the capability to combine data

management and advanced data quality profiling allowing users to profile their data by

having data quality scores calculated during query processing. Users have control not

only over the data profiling metadata that is generated, but also over how the metadata is

generated. The framework also allows individual users to set their own quality constraints

while querying the data, without imposing the same constraints to all users. These

features are extremely useful when users need to assess the quality of relational data sets

and define quality filters for acceptable data and a methodology for quality management

that allows information quality to be queried and measured for different purposes prior to

conducting big data analytical tasks (Floridi, 2014).

The paper also contributes to the literature by providing a comprehensive description of

the key design decisions underpinning the framework, including data quality dimensions,

high level query language extensions, query processing architecture, algebraic operators,

mapping from query language constructs to algebraic query plans, assessment of query

formulation simplicity of using the proposed extension compared to developing the

queries in plain SQL. Other contributions of this paper include the following:

• Insights on the development of heuristics for optimizing query execution plans in

the presence of algorithms for measuring data quality.

• A review of the main data quality dimensions and their respective measurement

techniques.

• A discussion of three information quality management implementation scenarios

using DQ
2
S in the context of an e-Business application.

• A preliminary empirical evaluation of the framework, illustrating the elapsed time

of query plans taking into account query optimization actions.

The paper is organized as follows: Section 2 describes background on a number of data

quality dimensions and their respective measurement techniques. The measurement

formulas presented in this section have an objective nature and can be applied in the

context of a variety of application domains. They are used as basis for the DQ
2
S data

quality profiling algorithms. Section 3 describes the design of the proposed query

language, DQ
2
L, which is accompanied by a number of query examples and illustrations

of the main features of the data quality model. Section 4 describes the architecture of

DQ
2
S and provides details on its query processing, illustrating the internal query

representations. Section 5 discusses query optimization and how it can be extended with

heuristics based on data profiling algorithms to measure data quality. Section 6 discusses

the empirical evaluation of the framework. Section 7 describes related work and Section

8 summarises the paper and discusses future work.

2. Extending the Relational Model to Support Data Quality

Measurement

This section describes the challenges of expressing and storing quality-related

information and introduces the Data Quality Model (DQM), which enables users to

represent and store quality-related properties associated with relational data.

2.1 The Quality Relation

The success of extensions to the relational model and the SQL language contemplating

features and functionalities such as objects (Stonebraker & Moore, 1996), rules (Widom

& Ceri, 1996), XML (Scardina, Chang, & Wang, 2004) and multimedia capabilities

(Greenwald, Stackowiak, & Stern, 2013) among others has shown that piecemeal

extensions to well known and widely accepted technologies often have better

acceptability than completely new approaches developed from scratch.

Based on this observation, we follow the extension approach and propose a small number

of features and functionalities to be seamlessly incorporated into the relational model,

aimed at facilitating the storage, retrieval and manipulation of data with its associated

quality-related information. The proposed constructs reflect the need for additional

structures to support functionality related to the management of quality-related data

properties. Therefore, as originally proposed in (Wang, Reddy, & Kon, 1995), special

tables and attributes were designed to allow automatic association between data and its

quality and are visible at the view level of the classical ANSI-SPARC architecture.

However, these structures are mapped into standard relational model structures at the

conceptual and physical levels.

The special tables are called Quality Relations (QRs) and are associated with the

relational tables via attributes that have the form of a pair of values (<attribute_value,

FK_QR>), where the first element of the pair represents the value of the attribute, and the

second element represents a foreign key to a QR tuple in which quality information

related to the attribute value is stored. The foreign key element is called quality key.

Note that each element of the pair is atomic and associated with a domain of values.

When an attribute of the table is not associated with a QR, i.e., an attribute for which

there is no available quality information, the value of FK_QR is NULL. All attributes in

both relational tables and QRs share this format. Attributes in a QR represent properties

associated with a quality dimension. Note, however, that at the conceptual and physical

levels of a database system, all tables and attributes are implemented with traditional

relational constructs. Figure 2.1 shows properties related to the timeliness data quality

dimension stored in the QR associated with attribute price of relation Product via quality

key price_QID. This relationship enables navigation from a price value to its timeliness

information. Also note that each tuple in relation Product has its price instance associated

with a tuple in the QR; the QR attributes represent the available timeliness information

for a price instance. Similarly, attributes of a QR can be further associated with other

QRs.

2.2 Modelling Dimensions of Data Quality using Quality Relations

This section describes how classical data quality dimensions: accuracy, completeness,

timeliness and reputation described in the data quality literature (Olson, 2003), (Wang,

Ziad, & Lee, 2001) are represented in the relational data model extension implemented in

DQ
2
S. The modelled dimensions were chosen due to their general applicability across

different data quality applications in domains such as e-Business, e-Science and

Geographical Information Systems. Along with the dimensions, a design for the related

QRs is provided as an example in the context of an e-Business application.

2.2.1 Accuracy Dimension

While a recent data quality standard has been published towards defining accuracy and

other quality dimensions in the domain of geographical information systems (Standard,

2013), previous work on the accuracy dimension of quality (e.g., (Han, Jiang, & Li,

2010) and (Han, Jiang, & Song, 2008)) focuses on the development of approaches for

assessing and quantifying accuracy, and earlier initial work is dedicated to defining

accuracy in a general context (Redman, 1997). Earlier general definitions are still

applicable across a number of applications. An example of a general definition is the one

introduced in (Redman, 1997), where accuracy is defined as the proximity of a value v to

a value v’ considered as correct in both content and form. The work in (Mecella et al.,

2002) further distinguishes between syntactic accuracy and semantic accuracy, the former

being defined as the closeness between v and v’ where v’ is the value considered

syntactically correct; and the latter being defined as the closeness between v and v’ where

v’ is the value considered semantically correct, i.e., a value that is consistent with respect

to the real world.

While it is reasonably straightforward to check the syntactic accuracy of a data unit, it is

often not feasible to check its semantic accuracy. For example, to syntactically validate

the name of an English person, it may be enough to check the name against a dictionary

of common English names. However, to semantically validate the name of an English

person, verification using data sources that contain information about the person may be

necessary, since the terms of comparison have to be derived from the real world (Mecella

et al., 2002). For example, if v = Juhn and v’ = John than v is low in syntactic accuracy

because its value is not acceptable according to a dictionary of English names. Regarding

semantic accuracy, if v = Robert and v' = John, then v has low semantic accuracy

because, even though its syntactical value is acceptable, the person whose name is stored

as Robert actually represents a person named John in the real world. Due to the feasibility

challenges in processing semantic data accuracy this work focuses on syntactic accuracy.

Two methods are typically used to measure syntactic accuracy, described as follows.

2.2.1.1 The Edit Distance Method

(Batini & Scannapieco, 2006) suggest the comparison function EditDistance to evaluate

the closeness between the actual value v and the expected value v’, by calculating the

number of steps (i.e., insertions, and/or deletions and/or replacements of digits or

characters) for converting v into v’. For example, if the value for attribute name of the

schema element Employee is v = John Smth and the expected value is v’ = John Smith,

then EditDistance(v, v’) = 1, since only one step is needed to convert v into v’, namely the

insertion of ‘i’ between ‘m’ and ‘t’.

(Cong, Fan, Geerts, Jia, & Ma, 2007) further suggests the use of the ratio between the

edit distance of v and v’ and the maximum length between v and v’, to measure the

similarity of v and v’ enforcing the idea that longer strings with one-character difference

between v and v’ are closer than shorter strings with the same characteristic. The ratio is a

value between 0 and 1, and the higher this ratio, the more expensive it is to convert v into

v’. Thus, the accuracy quality can be calculated using Formula 1, where the |v| and |v’|

represent the number of characters in the value held in v and in the value held in v’,

respectively.

Accuracy(v) = 1 – [EditDistance(v,v’) / max(|v|,|v’|)]

 (1)

2.2.1.2 The Boolean Method

Unlike the Edit Distance Method, the Boolean Method measures accuracy with only two

values as possible outcome: yes or no, representing accurate and inaccurate, respectively

(Batini & Scannapieco, 2006), which can also be represented as 1 or 0. If a value is

contained in its corresponding reference value domain, then it can be considered as

syntactically accurate (i.e., yes) otherwise, it will be deemed as inaccurate (i.e., no)

(Batini & Scannapieco, 2006). Using the previous example, the name ‘John Smth’ is

considered as to be inaccurate. Thus, in the Boolean Method, accuracy can be expressed

as shown in Formula 2, where v’ represents an element in the relevant reference

dictionary.

Accuracy(v) = 1, if v = v’

 OR

Accuracy(v) = 0, if v <> v’
(2)

It is worth pointing out that different users have different concerns about data accuracy.

For instance, a user may be more concerned with whether a data unit is accurate or not,

rather than how many steps should be taken to improve the accuracy of the data unit. For

such a user, the Boolean method is more suitable. Another user may be interested in not

only detecting inaccurate data units, but also improving their accuracy, preferring in this

case the Edit Distance Method. The requirement for developing data quality frameworks

that support users with different information production and consumption purposes

relating to the same data set is further discussed in (Floridi, 2014).

The need for checking the accuracy of data values has raised the question of how these

checks can be performed efficiently. Most commercial RDBMSs provide enforcing

mechanisms for their business rules for checks to be carried out when data is entered into

or updated in the database, for preventing invalid data. These enforcing mechanisms are

typically implemented as functions stored in the database or as application programs

running on the client side accessing local or remote sources of domain information.

Therefore, for the accuracy dimension, there is no need to store quality related

information in a QR.

2.2.2 Completeness Dimension

Completeness, together with accuracy and timeliness are often regarded as the three most

used quality dimensions in specific application domains such as in Public Health

Information Systems (Chen, Hailey, Wang, & Yu, 2014). While context-dependent

definitions for the completeness dimension of quality can be found in (Biswas, Naumann,

& Qiu, 2006), (Orme, Yao, & Etzkorn, 2007), (Tomic et al., 2015) and (Sebastian-

Coleman, 2013), a generic definition of completeness, proposed in (Pipino, Lee, & Wang,

2002), is “the extent to which data are of sufficient breadth, depth, and scope for the task

at hand”. (Pipino, Lee, & Wang, 2002) also suggest that there are three main different

types of completeness that can be measured by calculating the ratio between the number

of incomplete items and the overall number of items, and subtracting this result from 1.

The three types are described as follows:

• Schema completeness: At the most abstract level, completeness is the degree to

which the properties of data (e.g. entities and attributes) are not missing from its

associated schema.

• Column completeness: At the data level, completeness is the measure of the missing

values for a specific property or column in a table. In the context of the relational

model, it is also known as attribute completeness.

• Population completeness: This type of completeness represents the degree of

missing values relative to a reference population. For example, if a column should

contain at least one occurrence for each of the 50 states of the USA, but it contains

only 43 states, then we have population incompleteness.

When assessing completeness of relational data, the semantics of NULL values are

important and should be taken into consideration. A NULL value typically indicates a

missing value; however, it is critical to investigate the reason why a value is missing

before assessing completeness. A value may be missing due to any of the following three

reasons (Atzeni, Batini, & Antonellis, 1993): (i) The value does not exist; (ii) The value

exists, but is not available; and (iii) It is unknown whether the value exists. Cases (i) and

(iii) should not be deemed as cases of incompleteness, since, in case (i), the value does

not exist in the real world, and, in case (iii), the existence of the value is not known. Case

(ii), however, is a case of incompleteness. For example, a NULL value for the mandatory

attribute date of birth in relation Employee is a case of incompleteness since every

employee must have a date of birth; thus, incompleteness is tenable for mandatory

attributes. However, for non-mandatory attributes, such as e-mail address, cases (i) or (iii)

may apply.

In addition, (Batini & Scannapieco, 2006) suggest that the following two assumptions

should also be taken into account when assessing completeness of relational data: the

closed world assumption (CWA) and the open world assumption (OWA). The CWA

states that the values present in a relation represent all facts of the real world, i.e., the

relation is population-complete; the OWA assumes that values in a relation are not able to

represent all of the facts of the real world. By combining the semantics of NULL values

with the CWA and OWA assumptions, it is possible to derive two models for the

assessment of completeness, described as follows (Batini & Scannapieco, 2006).

• OWA Assumption without NULL Values: In this model, a reference data set

containing all real world entities is compared against the relation being assessed, and

the measure of completeness can be calculated by the ratio between the number of

tuples that are present in the relation and the total number of tuples in the reference

data set. In other words, the reference relation can be the complete relation R.

• CWA Assumption with NULL Values: This model assumes that the relation on focus

is population-complete, i.e. there are no entities in the real world that are not present

in the relation. However, due to presence of NULL values, other types of

completeness are considered, and further classified regarding different data

properties, described as follows:

• Value Completeness: takes into consideration the presence or absence of

value for an attribute. If an attribute value is not NULL, then it is complete.

Otherwise, it is incomplete.

• Tuple Completeness: considers a tuple as complete, if all of its fields are

complete (value-complete). It can, therefore, be measured by the ratio

between the number of non- NULL values in a tuple and the overall number of

values in this tuple.

• Relation Completeness: it considers the presence of non-NULL values in an

entire relation. It can, therefore be measured by the ratio between the number

of non-NULL values in the relation and the overall number of the values in the

relation.

Assessment of schema and population completeness, as well as adoption of the OWA

model prescribes the use of a reference data set against which the relation being assessed

is to be compared. However, in application domains such as e-Business, such reference

data sets are not always available and access to and integration of a potentially large

number of external sources may be required. As the access and integration of a number of

data sources is out of the scope of this research, we focus on the CWA with NULL Values

Model for the assessment of tuple and relation completeness.

A possible implementation of the CWA with NULL values approach involves the

automatic and periodic counting of non-NULL values and the saving of that in a

histogram, rather than frequent counting and updating whenever information about

completeness is needed, which can incur high maintenance costs. Therefore, for the

completeness dimension, there is no need to store quality related information in a QR,

except for the semantics behind the presence of a NULL value, which can impact on the

completeness score.

2.2.3 Timeliness Dimension

The timeliness data quality dimension has grown in importance due to the widespread

adoption of real-time information systems and large-scale sensor data management

applications (Qin, Han, Mehrotra, & Venkatasubramanian, 2014). Work on the timeliness

dimension of data quality has focused on the analysis of processes involved in the

implementation of information services to understand their dependences and impact on

the timeliness of the information provided (e.g., (Aktaş & Karğin, 2011) and (Yom-Tov

& Diaz, 2011)), earlier work has focused on defining timeliness for use in broader

contexts. A general definition can be found in (Ballou, Wang, Pazer, & Tayi, 1998)

where timeliness is defined as the degree to which data is timely enough for its intended

use. For instance, the data of a Sales Company will present low timeliness if the various

branches of the company fail to record the latest regional sales information in time for a

quarterly meeting. Moreover, in different application domains data sets can vary

significantly in their update frequency. For example, a weekly update frequency for the

prices displayed in an e-Shop comparison engine will usually satisfy the vast majority of

shoppers; whilst for an investor willing to buy stocks, a one-hour update frequency will

be unacceptably long, incurring low timeliness quality.

(Pernici & Scannapieco, 2003) and (Bouzeghoub & Peralta, 2004) have divided data into

two main categories regarding update frequency: (i) Static data, defined as data which

will not be updated during its lifecycle, for example data representing mathematical

formulas, planet names, continent names, etc.; and (ii) Dynamic data, defined as data

which has the possibility of being updated during its lifecycle. The update frequency of

dynamic data can be user defined or can occur randomly. Considering update time

intervals, dynamic data can be further divided into two main categories: (ii.a) Seldom-

update data, defined as data considered to have a low update frequency (e.g., yearly or

monthly), such as customers’ home addresses and telephone numbers; and (ii.b)

Frequent-update data, defined as data considered to have a high update frequency (every

minute or second), such as sensor data from weather stations. For static data, a measure

of timeliness may not be relevant in the context of many applications, since it is known

that static data do not become outdated. In the design phase, when selecting which

attributes are relevant for timeliness, only dynamic attributes may be considered.

(Ballou, Wang, Pazer, & Tayi, 1998) provide formulas to measure the timeliness of data,

based on the concepts of currency and volatility, described as follows: Currency is

defined as the age of data when it is delivered to the user. It is dependent upon three key

factors: (i) the time when the data is delivered to the user as query results (delivery time),

(ii) the time when the data was entered or modified in the database (last update time), and

(iii) how old the data was when it was entered into the system (age). Based on the

measurement formula proposed in (Ballou, Wang, Pazer, & Tayi, 1998), currency can be

formally described as shown in Formula 3, where the currency of a unit of data v is a

function of its delivery and last update times, and its age.

Currency(v) = DeliveryTime(v) – LastUpdateTime(v) + Age(v)

(3)

Volatility is defined as the length of time during which the data remains valid. It is also

dependent upon three key factors: (i) the time when the data expires or becomes invalid

(expiry time), (ii) the last update time of data, and (iii) the age of the data. Volatility can

be formally defined as shown in Formula 4, where the volatility of a unit of data v is a

function of its expiry and last update times, and its age.

Volatility(v) = ExpiryTime(v) – LastUpdateTime(v) + Age(v)

(4)

Based on the definitions for currency and volatility, timeliness of a data unit v can be

formally defined as shown in Formula 5.

Timeliness(v,s) = {max[(1 – Currency(v)/Volatility(v)), 0]}

s

(5)

Exponent s in Formula 5 is a parameter that allows control of the sensitivity of timeliness

to the currency-volatility ratio, and its value should be chosen depending on context. For

high volatility the ratio is large, while for low volatility the ratio is small; furthermore, as

the ratio increases, timeliness can be slightly (e.g., s = 0.5) or significantly (e.g., s = 2)

affected, or neither (e.g., s = 1). To be able to measure the timeliness of a given unit of

data using the formulas described above, it is necessary to store values for each of the

elements (quality factors) in the formulas, namely last update time, expiry time and age,

for that data unit. As quality factor delivery time has its value recorded only on the event

of the delivery of the data unit to a user, its value will differ from event to event,

therefore it should not be stored. The storage of timeliness information in relational

databases has been discussed in more detail in (Dong, Sampaio, & Sampaio, 2006),

where the concept of QR is introduced as a mechanism for storing quality information.

For example, in relation Product(product_ID, name, category, price) attribute

price is a dynamic data unit, as its value can change frequently over time. Attributes

name and category can be deemed as static, since the value for each will not change

frequently over time. As illustrated in Figure 2.1, timeliness related information is stored

in the QR associated with attribute price via quality key price_QID, which enables

navigation from a price value to its timeliness information.

Figure 2.1: A QR for the timeliness of attribute price in relation Product.

Product

<product_ID,nil> <name,nil> <description,nil> <price,price_QID>

<001,nil> <Family100,nil> <Basic,nil> <399,101>

<002,nil> <Family200,nil> <Advanced,nil> <599,102>

QRef_Timeliness_price

<price_QID,nil> <lastUpdateTime,nil> <expiryTime,nil> <age,nil>

<101,nil> <2013-10-01 12:00:00,nil> <2013-12-01 12:00:00,nil> <6:00:00,nil>

<102,nil> <2013-09-01 12:00:00,nil> <2013-11-01 12:00:00,nil> <9:00:00,nil>

2.2.4 Reputation Dimension

The reputation dimension of data quality was first defined in (Wang & Strong, 1996).

This dimension received attention in the context of Healthcare (Deursena, Kostera, &

Petkovica, 2008), Science (Gamble & Goble, 2011) and Web applications (Barbagallo,

Cappiello, Francalanci, & Matera, 2010), (Peer, Vosgerau, & Acquisti, 2014). A broad

definition is one that focuses on the reputation of data sources, indicating whether a data

source is of high standing. Usually, long-established data sources have a higher

reputation. For instance, stock information from the official NASDAQ website may have

a higher reputation than the stock information from a local newspaper website.

There is as yet no widely accepted measurement mechanism for reputation in the

literature, due to its highly subjective nature. However, since the notion of reputation is

mainly based on users’ experience accessing data sources, we have adapted the work

discussed in (H. Wang, Yang, Zhao, & Gao, 2006), which proposes measuring the

reputation of a data source using users’ experience, expressed through an arbitrary

number of data source reputation-related attributes, such as accessibility and reliability.

As an example, Figure 2.2 shows instances of a relation associated with a data source

(represented as the URL from which each instance was obtained), via a QR, and the data

source's reputation-related attributes, which enable the calculation of the reputation for

that data source.

Weights can be associated with each reputation-related attribute, to represent its relative

level of importance among other reputation-related attributes. Each attribute and its

weight have to be agreed on by the database administrators, data domain experts and end

users upon metadata creation. Associated with each reputation-related attribute in the QR

in Figure 2.2 is a score computed upon metadata creation. The computation is based on

aggregating individual measures for each pair (data_source, reputation_attribute)

submitted by end users of the data sources, since they have experience accessing the

fitness for use of each data source.

As any number of end users may submit a score, an aggregate function such as average

may be used to calculate an aggregate of the available scores per pair, as shown in

Formula 6, where Score_Attr(s,a) denotes the overall score for the reputation attribute

a, calculated by averaging all available scores for that attribute (score[a,j]), submitted

by a number (m) of users considering data source s. In other words, the score of a

particular attribute is computed as the average of a number of ratings submitted by users

of a given data source. A domain [0, 1] can be given to the users of the data source for

expressing their ratings or existing ratings have to be mapped in terms of that domain,

where 1 represents the highest quality level and 0 represents the lowest.

Finally, the reputation measurement for a data source can be obtained by computing the

weighted sum of the aggregated scores for each attribute as shown in Formula 7, where s

denotes the data source whose reputation is being calculated, Weight[a] denotes the

weight assigned to each attribute to reflect its importance among the other reputation

attributes, Score_Attr[s,a] denotes the overall score for each attribute considering data

source s, as described in Formula 6, and n denotes the number of attributes.
 m

Score_Attr(s,a) =

 score[a,j] / m

 j=1

(6)

 n

Reputation(s) =

 Weight[a] * Score_Attr[s,a]

 a=1
 (7)

The example in Figure 2.2 illustrates a QR storing information about the data sources

from which values for attributes part_price and quantity_available in relation

Part_Supply were obtained. In this example, the used reputation attributes are the level

of accessibility and reliability of the data sources according to the users of these sources.

The stored scores represent an aggregation of all scores for each attribute submitted by

users, as suggested in Formula 6. Using the scores, the reputation quality for the sources

described in the QR can be calculated. Note that more than one instance can be associated

with the same data source. The quality of the data source from which an instance was

obtained indirectly reflects the quality of that instance, since a user may choose to discard

an attribute value if it was retrieved from an unreliable data source, and users can discard

a data source and choose to find another one, depending on its reputation.

2.3 Impact of Extensions on Integrity Constraints

In this section, the following rules are proposed to support the relational integrity

constraints in the presence of the extensions described in the previous sections.

• Presence of NULL Values in QRs: NULL values for the quality factors mean that

quality information is currently unavailable or it is unknown, rather than low quality.

For instance, a NULL value for a reputation attribute indicates absence of input from

users rather than a low quality score.

Part_Supply

<part_ID,nil> <supplier_ID,nil> <part_price,source_QID> <quantity_available,source_QID>

<201,nil> <301,nil> <189.99,01> <505,01>

<202,nil> <301,nil> <299.99,02> <467,02>

QRef_Reputation_Part_Supply

<source_QID,nil> <description,nil> <accessibility,nil> <reliability,nil>

<01,nil> <www.alphacomputers.com,nil> <0.5,nil> <0.5,nil>

<02,nil> <www.betacomputers.com,nil> <0.8,nil> <0.2,nil>

Figure 2.2: A QR for the reputation of the data sources associated with attributes

part_price and quantity_available in relation Supplier.

• Atomicity of Attributes: Attributes of the form <attribute_value, FK_QR> are treated

as an atomic unit, i.e., operations on such attribute cascades to its associated QR and

quality factors. Consequently, tuple insertion, update and deletion are defined as

follows:

Tuple Insertion: Inserting tuples with non-NULL quality keys into a relation requires

the associated QR also to have an inserted tuple with quality information, or requires

the association of the inserted tuple with existing quality information in the QR.

Tuple Deletion: Deleting tuples with non-NULL quality keys from a relation requires

the associated quality information to be deleted from the QR, unless the information

is associated with other tuples present in the database.

Tuple Update: Updating tuples in a relation incurs the described tuple insertion and

deletion actions.

3. The Data Quality Query Language (DQ
2
L)

DQ
2
L was designed to express data quality requests in relational databases as an

extension to SQL, aiming at profiling the data with regard to a number of data quality

dimensions. The extensions include an additional clause and a number of quality

profiling functions to enable users to specify quality requests using declarative query

expressions, and to measure the quality of intermediate and final query results, by

calculating quality scores for individual data units, and to filter out low quality instances.

DQ
2
L extends SQL with a single additional clause, called the WITH-QUALITY-AS clause,

which is similar to the one proposed in (R. Y. Wang et al., 1995), (Dong, Sampaio, &

Sampaio, 2006) in syntax and semantics. Therefore it supports the expression of

constraints in the quality of the queried data and filtering capabilities. In addition, our

framework provides facilities for the definition and implementation of quality profiling

functions associated with the dimensions of quality against which data is measured, and

which are a part of the database engine. For example, Accuracy, Completeness,

Timeliness and Reputation are the currently implemented functions, discussed in

Section 3.1.

The quality profiling functions can be called from the WITH-QUALITY-AS clause as well

as the SELECT clause. This simplicity combined with the extensibility of the set of

algorithms that can be applied to implement each quality dimension distinguishes our

framework from previous work. For example, to add a new quality profiling function that

measures the reputation of data sources from which instances of the database were

obtained (see Sections 2.2.4 and 4.3.4 for more details about the Reputation dimension

and operator), considering that an operator for that dimension already exists, the

implementation of an algorithm to represent the new Reputation operator is necessary. It

is required a single operator to perform all of the new reputation-related functionality,

i.e., the functionality must not be divided between two or more new operators, because if

it is, then there will be dependencies between the (sub-) operators that will need to be

incorporated into the optimization process, causing extensions to become more complex.

The insertion of the new operator into a list of all physical operators is also necessary, so

that this new operator can be taken into consideration during query optimization. Because

the profiling operators share similarities in their implementation, one operator can be

used as a template for the implementation of new operators, not incurring new operator

dependencies other than the ones already anticipated and incorporated into the

optimizers, making unnecessary the addition of new optimization heuristics. Research on

common data quality application domains indicates that the dimensions of quality that

mostly satisfy data quality requests have been incorporated into DQ
2
L (Wand & Wang,

1996). However, if a new dimension of quality is to be added into the system, then an

extension to the DQ
2
L syntax is necessary to add a new function to represent this new

dimension, in addition to the physical level implementation of the new operator, and the

insertion of this into the list of operators to be taken into consideration during logical and

physical optimizations. These design decisions are often necessary in order to isolate the

typical database user from the need to specify complex extensions to the functionality

used by the query processor via advanced application programming interfaces. There is

often a trade-off between flexibility and performance and in our framework we opted for

a design that attempts to minimize the cognitive burden on the end user and to maximize

performance towards scaling the approach for Big Data Scenarios, thus with some

sacrifices to the flexibility provided to the end user when considering the addition of new

quality dimensions. The complete DQ
2
L syntax is specified in Appendix A using an

extension of Backus Naur Form.

3.1 Querying with DQ
2
L

In this section, examples of queries expressed in DQ
2
L are given to illustrate the usability

and expressiveness of the language when specifying requests or constraints on the quality

of relational data. The example queries are based on the business processes of an e-

commerce company that sells computer hardware. The focus is particularly on the

business function of order fulfilment, where a variety of data quality problems that affect

processes, such as sales, procurement, shipping, customer services, etc., are detected. In

the following sections, a number of scenarios describing the company’s main business

rules are described along with common database queries associated with each scenario, in

which data quality requests and constraints are specified. The database schema against

which the queries are submitted is described in Figure 3.1. Note that no QRs appear in the

schema, indicating that users are unaware of the presence of quality-related information

associated with the data.

3.1.1 Scenario I: Sales

The Sales Department accepts two different types of customer orders: direct and indirect.

Direct orders are submitted electronically via a Web site, and are less likely to be

incomplete, since to be able to submit a direct order, customers have to fill in all of the

form’s fields. However, indirect orders are received from third party agencies varying in

format, and so, are more likely to present completeness problems due to data being lost or

transposed during translation.

Completeness checks can be regularly performed on all orders using a simple DQ
2
L

query, to identify incompleteness. Query 1, in Figure 3.2(a), shows how the checks can

be expressed in DQ
2
L. It retrieves order numbers and customer IDs for all orders whose

completeness quality is less than 1 (i.e., less than 100%). The query is particularly useful

when a broad profile of a database is required for auditing purposes, where the overall

completeness of each relation is requested and individual tuples that need to be

completed have to be identified. Function completeness is applied over every tuple in

table Order, returning true if the tuple completeness (see definition in Section 2.2.2) is

less than 1. Notice that the ‘WITH QUALITY AS’ clause is used to specify quality-related

filters. With standard SQL constructs, this query could not be easily expressed, since all

attributes in each tuple would have to be tested for value completeness. Figure 3.2(b)

illustrates this query in SQL. As all attributes are tested in the WHERE clause, for

relations with a large number of attributes in their schemas, it becomes harder to write

this query as all attributes need to be specified, imposing on the user an additional

cognitive burden required to formulate the query. However, simpler completeness checks

are possible using only SQL, for example, to retrieve all tuples in relation Order and

leave for the database user the task of checking which tuples contain null values, or to

retrieve all tuples in relation Order that have a null value for a couple of attributes only.

Queries to check population completeness can also be expressed using SQL by the

specification of predicates in the WHERE clause that require all tuples to have value "x"

for attribute a, for example.

Subsequently, incomplete orders are put in a pending status until they are revised and

corrected. For that, requests for further information are sent to the relevant customers or

departments to confirm the order. Normally, a period of 14 days is given for the status of

an order to change from pending to progressing. But half way into this period, the status

of the order is checked and, if it is still pending, a further message is sent as a reminder

about the order status. Query 2 in Figure 3.3(a) supports the process of checking the

status of orders that have been pending for at least 7 days. This is done by finding all the

orders that are currently pending and, among these, further selecting the orders whose

status has remained unchanged for 7 days.

Figure 3.1: Database Schema used in all example queries.

Figure 3.2(a): Query example in DQ
2
L where the completeness function is used.

Note that Query 2 could not be easily expressed in plain SQL using the database schema

shown in Figure 3.1, and to enable the user to express an equivalent plain SQL

expression to address the information request, the hidden QRs would have to be made

visible. Figure 3.3(b) illustrates Query 2 expressed in SQL, assuming that all QRs are

visible to the user. The additional join(s), the decision about which Timeliness formula to

use and the complexity associated with expressing the formula using SQL without any

errors, represent the additional work that is avoided when DQ
2
L is used. Note that, by

using DQ
2
L, the user can simply set a timeliness threshold for all pending orders and

keep only the pending orders whose timeliness is less than or equal to 0.5.

Query 1: “Select all incomplete orders with their order numbers and customer

IDs.”

In DQ
2
L:
SELECT order_No, customer_ID
FROM Order
WITH QUALITY AS COMPLETENESS(Order) < 1

Figure 3.2(b): Query 1 expressed in SQL.

Figure 3.4 shows the QR associated with the status attribute of Table Order. Note that

the timeliness model described in Section 2.2.3 is used to calculate the timeliness of

orders. In this example, the 14-day deadline represents the expiryTime for the pending

status of an order; the 7-day deadline for checking the status of an order represents the

deliveryTime for the status of the order, since it is the time up to which the change in

the order status is assumed to have happened without delay; the time when the status of

the order was last updated represents its lastUpdateTime; as the semantics associated

with the age of an order is expressed inside the context of the other quality-related

properties, it is set to zero for all tuples. Calculations of currency and volatility are

performed by subtracting attribute values from the QR QRef_Timeliness_status, using

hours as unit. For example, for the tuple whose order_No is 302, currency is 168 hours

(7 days) and volatility is 336 hours (14 days), giving a total timeliness of 0.5.

Figure 3.3(a): Query example in DQ
2
L where the timeliness function is used in both the

‘select’ clause and the ‘with quality as’ clause.

3.1.2 Scenario II: Procurement Management

If orders in progress require the purchase of a large number of units of a specific PC part,

then it is the responsibility of the procurement department to negotiate the supply of the

parts from the available suppliers. In this context, it is important to obtain reliable

information from the suppliers about prices and resources in stock to avoid failure in

order fulfilment and loss of customers. Query 3 shown in Figure 3.5(a) reflects this

scenario, representing a request on the reputation of the source of information about price

of a specific part based on the experience of previous users of that source. The same

query in SQL is shown in Figure 3.5(b). As for Query 2, the extra work that DQ
2
L

isolates the user from is proportional to the number of joins between relations and QRs,

Query 2: “Select the orders that are pending and have been waiting

to be validated for more than 50% of the total waiting time.”

In DQ
2
L:
SELECT order_No, TIMELINESS(status)
FROM Order
WHERE status = ’Pending’
WITH QUALITY AS TIMELINESS(status) <= 0.5

Query 1: “Select all incomplete orders with their order numbers and customer

IDs.”

In SQL:
 SELECT order_No, customer_ID
 FROM Order`
 WHERE quantity IS NULL OR
 submit_date IS NULL OR
 ship_date IS NULL OR
 status IS NULL;

and, in this example, the number of reputation-related attributes the user wants to use

with the associated weights. When DQ
2
L is used, the system automatically decides which

attributes and weights are to be used, and specifies which joins are to be performed.

Figure 3.3(b): Query 2 expressed in SQL.

Order

QRef_Timeliness_status

<status_QID,nil> <lastUpdateTime,nil> <expiryTime,nil> <deliveryTime,nil> <age,nil>

<01,nil> < 2013-09-07

13:00:00,nil>

< 2013-09-15

13:00:00,nil>

< 2013-09-08

13:00:00,nil>

<0,nil>

<02,nil> < 2013-09-09

13:00:00,nil>

< 2013-09-23

13:00:00,nil>

< 2013-09-16

13:00:00,nil>

<0,nil>

<03,nil> < 2013-09-02

13:00:00,nil>

< 2013-09-16

13:00:00,nil>

< 2013-09-09

13:00:00,nil>

<0,nil>

Figure 3.4: Extended relational schema for table Order, including the Quality Relation

associated with attribute status.

Figure 3.5(a): Query example in DQ
2
L where the reputation function is used in the

‘select’ clause.

<order_No,nil> … <status,status_QID> …

<301,nil> … <progressing,01> …

<302,nil> … <pending,02> …

<303,nil> … <pending,03> …

Query 3: “Select the price and reputation of the source from which the price

for part 201 was obtained, if the reputation score for the source is greater than

0.8.”

In DQ
2
L:
SELECT part_price, REPUTATION(part_price)
FROM Part_Supply
WHERE part_ID = '201' AND REPUTATION(part_price) > 0.8

Query 2: “Select the orders that are pending and have been waiting

to be validated for more than 50% of the total waiting time.”

In SQL:
 SELECT order_No, GREATEST(1 -
 (TIMEDIFF(deliveryTime, lastUpdateTime) /
 TIMEDIFF(expiryTime, lastUpdateTime)), 0) as timelinessStatus
 FROM Order, QRef_Timeliness_status
 WHERE status = 'pending' AND GREATEST(1 -
 (TIMEDIFF(deliveryTime,lastUpdateTime) /
 TIMEDIFF(expiryTime,lastUpdateTime)), 0) <= '0.5' AND
 Order.status_QID = QRef_Timeliness_status.status_QID;

Figure 3.5(b): Query 3 expressed in SQL.

Figure 2.2 illustrates the association between Table Supply_Part and a Reputation QR in

which scores on the accessibility and reliability of data sources from which

information about available quantities and prices of computer parts are provided. Note

that, in this example, the data sources are web-based and may or may not be completely

reliable or accessible at all times. Other reputation-related attributes can be associated

with these sources, including trustworthiness or update frequency.

3.1.3 Scenario III: Shipping Management

When delivering products to customers, correct information about delivery periods and

addresses is important, as delays impact on customer satisfaction. Data obtained from

third party agencies may differ in format and may not be syntactically accurate when

stored in the database. For instance, using different data formats for customer address,

e.g. postcodes, may result in incorrect or inexistent addresses, thus, address checks are

necessary before shipment.

Illustrating the context of this scenario is Query 4 in Figure 3.6, expressing a check in the

postcode of a customer to whom goods are to be delivered. The execution of this query

involves the validation of a customer’s postcode by looking it up in an accurate data

source, such as an address book. In other words, the accuracy function call is translated in

terms of an SQL query to retrieve data stored in another table followed by an accuracy

evaluation using one of the methods described in Section 2.2.1.

Note that the accuracy evaluation method cannot be directly called from SQL, and has to

be implemented as a separate function. Therefore, this query could not be easily

expressed in SQL, and a more procedural implementation style is likely to be necessary.

In Section 5, a discussion on the choice of evaluation method according to a number of

criteria is provided.

Query 3: “Select the price and reputation of the source from which the price

for part 201 was obtained, if the reputation score for the source is greater than

0.8.”

In SQL:
SELECT part_price, ((0.5 * accessibility) + (0.5 * reliability)) as

 reputation_part_price
FROM Part_Supply, QRef_Reputation_Part_Supply
WHERE Part_Supply.source_QID =

 QRef_Reputation_Part_Supply.source_QID AND part_id = '201' AND
((0.5 * accessibility) + (0.5 * reliability)) > 0.8;

Figure 3.6: Query example in DQ
2
L where the accuracy function is used in the ‘select’

clause.

The expression of queries in which multiple dimensions of quality are involved is also

possible. As an example, Query 5 in Figure 3.7 requests information about the timeliness

of an attribute and the completeness of a relation. The combination of multiple

dimensions of quality in a single query, will make it harder to write the equivalent query

in plain SQL, highlighting the advantages of our approach.

4. DQ
2
S Architectural Overview

This section describes the main architectural components of DQ
2
S, its query processing

approach, including extensions to the relational database engine with data profiling

operators and the query execution plan generation.

4.1 Design Approach and Main Components

When designing DQ
2
S, the layered modular architecture of RDMSs was taken into

consideration for the fulfilment of the following requirements: (i) no changes to the

underlying host RDBMS; (ii) no interference between the DQ
2
S components and the

host’s components; and (iii) easy porting of DQ
2
S to other RDBMSs. These requirements

were fulfilled by allowing the DQ
2
S functionality to be a non-invasive complementary

query processing engine (dual-path architecture), allowing users to submit SQL and

DQ
2
L queries alike via the same interface. The DQ

2
L engine is used as an alternative to

the host’s engine, for the cases when DQ
2
L query expressions are submitted.

The approach of having two engines to execute query expressions avoids any need for

changes to the host RDBMS. As described in Section 4.2, during query processing a

DQ
2
L expression is translated into SQL form and processed by the DQ

2
S optimizer.

Requirement (iii) was fulfilled by developing the DQ
2
S layer as a seamless extension to

the host’s architecture and supporting the communication between DQ
2
S and the host via

a JDBC interface providing unified access to a wide range of database back-ends (Taylor,

2003).

Query 4: “Select the customer’s name and the accuracy of his/her postcode for the

customer with id equal to 10.”

In DQ
2
L:
SELECT name, ACCURACY(postcode)
FROM Customer
WHERE customer_ID = 10

Query 5: “Select the supplier’s ID, price and available quantity of all parts whose

model include ‘WM’, (for example, ‘WM19’), considering the Part-Supply tuples

whose completeness score is greater than 0.8 and whose timeliness score for price is

greater than 0.5.”

In DQ
2
L:
SELECT PS.supplier_ID, PS.part_price, PS.quantity_available
FROM Part_Supply PS, Part P
WHERE P.part_model LIKE ‘%WM%’ AND
 PS.part_ID = P.part_ID
WITH QUALITY AS

COMPLETENESS(Part_Supply) > 0.8 AND
 TIMELINESS(PS.part_price) > 0.5

Figure 3.7: Query example in DQ
2
L where functions Timeliness and Completeness are

both used in the ‘with-quality-as’ clause.

The main architectural components are illustrated in Figure 4.1 where the DQ
2
S

components are depicted in grey colour and described as follows:

• Application Interface: This is the interactive interface to formulate and submit

queries as well as browse query results. Two query languages are supported: SQL

and DQ
2
L. Thus, there are two alternative paths to the underlying database

through this unified interface, either of which is taken depending on the

expression input by the user.

• Pre-parser: The role of the pre-parser is to distinguish between DQ
2
L query

expressions and SQL ones; an SQL query is sent to the host RDBMS for

processing, while a DQ
2
L one is sent to the DQ

2
L processing component.

• DQ
2
L Component: In this component, queries from users are further parsed,

translated into a plan, optimized and executed; query results are evaluated,

marked, filtered, and possibly ranked. In particular, a DQ
2
L query is translated

into a logical algebraic query plan with data quality assessment operations.

Following that, the query optimization process takes place to construct an

execution strategy from the logical plan. A detailed description of the query

processing framework is presented in Section 4.2. Note the dashed arrow in

Figure 4.1 representing the communication channel linking the DQ
2
L component

to the host RDBMS.

• RDBMS: The host RDBMS stores data and quality-related data as relations to

answer both SQL and DQ
2
L queries.

Figure 4.1: Main Architectural Components.

4.2 Query Processing

Figure 4.2 illustrates the functional components involved in the processing of DQ
2
L

queries. Once a DQ
2
L expression takes the DQ

2
L path, it is submitted for further parsing,

during which it is transformed into a parse tree. The parse tree is translated into an

algebraic expression by the Logical Query Plan Generator (LQPG), generating a Logical

Query Plan (LQP) (please, refer to Section 4.4 for a more detailed description of this

translation step). At this stage, the LQP contains solely relational algebra operators,

namely select, project, join, etc. Next, the LQP is submitted to optimization, which is

traditionally composed of logical optimization and physical optimization.

The logical optimization of DQ
2
L queries is performed by the Query Rewriter (QRw),

and is divided into two sub-phases, the first comprising traditional logical optimization

and a second comprising an extended logical-level optimization focused on the insertion

of data profiling operators into the LQP. During the first sub-phase, the LQP has

operators reordered, removed and/or inserted, according to traditional heuristics

developed for relational databases. Examples of such heuristics include: placing selection

and projection operations so that these are executed the earliest as possible in the plan;

placing the most selective joins to be executed before the least selective joins, etc. During

the second sub-phase, data profiling operators are inserted into the LQP (e.g.,

timeliness, accuracy, etc.) causing operators to be further reordered or inserted into

the LQP. The result is an extended LQP with explicit quality assessment functionality

(LQPext). An LQPext for each example query in Section 3.1 is described in Section 4.3.

This sub-phase does not have a counterpart in traditional relational query optimization.

Next, the generated LQPext is submitted to physical optimization, carried out by the

Physical Query Plan Generator (PQPG), to generate a Physical Query Plan (PQP).

During this phase, the operators in the LQPext are replaced with operators of the extended

physical algebra, i.e. the set of algorithms that implement each of the operators in the

logical algebra. A description of the process of selecting appropriate algorithms for each

operator in the LQPext is discussed in Section 5.

Finally, the PQP is submitted to execution, carried out by the Query Executor (QE),

which is also responsible for delivering query results to users. The QE, in turn, is

composed of the Data Evaluator (DE) and the Data Manager (DM). While the DE

comprises the database engine (described in Section 4.3), the DM is responsible for

communicating with the host RDBMS. The unit of communication between the DM and

the host RDBMS is a general and system-independent tuple-like data type, into which

data coming from the host are mapped. Thus, the reuse of the DQ
2
L query processor

across relational products requires this mapping to be implemented making the DM the

only component that needs to be rewritten when bundling DQ
2
L with a host RDBMS.

4.3 Examples of Extended Logical Query Plans (LQPext)

For the application described in Section 3.1, four logical operators have been added to the

database engine, namely completeness, timeliness, reputation and accuracy, to

address the most common data quality problems (Paulson, 2000), (Segev, 2001),

(Scannapieco, Mirabella, Mecella, & Batini, 2002). These four data profiling operators

represent the four data quality dimensions described in Section 2.2 and the examples

relate to the queries shown in Figures 3.2(a), 3.2(b), 3.3(a), 3.3(b), 3.5(a), 3.5(b) and 3.7.

The following sections describe each of the four operators.

4.3.1 The Accuracy Operator

The accuracy operator, represented as accuracy(R.a), calculates the accuracy score for

each instance of attribute a in relation R and outputs a new relation Rres, whose schema is

identical of that of R, except that Rres has an additional attribute associated with the

calculated accuracy score. For example, consider Query 4 described in Figure 3.6. The

LQPext for this query is shown in Figure 4.3, and an illustration of the tuples output by

each operator in the LQPext is illustrated in Figure 4.4. Note from Figure 4.3 that while

the select operator retrieves tuples from the Customer table and filters out the ones whose

value for customer_ID is different to 10, the accuracy operator adds attribute

accuracy_postcode to its input tuple.

4.3.2 The Completeness Operator

The completeness operator, represented as completeness(List[R.ai]), calculates the

completeness score for a list of attributes ai in relation R. If all attributes in R are

considered, then the operator can be represented as completeness(R). When a sub-set of

the attributes in R is considered, tuple completeness is calculated considering only the

listed attributes. Once the completeness score for each tuple is calculated, the

completeness operator adds a new attribute to each tuple containing the calculated

completeness score. For example, consider Query 1 described in Figure 3.2(a). The

LQPext for this query is shown in Figure 4.5. Note that two select operators are present in

the plan: the first, at the leaf of the tree, is used to retrieve all tuples from relation Order,

and the second is used to filter out Order tuples for which the completeness score is less

than 1. The completeness score is calculated by the completeness operator and attached

as a new attribute to each input tuple (completeness_Order).

Figure 4.2: Query Processor Components of DQ

2
S.

Figure 4.3: LQPext for Query 4.

 Project

 Accuracy

Select

Figure 4.4: Tuple types output by each operator in the LQPext for Query 4.

C.name C.accuracy_postcode

C.customer_ID … C.postcode … C.accuracy_postcode

C.customer_ID … C.postcode …

Project(C.name,
C.accuracy_postcode

Accuracy(C.postcode)

Select(Customer C,

C.customer_ID=10)

Figure 4.5: LQPext for Query 1.

4.3.3 The Timeliness Operator

The timeliness operator, represented as timeliness(R.a), receives an attribute a of

relation R and calculates the timeliness score for each instance of R.a, attaching the

scores onto R as the value of a new attribute. The timeliness score calculation formula

was originally proposed in (Ballou, Wang, Pazer, & Tayi, 1998), and was adapted in this

paper to be used in the context of the application described in Section 3.1. Figure 4.6

shows an LQPext for Query 2, illustrated in Figure 3.3(a). The timeliness operator is

located between two select operators. The one at the leaf of the tree is used to retrieve all

tuples from QR Q_Ref, and the second is used to filter out Q_Ref tuples for which the

timeliness score is less than 0.5 (please, refer to Figure 3.4 for a description of the

schema for relation Order and its QR). The timeliness score is calculated by the

timeliness operator and attached as a new attribute to each input tuple. Note that the input

tuples to the timeliness operator are Q_Ref tuples, despite the fact that the timeliness

being calculated is that for attribute Order.status. The reason for placing timeliness

before the join operator on the Q_Ref branch of the tree is performance improvement

obtained from the decreased cost of the execution of the join due to the high selectivity of

the select filtering on the timeliness scores, as discussed in Section 4.4.

4.3.4 The Reputation Operator

The reputation operator, represented as reputation(R.a, List<attr,w>), receives as

input an attribute a of relation R and a list of pairs composed of a reputation indicator

(i.e., a reputation attribute) and its assigned weight, specified in a DQ
2
L query expression

(e.g., <accessibility, 0.5>). It uses this input to calculate the reputation score for

each instance of a, and attaches the scores to R as the value of a new attribute. Figure 4.7

shows an LQPext for Query 3, illustrated in Figure 3.5(a).

Project(O.order_ID,

O.customer_ID)

Completeness(O)

Select(Order O)

Select(completeness_Order

< 1)

Figure 4.6: LQPext for Query 2.

Figure 4.7: LQPext for Query 3.

4.4 Mapping DQ
2
L Query Expressions into Algebraic Query Plans

As described in Section 4.2, a parsed DQ
2
L query tree is submitted to a number of

transformations for the generation of a PQP. The following describes the four-step

process of transforming a parsed DQ
2
L query tree into a PQP. Figures 4.8 and 4.9

illustrate the application of steps 1 and 2, respectively, over Query Q2 (Figure 3.3(a)). A

description of the schema for relation Order and its QR (QRef_Timeliness_status) are

shown in Figure 3.4.

Note from Figure 4.8 that the FROM and WHERE clauses of the SQL expression appear

expanded when compared to their counterparts in the DQ
2
L expression in Figure 3.3(a),

to include the following details: table QRef_Timeliness_status (or QRef, for short)

and predicates ‘timeliness(status)<=0.5’ and ‘O.status_QID = Q.status_QID’.

The first predicate includes a call to a quality function involving the Order.status

attribute, which accesses data stored in QRef. This function call is translated in terms of

an operator from the extended algebra during STEP 3. However, at STEP 2, it is treated

as an unchecked attribute. Also note that attribute ‘Order.status_QID’ represents the

foreign key attribute that associates tuples from table Order with tuples from QRef.

Project(order_No,
timeliness_status)

Select(Order O,

O.status=’Pending’

Timeliness(

Q.timeliness_status)

Join(O.status_QID =

Q.status_QID)

Select(Q_Ref Q)

Select(

Q.timeliness_status<0.5)

Project(O.order_No,

O.status_QID)

Project(Q.status_QID,

Q.timeliness_status)

Project(P.part_price,P.reputation_part_price)

Reputation(P.part_price,(<accessib,0.5>,<reliab,0.5>))

Select(Part_Supply P, P.part_ID='201')

STEP 1. Mapping of a parsed DQ
2
L query tree into a SQL query tree:

During this step, the FROM clause of a DQ
2
L query is expanded to include all the

QRs not explicitly mentioned in the query, but which are relevant to its execution;

the WHERE clause is also expanded to include any predicates involving the QRs,

specified in the ‘WITH QUALITY AS’ clause of the original DQ
2
L expression;

and the ‘WITH QUALITY AS’ clause is removed. The result is a SQL query tree

that is parsed and type-checked against schema information. However, calls to

data profiling functions, such as timeliness(), are not ignored and are, instead,

treated as unchecked attributes.

STEP 2. Mapping of a SQL query tree into a logical (relational) algebra plan:

This step encompasses the traditional procedures for generating a (logical)

relational algebra expression from a parsed query tree. At the end of this process,

a LQP is generated, which contains operators of the relational algebra, but does

not include any data profiling operators, since calls to data profiling functions

continue to be ignored.

STEP 3. Mapping of a logical (relational) algebra plan into a logical DQ

algebra plan:

In this step, data profiling function calls are replaced with appropriate attribute

names and related (logical) data profiling operators are added to the query plan.

This step is followed by logical optimization for DQ
2
L queries, performed by the

QRw component. The result of this step is an LQPex, as discussed in Section 4.2.

STEP 4. Mapping of a logical DQ algebra plan into a physical DQ algebra

plan:
During this step, an LQPex is mapped into a PQP, considering traditional physical

optimisation rules and heuristics, as well as a few additional optimisation rules,

discussed in Section 5.

Figure 4.8: Equivalent SQL expression for Query 2.

During STEP 3, the LQP generated in STEP 2 is mapped into an LQPext, by replacing

data profiling function calls with operators of the extended relational algebra. An LQPext

for Query 2 is illustrated in Figure 4.6. Note the following details: In the LQP expression

(Figure 4.9), the predicate involving the Order.status attribute is a part of the select

operator that retrieves tuples from the Order relation; in the corresponding LQPext

“Select the orders that are pending and have been waiting to be

validated for more than 50% of the total waiting time.”

In SQL syntax:
SELECT O.order_No, TIMELINESS(O.status)
FROM Order O, QRef_Timeliness_status Q
WHERE O.status = ’Pending’ and TIMELINESS(O.status) <= 0.5
and O.status_QID = Q.status_QID;

(Figure 4.6), this predicate is translated into the combination of a timeliness and a select

operators which are executed before the join operator. This change is the result of

optimization performed by the QRw component whereby the timeliness score for each

tuple in relation QRef is calculated and the tuples are filtered based on this score before to

the join between Order tuples and QRef_Timeliness_status tuples takes place, to

minimise the cost associated with the join operator. Details of STEP 4 are discussed in

Section 5.

Figure 4.9: LQP for query expression in Figure 4.8.

5. Query Optimization in the Presence of Data Profiling Operators

This section shows how traditional heuristics developed for optimizing query execution

plans in relational databases can be applied in the presence of data profiling algorithms.

The heuristics focus on the reordering of operators in a query plan, performed during

logical optimization, and are described in Section 5.1. Section 5.2 discusses the selection

of appropriate algorithms for data profiling with a focus on specific quality dimensions

and the task at hand. A discussion about the trade-offs between selecting suitable

algorithms and performance issues is also provided.

5.1 Applying Traditional Heuristics over Extended Query Plans

Although heuristics are typically combined with cost models for efficient cost based

optimization, cost models are not the main focus in this paper and shall be addressed in

future work. In this section, we revisit the most common heuristics used in the pruning of

the search space of possible execution plans for a relational query in the presence of the

data profiling operators discussed in Section 4.

As suggested in Section 4, there is no dependence relationship between the data profiling

operators in the sense that the attribute generated by an operator is not used in the

execution of another one of those operators. However, dependencies between data

profiling operators and traditional operators of the relational algebra may be identified.

Figure 4.6 illustrates an example, where attribute timeliness_status, added to each

input tuple by the timeliness operator, is involved in a selection predicate applied to the

tuples prior to the join between tables Q_Ref and Order, indicating a dependency

Project(order_No,

timeliness(status))

Select(Order O,

O.status=’Pending’),

timeliness(O.status)<0.5)

Select(Q_Ref Q)

Join(O.status_QID =

Q.status_QID)

between timeliness and this particular instance of the select, which forces timeliness to be

executed before this select.

Below, the relational heuristic rules of execution of selections and projections as early as

possible in query execution for decreasing the size of intermediate results (Yu & Meng,

1998), (Garcia-Molina, Ullman, & Widom, 2013), (Connolly & Begg, 2014) are revisited

to deal with LQPext.

• Heuristic Rule 1: If the attribute generated by a data profiling operator is not

relevant to any select operator, execute the data profiling operator as late as

possible.

Because data profiling operators increase the size of the input tuples, pulling them

up in the LQPext tree can minimize resource consumption and, hopefully, improve

performance by keeping the size of intermediate results small for most of the

query execution time.

• Heuristic Rule 2: If the attributes generated by data profiling operators are

relevant to any selection predicate, execute the operators as early as possible.

This rule is based on the traditional heuristic of placing selection operations as

early as possible in the query plan to decrease the size of intermediate results. The

earlier a data profiling operator is performed, the earlier the select operator that

uses its data profiling attribute can be executed. Data profiling operators add one

attribute to the input tuples, however a decrease in the number of input tuples

represents a more significant performance improvement in most cases, especially

when the number of input tuples is large and the selectivity of the predicate is

high.

• Heuristic Rule 3: Projections that discard attributes relevant to the execution of

data profiling operators should be pushed down the query plan for only as far as

these attributes are not discarded before they are used.

This rule extends the traditional heuristic of pushing projections down the query

plan to improve system performance in case of memory constraints (Yu & Meng,

1998), (Garcia-Molina, Ullman, & Widom, 2013), since projections discard

attributes that are irrelevant to the query execution.

• Heuristic Rule 4: Assuming a pipelined approach to implementation, for queries

in which quality profiles involving multiple dimensions are requested, the use of

query plans shaped as left-deep or right-deep trees can gain in performance since

these queries incur multiple joins.

This rule extends the traditional heuristic of exploiting pipelining to concurrently

execute the operators of a left-deep or right-deep tree to improve system

performance (Garcia-Molina, Ullman, & Widom, 2013).

To illustrate the application of the heuristic rules, consider the LQPext in Figure 4.6. The

application of Heuristic Rules 1 and 2 has ensured that the selection involving the

timeliness attribute is executed before the join, by placing both the selection and the

timeliness operators down on the left branch of the plan. Note that, although the input to

the timeliness operator is attribute status of relation Order, its placement onto the left

branch of the plan was necessary to enable the calculation of the timeliness score for

attribute status as well as the filtering of tuples based on this score before the join

between relation Order and its QR. The application of DQ Heuristic Rule 3 represents a

performance improvement when dealing with the problem of memory constraints. In such

case, projections are executed before the join to decrease the size of tuples in the LQPext

in Figure 4.6.

In the presence of predicates involving multiple data profiling attributes, the most

selective predicate should be executed first, as suggested in the example illustrated in

Figure 3.7, which shows a more complex query with two data profiling operators, two

selections over data profiling attributes and two join operators. The corresponding LQPext

in Figure 5.1 shows the joins ordered according to predicate selectivity and all select

operators being executed before the joins, to decrease runtime costs. Since pipelining is

not supported in the current prototype, the application of Heuristic Rule 4 is not yet

possible.

Figure 5.1: LQPext for Query 5 in Figure 3.7.

5.3 Physical Optimization

Project(supplier_ID,

part_price,

quantity_available)

Select(Q_Ref Q)

Join(P.part_ID =

PS.part_ID)

Select(Part P,
P.part_model LIKE‘WM’)

Join(PS.part_price_QID

= Q.part_price_QID)

Select(Part_Supply PS)

Timeliness(Q.timeliness

_part_price)
Completeness(Part_Supply)

Select(completeness_Part

_Supply>0.8)

Select(timeliness_part_

price>0.5)

Project(P.part_id)
Project(PS.supplier_ID,

PS.part_ID, PS.part_price,

PS.quantity_available,

PS.part_price_QID)

Project(Q.part_price_QID)

Adding data profiling capabilities to query processing incurs, in most cases, the execution

overhead of an additional join operation between a relation and its QR (a detailed

performance evaluation will be provided in future work). Moreover, the selection of the

best algorithm for executing a data profiling operation should not be based on execution

cost, but on the task at hand. For example, if two different methods for measuring

accuracy are available, e.g., EditDistance and Boolean, then, even though the Boolean

algorithm may be the cheapest in terms of running costs, the algorithm implementing the

most suitable method for measuring the accuracy of a particular data unit for a particular

user should be selected.

While a user should be allowed to choose the most suitable methods to measure the

quality of a data item for the task at hand, some users may prefer for this choice to be

made automatically. For this purpose, a mechanism for automatically identifying users’

quality requirements was devised which uses ideas from view management in database

systems. Based on information associating data units with quality measurement methods

and user groups, a query optimizer is able to select the method that represents the

preferred choice by the users of a certain group in most cases. For example, in an

organization, different departments have different quality requirements, data access

patterns and views of how quality should be measured, so each department can represent

a user group. By collecting statistics on data access and selected method to measure

quality to build user group profiles, and by enabling these profiles to be accessed and

interpreted by the query optimizer, a quality-targeted optimization is achieved. These

profiles are called view_packages.

Consider the view_packages described in Tables B.1 and B.2 in appendix B, associated

with users from the Sales and the Shipping departments of the company described in our

examples, respectively. Each view_package has an id, a name, and a list of the most

frequently accessed attributes by its group users. The association of an attribute

with a data quality measurement method represents the most appropriate choice at

physical-level optimization regarding a dimension of quality. However, an attribute may

be associated with a number of evaluation methods, if each such method is related to a

different dimension of quality. Data profiling operators applied over attributes for which

no association with evaluation methods is available should be selected based on response

time, if multiple alternatives are present.

The set of all view_packages is extensible and is stored in the Data Dictionary, being

accessed by the PQPG component. In addition, individual users are able to write their

own view_package, which has priority over any the group package, and users can select

their preferred quality measurement methods at query submission, via the user interface.

6. Preliminary Empirical Evaluation

This section describes a preliminary evaluation of the approach, with a focus on the

optimization heuristics suggested in Section 5.

6.1 Test Queries and Environment

Queries 2 and 5, described in Figures 3.3(a) and 3.7, respectively, were used in this

preliminary evaluation, since they share properties with all other queries presented in

Section 3. Query 2 is simple, containing one profiling operator and one join. Query 5 is

more complex, containing two profiling operators and two joins. For both queries, the

scores generated by the profiling operators were used to filter the query results. Two

query plans were tested for each query, the first being an optimized plan, resulting from

the application of the heuristics described in Section 5, and the second, non-optimized,

having the profiling operators added to the top of the query plan, as the query processing

steps described in Section 4.4 suggest. Figures 4.6, 6.1, 5.1 and 6.2 show the query plans.

Figure 6.1: Non-optimized LQPext for Query 2.

Three MySQL relational databases with similar schemas were used in the experiments.

Refer to the schema described in Figure 3.1 and the QRs described in Figures 2.1, 2.2,

and 3.4 for the three databases. The first database contained 1,000 tuples in each relation

(DB1), while the second contained 10,000 tuples (DB2) and the third 100,000 tuples in

each relation (DB3). When populating the databases, we made sure that value

distributions remained with the same proportions to keep the selectivity of the predicates

constant as the size of the database increased.

Each query plan was run three times over each database and the average elapsed time was

obtained for each pair (queryPlani, DBsizej). The experiments were performed on an Intel

(R) Core (TM) i5-4200U CPU @ 1.60 GHz 2.30 GHz machine, with 8.00 GB of RAM,

running a 64-bit Windows 7 OS. In between runs both OS and MySQL database

management system caches were flushed.

6.2 Results

Figure 6.3 shows the experimental results. In the figure's legend, four query plans are

specified, two for Query 2 and two for Query 5. The notation (NO) and (O) distinguishes

between the non-optimized and the optimized query plans, respectively. Axis x shows the

Project(order_No,
timeliness_status)

Select(Order O,

O.status=’Pending’)

Timeliness(
Q.timeliness_status)

Join(O.status_QID =

Q.status_QID)

Select(Q_Ref Q)

Select(

Q.timeliness_status<0.5)

variation in database size and axis y shows the average elapsed time associated with each

pair (queryPlani, DBsizej).

Note that, for both queries, the optimized query plans (O) presented a shorter elapsed

time than their non-optimized counterparts (NO). Table C.1 in appendix C shows the

average elapsed times for Query 2. For DB1, the optimized plan was 1.38 times faster

than the non-optimized plan. For DB2, the optimized plan was 2.64 times faster than the

non-optimized plan. And for the DB3, the optimized plan was 3.42 times faster than the

non-optimized plan. As the size of the data increased from DB1 to DB2, the application

of the heuristics showed a significant advantage, being that of the optimized plan over the

non-optimized one 28% for DB1, and 62% DB2. However, this advantaged was less

significant when the data was increased from DB2 to DB3 (only 71%), due to the intense

paging carried out during query execution, as there was not enough memory for the input

relations. The paging could have been minimized by a change in implementation

approach from fully materialization of relations in memory to pipelining of tuples from

the leaves of the query plan to its root.

Figure 6.2: Non-optimized LQPext for Query 5.

Table C.1 in appendix C shows the average elapsed times for Query 5. For DB1, the

optimized plan was 1.09 times faster than the non-optimized one. For DB2, the optimized

plan was 1.58 times faster than the non-optimized plan. And for the DB3, the optimized

Project(supplier_ID,

part_price,

quantity_available)

Select(Q_Ref Q)

Join(P.part_ID =

PS.part_ID)

Select(Part P,
P.part_model LIKE‘WM’)

Join(PS.part_price_QID
= Q.part_price_QID)

Select(Part_Supply PS)

Timeliness(Q.timeliness

_part_price)

Completeness(Part_Supply)

Select(completeness_Part

_Supply>0.8)

Select(timeliness_part_

price>0.5)

plan was 1.49 times faster than the non-optimized plan. Similar to Query 2, the

application of heuristics for Query 5 showed to be more advantageous when data

increased from DB1 to DB2 (from 9% to 37% improvement) and less significant with the

increase from DB2 to DB3 (from 37% to 33% improvement), also due to the intense

paging carried out during query execution.

Figure 6.3: Experimental results.

The three heuristics described in Section 5 optimized the execution of Query 2 and Query

5 by decreasing the sizes of intermediate results. Considering the optimized query plan of

Query 2 in Figure 4.6, the project operator on the left branch of the tree decreases the size

of each tuple from relation Order by 6 attributes. Taking all tuples flowing from that

branch, for DB1, this represents a decrease of (500 x 6) attributes, taking into account

that the selectivity of predicate O.status=’Pending’is 50%; for DB2 it represents a

decrease of (5,000 x 6) attributes; and for DB3, it represents a decrease of (50,000 x 6)

attributes. The project operator on the right branch of the tree, in turn, decreases the size

of each tuple by 5 attributes. This decrease in tuple size not only saves memory space, but

also makes the sequential search for an attribute in a tuple to become faster, causing the

execution of several operators to become more efficient. The select operator that depends

on the timeliness calculation on the right branch of tree discards 50% of the tuples

flowing from that branch, making the join faster as its right input becomes significantly

smaller.

Considering the optimized query plan of Query 5 in Figure 5.1, the project operator on

the left branch of the tree decreases the size of each tuple from relation Part by 2

attributes. Taking into account that the selectivity of the predicate is 50%, that represents

a decrease of (500 x 2), (5,000 x 2) and (50,000 x 2) for DB1, DB2 and DB3,

respectively. The project operators on the right branch and the extreme right branch of

the tree decrease the size of each of their input tuples by 2 and by 5 attributes,

respectively. The select operator that depends on the completeness calculation has a

selectivity of 0%, given that there were no incomplete tuples in relation Part_Supply in

any of the databases, and so, the placement of this select in the query plan does not incur

any benefit. Therefore, the join between relations Part and Part_Supply has the same

cost as its correspondent in the non-optimized plan. This may be one of the reasons why

the optimized plan for Query 2 represented a greater improvement over its non-optimized

equivalent than it seems to be the case for Query 5. On the other hand, the select operator

that depends on the timeliness calculation has a selectivity of 50%, making the join

between relations Part_Supply and the timeliness Q_Ref faster.

This preliminary evaluation has shown that the combination of data profiling operators

with relational algebra operators in the query engine, in particular, the application of

select operations over data quality profiling scores, has provided an opportunity for

further decreasing the sizes of intermediate results during query processing, improving

overall elapsed time of query execution. We believe this to be a promising way of

discarding lower quality data from query results using more complex criteria other than

simple attribute value-based filtering of very large data sets, as the query is executed. Our

future work includes increasing sizes of relations horizontally as well as vertically to

further test the benefits of our approach to query processing, implement our operators

using multi-pass algorithms and implement our framework using the MapReduce

programming paradigm.

7. Related Work

Techniques and tools have been proposed to facilitate the task of data profiling, enabling

users to (semi-) automatically profile their data, preparing it for optimization, as

described in the work by Poosala et al. (Poosala, Haas, Ioannidis, & Shekita, 1996),

knowledge discovery, as described in the work by Yao and Hamilton (Yao & Hamilton,

2008), or data repairing and cleansing, as described in the works by Fan et al. (Fan,

Geerts, Jia, & Kementsietsidis, 2008), Bravo et al. (Bravo, Fan, & Ma, 2007) and Huhtala

et al. (Huhtala, Kärkkäinen, Porkka, & Toivonen, 1999); the four previous references are

mostly focused on detection of inconsistencies in relational data sets, identified as

violations of dependencies between attributes.

More recent work in detection of data quality problems focused on violation of

dependencies in relational data, e.g., functional, conditional functional and inclusion

dependencies, includes the work by Beskales et al. (Beskales, Ilyas, Golab, & Galiullin,

2014), Dallachiesa et al. (Dallachiesa et al., 2013) and Geerts et al. (Geerts, Mecca,

Papotti, & Santoro, 2013). Acknowledging the sole use of such dependencies may

overlook other, more subtle, data quality problems, other work such as Fan et al. (Fan, Li,

Ma, Tang, & Yu, 2012) and Yakout et al. (Yakout, Berti-Equille, & Elmagarmid, 2013)

have relied on mechanisms to extend the range of data quality problems in consideration,

including the use of master data and statistical machine learning. In the same spirit, our

work seeks to offer an additional mechanism for revealing data quality problems to the

database user by facilitating the querying of stored data quality information with which

relational data is annotated, and by easing the measurement of data quality levels and

data filtering, considering objective definitions of common data quality dimensions. To

obtain data quality measurements in DQ
2
S, quality-related metadata is associated with the

stored data. From assessing the data quality literature, previous work that has also used

metadata to describe quality-related information includes the following:

• Mecella et al. propose a framework for managing data quality in a distributed and

cooperative information system, which includes an XML data model that enables

each site in the system to export its data and quality data according to an agreed

model. The framework also includes a centralised broker responsible for answering

requests from all sites and serving a requesting site with the best quality units of data

according to the exported information (Mecella et al., 2003);

• Shankaranarayanan and Cai propose a data quality management tool to be used in

integration with Information Systems that support decision making tasks. The tool

allows users to construct maps describing stages in the lifecycle of the target data,

which include information about how the data has been composed and processed at

each stage, taking completeness into account (Shankaranarayanan & Cai, 2006);

• Furber and Hepp (Furber & Hepp, 2011) propose a conceptual, ontology-based model

for representing quality-related knowledge and requirements for Web data. In this

model, data quality requirements are expressed as executable rules, enabling the

cleansing of data sources via Semantic Web formalisms;

• Klein et al. (Klein, Do, Hackenbroich, Karnstedt, & Lehner, 2007) propose a model

to propagate streams of data along with its corresponding quality information in

sensor-based data servers. In addition, meta-model constructs are proposed, extending

the relational model, in order to allow the storage of the streaming data in a relational

database. It is not clear how query processing is affect by the proposed extensions;

• The work that is most related to ours is by Mutsuzaki et al. (Mutsuzaki et al., 2007)

which propose extensions to SQL and the relational data model to enable users to

access information about lineage of data as well as uncertainty in the context of the

Trio database management system. Queries in the Trio Query Language (TrioQL) are

translated into SQL statements, and are executed over standard relational tables in

which lineage-related data is also stored (Mutsuzaki et al., 2007). In this approach,

functional extensions to the relational model are added as stored procedures, and so, it

cannot be combined and optimized together with other data manipulation functions.

Another work proposing query language extensions to facilitate data quality assessment

is (Embury, Missier, Sampaio, Greenwood, & Preece, 2009), proposed by Embury et al.,

where the focus is in the specification of domain-specific quality constraints to be

enforced during query processing, considering XQuery as the target query language. In

this work, the quality assessment can also be shared amongst users in the form of Web

services. However, in this approach, each user must be able to implement its own

services and/or select the most suitable service for the task at hand and explicitly call it

using XQuery. The approach relies on a workflow-based execution of web services

(quality views) without the use of mainstream query optimization strategies.

Regarding data quality management frameworks and systems, the DQAQS Framework

by Yeganeh et al. (Yeganeh, Sadiq, & Sharaf, 2014) provides a comprehensive solution

to the problem of quality-aware information management enabling users to express

quality related queries on top of multiple relational data sources integrated via a wrapper-

mediator architecture. The data quality dimensions are user defined and extensible, and

profiling is based on both attribute and conjunctive conditions on the universe of possible

queries issued over the global schema. The query processing approach involves the

mediator translating the query into a set of query plans against different data sources and

the utility of a query plan is estimated based on data quality of query results combined

with other optimization factors such as execution time. Statistical formulas are used to

estimate the data quality of a query plan based on the estimated data quality result against

individual data sources that take part in the plan. Plans are ranked based on the overall

utility function. The DQAQS mechanism to generate and update the profile is costly,

both from disk space used and CPU load perspective. This presents a particular challenge

to maintain and update the profiles especially when taking into account big data

scenarios. Our approach to data profiling could be seen as complementary to theirs in that

they could use DQ
2
L to issue quality profiling queries to perform complex calculations

and filter data of undesirable quality, particularly in cases where specific data quality

metadata is not necessary. The mediator would be responsible for translating the

equivalent SQL query into a set of plans and gathering results.

The SLIMPad system and application architecture by Delcambre et al. (Delcambre et al.,

2001) is aimed at extending information sources with data management functionality for

superimposed annotations representing underlining, bookmarks and cross-references. The

data model for the annotations and data regarding annotations are managed externally

from the host data sources. The digital “bundles” linked to the data sources can represent

observations about data quality, however, the computations regarding quality

measurements need to be manually calculated by the end user developing the annotations.

This approach is not directly aimed at data quality management, however, due to the

flexibility of the proposed annotations, the system can provide some level of support to

tagging quality information to data sources and instances.

The pSQL system by Bhagwat et al. (Bhagwat, Chiticariu, Tan, & Vijayvargiya, 2004)

proposes an annotation management system for relational databases providing support for

“Where” data provenance analysis. Relations are extended with additional columns to

provide annotations and schemes are developed for end users to specify how annotations

should propagate. Annotations are restricted to attributes of tuples. An extension of SQL

is developed to specify the propagation of annotations according to user-defined schemes.

The system architecture has a translator module that rewrites pSQL queries into target

SQL queries sent for execution at the host DBMS API. Tuples returned from the host

DBMS are post-processed to merge annotations and provide annotated outputs for

display to end-users. No optimization is performed on generated SQL queries. DQ
2
S

shares architectural features with pSQL, but differs in functionality.

Feature

Approach

Query Language

Design

Query Processing and

Optimization

Architectural

Approach

Framewor

k/ System

Focus

Data Types

Supported

DQ
2
S Development of high-

level query language

constructs to express

quality preferences

based on SQL

extensions. Profiling is

developed on the fly

alongside end user

queries

Translation algorithm

maps queries with

extended data quality

requests and profiling

information into

mainstream SQL

queries.

Development and

integration of algebraic

query optimization into

framework extensions

External quality-

aware engine

layered on top of

relational DBMS

with pre-processing

and post-processing

of host API results

Data

quality

managemen

t for

standardize

d provider

defined

quality

measures

Relational

data with data

quality

metadata

DQAQS/

Squid

(Yeganeh,

Sadiq, &

Sharaf,

2014)

Quality related user

preferences are

encoded in a model

based on partial order

prioritizations.

Development of SQL

extensions to capture

user preferences on

data quality in the

form of partial orders

Mediator translates the

query into a set of query

plans against different

data sources and utility

of query plans is

estimated based on data

quality of query results

combined with other

optimization factors such

as execution time

Wrapper/mediator

quality aware data

integration. DQ

profiling involves

significant CPU and

storage overheads to

generate and update

profiles

Data

quality

managemen

t for user

defined

quality

measures

Relational

data with data

quality

metadata

Quality

Views/

Qurator

(Embury,

Missier,

Sampaio,

Greenwoo

d, &

Preece,

2009)

User defined quality

preferences

incorporated as

extensions to XQuery.

Development of data

quality language

features that can be

combined with other

declarative query

languages

Quality views

incorporate declarative

and procedural

constructs for computing

transformations of input

data sets into quality-

annotated output data

sets.

Workflow-based

execution of web

services (quality views)

without the use of

mainstream query

optimization strategies

Quality views

implemented as

reusable web

services with

standard interfaces

and annotations

expressing the

semantics of

components and

parameters specified

using ontologies

Data

quality

managemen

t for user

defined

quality

measures

Semi-

structured and

multi-model

type support

SLIMPad

(Delcambr

e et al.,

2001)

Graphical user

interface to visualize

and navigate generic

annotations. Data

manipulation

constructs for creating,

updating, removing,

storing and loading

annotations

Based on allowing

components to obtain

pointers to referenced

objects, which can be

used for retrieval of

annotations.

Query processing and

optimization of

annotations not

performed

Superimposed

application

implemented as

plug-in to existing

storage managers.

Extensible

architecture with

minimal coupling

interface to host

Tool to

manage

super-

imposed

information

and

annotations

Semi-

structured and

multi-model

type support

pSQL

(Bhagwat,

Chiticariu,

Tan, &

Vijayvargi

ya, 2004)

Development of high-

level query language

constructs to

manipulate data

provenance

information.

Translation algorithm

maps queries with

extended provenance

information into

mainstream SQL

queries.

No optimization is

performed on generated

SQL queries

Additional column

storing annotations

assumed to avoid

lazy computation of

provenance. Layered

component with pre-

processing and post-

processing of host

API results

“Where”

provenance

managemen

t and also

data

sensitivity

and access

control

managemen

t

Relational

data with data

provenance

and

annotation

metadata

Trio-One

(Mutsuzaki

et al.,

2007)

Development of SQL

extensions to express

uncertainty and

lineage requests

Encodes uncertainty and

lineage present in the

data model as relational

tables and uses query

rewriting for query

processing

Layered on top of a

relational base with

extensions added as

relations and stored

procedures

Handling

uncertainty

and lineage

Relational

data with

metadata for

lineage and

uncertainty

Table 7.1: Data Quality Management Frameworks and Systems.

Table 7.1 illustrates differences and similarities between DQ
2
S and some of the

frameworks and systems found in the literature. The contributions discussed in Table 7.1

work primarily by building database quality profiling and management engines layered

on top of database management systems.

Other complementary approaches and techniques addressing data quality issues include:

inconsistency detection in integration of data from multiple sources from a computational

complexity perspective, consistent query answering, duplicate record detection, database

repairing, handling missing data and model-based techniques for data quality

improvement, discussed as follows.

The problem of data inconsistency and failure to satisfy integrity constraints in relational

databases resulting from integration of data drawn from a variety of sources has been

studied by Chomicki and Marcinkowski (Chomicki & Marcinkowski, 2005) from a

computational complexity perspective. The authors argue that aborting transactions

leading to integrity violations is not a viable strategy when dealing with multi-source data

integration, proposing integrity-restoration as a separate maintenance process executed to

improve data quality. This approach provides an important contribution to the data

quality management literature by investigating the computational complexity of repair

checking and consistent query answering (CQA) techniques for data retrieved from

multiple data sources. The repair checking techniques investigated can be highly valuable

towards improving the data quality of data warehouses generated using Extraction,

Transform and Load (ETL) processes.

Bertossi (Bertossi, 2006) provides an extensive overview of the key principles and

theoretical issues involved in consistent query answering in relational databases,

including discussions on the characterization of the CQA problem, computational

complexity analysis of CQA, semantics of different database repair techniques applied in

CQA, consistency computational complexity analysis of CQA taking into account NULL

values, dynamic and incremental computations.

In (Greco, Greco, & Zumpano, 2001), a set of sound and consistent techniques for

computing repairs and consistent answers over inconsistent databases are developed

using a logic programming framework. The approach to repairing and CQA is based on

rewriting integrity constraints into disjunctive rules that can be used to generate repairs

for the database and produce consistent answers. The main limitations of the logic

programming-based approach arise from the computational complexity associated with

computing some of the techniques, which may limit the ability to compute consistent

answers in “big data” applications.

Data quality can also be improved via the application of duplicate record detection, where

databases are analyzed to identify different records in a database (duplicates) representing

the same entity in the real world, leading to accuracy problems. Elmagarmid et al.

(Elmagarmid, Ipeirotis, & Verykios, 2007) provide a comprehensive survey of the area

including discussions about similarity metrics for detecting duplicate records in databases

and an analysis of the efficiency and scalability of duplicate record detection algorithms.

Wang and Wang (H. Wang & Wang, 2009) propose an approach to derive knowledge

from missing data in survey data sets. The approach uses association rules to express

patterns of missing data such as clashing, hiding and disclosing, which can be very useful

in performing data profiling of data sources in data quality management.

The Multidimensional Robust Data Quality Analysis (MRDQA) approach by

Mezzanzanica et al. (Mezzanzanica, Boselli, Cesarini, & Mercorio, 2015) proposes

model checking aimed at formalizing and verifying data quality and the effectiveness of

business processes used to create and populate data sources and develops techniques and

tools to verify the consistency of databases before and after the application of database

cleansing functions. The authors argue that applying model-driven verification methods

to data cleaning activities help to identify the quality constraints that need to be modelled,

with the positive impact in generating higher quality data sets for knowledge discovery

tasks. The verification methods proposed include iterative techniques to evaluate the

effectiveness of data cleansing functions and the development of visualization techniques

to identify problems in data sets.

8. Conclusions and Future Work

This paper presented DQ
2
S a comprehensive framework and tool for combining

traditional data management with data profiling targeted at data cleansing. The

framework allows database users to profile their data while querying the database in a

declarative way, in preparation for data cleansing, considering multiple dimensions of

data quality, such as accuracy, completeness, timeliness, etc. For that, modelling and

storage of quality-related data properties can be performed using the same means for

modelling and storing relations in a relational database. The quality-related data

properties together with the data profiling algorithms represent the criteria under which

data is assessed, measured and filtered, in accordance with definitions of data quality

dimensions chosen and modelled by the user. An implementation of the framework is

also described in which a number of data quality dimensions are modelled and

implemented for illustration using e-Business application scenarios. The proposed

architecture represents a seamless extension to relational database management systems;

and the proposed query language and data model represent user-friendly extensions to

SQL and the relational data model.

DQ
2
S enables the ad-hoc exploration and profiling of data and its associated quality as it

is queried, using data quality-aware SQL query extensions. The level of sophistication of

the profiling algorithms is variable and decided by the end user and/or database

application programmer, ranging from simple calculation of scores, to aggregation of

multiple scores, including complex calculation strategies and access to multiple sources

of information on data-quality properties.

The query language allows comparisons to be made between scores, use of thresholds

and filtering of data based on arbitrary predicates. To illustrate the features of our

approach to quality profiling, we have selected a number of quality dimensions that are

widely used across several application domains and that can be effectively incorporated

into an automated information management framework/system. Our choice for a solution

with a limited number of profiling operators based on dimensions of quality that have a

general purpose is based on the premise that, according to the latest research on purpose

and dimensions of Information Quality (IQ) by Illari (Illari, 2014), it is generally agreed

that "While the MIT group thinks IQ is best generally defined as information that is 'fit

for purpose', both they and many others still think that at least some dimensions of IQ,

and even some aspects of IQ itself, are purpose-independent.". Based on the "Law of the

Vital Few" (i.e., the Pareto Principle), and experience in practical data quality

management projects, only a limited number of quality dimensions and definitions often

represent the majority of quality requests from end users. There is also a trade-off

between flexibility, performance and usability of data quality techniques and tools.

Highly flexible frameworks tend to overburden the end user with the need to learn highly

complex application programming interfaces towards expressing quality-aware queries.

The balance lies somewhere in a spectrum between highly flexible and extensible

solutions and less flexible but efficient and user-friendly frameworks. Typically, what we

found in practice is that a combination of complementary tools and techniques will be

needed in a data quality management project.

The combined set of features supported by DQ
2
S allows individual users to set their own

quality constraints while querying the data, without imposing the same constraints to all

users. These features are extremely useful when users need to assess the quality of

relational data sets and define quality filters for acceptable data, as well as a methodology

for quality management that allows information quality to be queried and measured for

different purposes prior to conducting big data analytical tasks (Floridi, 2014). Future

work will include the exploration and quality auditing of large data sets generated by the

EC-Funded MODUM project (MODUM: Models for Optimising Dynamic Urban

Mobility, 2014) on multi-modal transportation planning, including data generated by

urban traffic data sensors from highways in the United Kingdom with data sets in the

range of 1-10 Terabytes.

Figure 8.1 shows a screen shot taken from the MODUM system interface, delivering real-

time traffic information to a user interested in the traffic conditions in the city of

Nottingham on Tuesday the 21
st
 of October 2014 around nine o'clock. In the figure, green

lines indicate free flow of vehicles on roads, and yellow lines indicate mildly congested

roads. The data feeding the system is based on data collected by sensors distributed

across the city. Figure 8.2 shows a fragment of the data in relational format. Traffic

dynamic properties such as average speed of vehicles and flow of vehicles across roads

are present in the data. Figure 8.3 shows a DQ
2
L query requesting the measurement of

the completeness for attribute flow.

We also plan to conduct further experimental evaluation aimed at identifying overheads

resulting from the score calculations and access to quality relations for a number of

queries of varying complexity. Regarding suitability for use in big data scenarios,

additional implementation of the data profiling algorithms as multiple-pass algorithms

will be necessary, considering that main-memory solutions are not appropriate for such

scenarios. The use of data partitioned parallelism will also be considered as well as

cloud-based deployment strategies.

Figure 8.1: MODUM System interface showing traffic information.

Figure 8.2: MODUM System traffic data.

Figure 8.3: DQ2L query requesting the completeness of column flow.

Link

<link_ID, nil>
<co2emissions,

nil>

<density,

nil>

<avgspeed,

nil>

<flow, nil>

<-100170072#1,

nil>
<5.38e+01, nil>

<4.13e-02,

nil>

<1.10e+01,

nil>

<4.55e-01,

nil>

<-100170078,

nil>
<2.45e+01, nil>

<1.47e-02,

nil>

<1.28e+01,

nil>

<1.89e-01,

nil>

SELECT COMPLETENESS(flow)
FROM Link

References

Aktaş, R., & Karğin, M. (2011). Timeliness of Reporting and the Quality of Financial Information.

International Research Journal of Finance and Economics(63), 71-77.

Atzeni, P., Batini, C., & Antonellis, V. D. (1993). Relational Database Theory: A Comprehensive

Introduction: Addison Wesley.

Ballou, R., Wang, R., Pazer, H., & Tayi, G. K. (1998). Modeling Information Manufacturing

Systems to Determine Information Product Quality. Management Science, 44(4), 462-

484.

Barbagallo, D., Cappiello, C., Francalanci, C., & Matera, M. (2010). Enhancing the Selection of

Web Sources: A Reputation-Based Approach. International Conference on Enterprise

Information Systems, Lecture Notes in Business Information Processing, 73, 464-476. doi:

10.1007/978-3-642-19802-1_32

Batini, C., & Scannapieco, M. (2006). Data Quality: Concepts, Methodologies and Techniques:

Springer.

Bertossi, L. (2006). Consistent Query Answering in Databases. ACM SIGMOD Rec., 35(2), 68 - 76.

Beskales, G., Ilyas, I. F., Golab, L., & Galiullin, A. (2014). Sampling from Repairs of Conditional

Functional Dependency Violations. VLDB Journal, 23, 103-128.

Bhagwat, D., Chiticariu, L., Tan, W., & Vijayvargiya, G. (2004). An Annotation Management

System for Relational Databases. VLDB Endowment, 30, 900 - 911.

Biswas, J., Naumann, F., & Qiu, Q. (2006). Assessing the Completeness of Sensor Data. Database

Systems for Advanced Applications (DASFAA), Lecture Notes in Computer Science, 3882,

717-732. doi: 10.1007/11733836_50

Bouzeghoub, M., & Peralta, V. (2004). A Framework for Analysis of Data Freshness Proceedings

of the International Workshop on Information Quality in Information Systems (IQIS) (pp.

59-67): ACM.

Bravo, L., Fan, W., & Ma, S. (2007). Extending Dependencies with Conditions Proceedings of the

International Conference on Very Large Databases (VLDB) (pp. 243-254): VLDB

Endowment.

Chen, H., Hailey, D., Wang, N., & Yu, P. (2014). A Review of Data Quality Assessment Methods

for Public Health Information Systems. International Journal of Environmental Research

and Public Health, 11(5), 5170-5207. doi: 10.3390/ijerph110505170

Chomicki, J., & Marcinkowski, J. (2005). Minimal-Change Integrity Maintenance Using Tuple

Deletions. Information and Computation, 197(1 - 2), 90 - 121.

Cong, G., Fan, W., Geerts, F., Jia, X., & Ma, S. (2007). Improving Data Quality: Consistency and

Accuracy Proceedings of the International Conference on Very Large Databases (VLDB)

(pp. 315-326): VLDB Endowment.

Connolly, T. M., & Begg, C. E. (2014). Database Systems – A Practical Approach to Design,

Implementation, and Management (6th ed.): Addison-Wesley.

Dallachiesa, M., Ebaid, A., Eldawy, A., Elmagarmid, A. K., Ilyas, I. F., Ouzzani, M., & Tang, N.

(2013). NADEEF: A Commodity Data Cleaning System Proceedings of the ACM SIGMOD

International Conference on Management of Data (pp. 541-552): ACM.

Delcambre, L., Maier, D., Bowers, S., Weaver, M., Longxing, D., Gorman, P., . . . Lyman, J. A.

(2001). Bundles in Captivity: an Application of Superimposed Information Proceedings of

the International Conference on Data Engineering (pp. 111 - 120).

Deursena, T., Kostera, P., & Petkovica, M. (2008). Hedaquin, A Reputation-Based Health Data

Quality Indicator. Electronic Notes in Theoretical Computer Science, 197(2), 159–167.

Dong, C., Sampaio, S. F. M., & Sampaio, P. R. F. (2006). Expressing and Processing Timeliness

Quality Aware Queries: The DQ2L Approach. Quality of Information Systems (ER

Workshops), Lecture Notes in Computer Science, 4231, 382-391.

Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate Record Detection: A Survey.

IEEE Transactions on Knowledge and Data Engineering, 19(1), 1 - 16.

Embury, S. M., Missier, P., Sampaio, S., Greenwood, R. M., & Preece, A. D. (2009). Incorporating

Domain-Specific Information Quality Constraints into Database Queries. Journal of Data

and Information Quality, 1(2).

Fan, W., Geerts, F., Jia, X., & Kementsietsidis, A. (2008). Conditional functional dependencies for

capturing data inconsistencies. ACM Transactions on Database Systems (TODS), 33(2), 1-

48.

Fan, W., Li, J., Ma, S., Tang, N., & Yu, W. (2012). Towards Certain Fixes with Editing Rules and

Master Data. VLDB Journal, 21(2), 213-238.

Floridi, L. (2014). Big Data and Information Quality The Philosophy of Information Quality (Vol.

358, pp. 303-315): Springer.

Furber, C., & Hepp, M. (2011). Towards a Vocabulary for Data Quality Management in Semantic

Web Architectures Proceedings of the International Workshop on Linked Web Data

Management (LWDM) (pp. 1-8): ACM.

Gamble, M., & Goble, C. (2011). Quality, Trust, and Utility of Scientific Data on the Web:

Towards a Joint Model Proceedings of the International Web Science Conference

(WebSci) (pp. 1-8): ACM.

Gantz, J., & Reinsel, D. (2012). The Digital Universe in 2020: Big Data, Bigger Digital Shadows and

Biggest Growth in the Far East. Retrieved 02/04/2015, from

http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf

Garcia-Molina, H., Ullman, J. D., & Widom, J. (2013). Database Systems: The Complete Book:

Pearson Education.

Geerts, F., Mecca, G., Papotti, P., & Santoro, D. (2013). The LLUNATIC data-cleaning framework.

Proceedings of the VLDB Endowment, 6(9), 625-636. doi: 10.14778/2536360.2536363

Greco, G., Greco, S., & Zumpano, E. (2001). A Logic Programming Approach to the Integration,

Repairing and Querying of Inconsistent Databases. International Conference on Logic

Programming, Lecture Notes in Computer Science, 2237, 348 - 364.

Greenwald, R., Stackowiak, R., & Stern, J. (2013). Oracle Essentials: Oracle Database 12c:

O’Reilly.

Han, J., Jiang, D., & Li, L. (2010). Automatic accuracy assessment via hashing in multiple-source

environment. Expert Systems with Applications: An International Journal, 37(3), 2609-

2620.

Han, J., Jiang, D., & Song, A. (2008). Quantifying Accuracy Dimension within Available Context

Proceedings of the International Symposium on Information Science and Engineering

(ISISE) (Vol. 1, pp. 214-218): IEEE.

Huhtala, Y., Kärkkäinen, J., Porkka, P., & Toivonen, H. (1999). TANE: An Efficient Algorithm for

Discovering Functional and Approximate Dependencies. Computer Journal, 42(2), 100-

111.

Illari, P. (2014). IQ:Purpose and Dimensions The Philosophy of Information Quality (Vol. 358, pp.

281-301): Springer.

Klein, A., Do, H. H., Hackenbroich, G., Karnstedt, M., & Lehner, W. (2007). Representing Data

Quality for Streaming and Static Data Proceedings of the International Conference on

Data Engineering (ICDE) Workshops (pp. 3-10): IEEE.

Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., & Batini, C. (2002). Managing

Data Quality in Cooperative Information Systems. On the Move to Meaningful Internet

Systems 2002: CoopIS/DOA/ODBASE, Lecture Notes in Computer Science, 2519, 486-502.

Mecella, M., Scannapieco, M., Virgillito, A., Baldoni, R., Catarci, T., & Batini, C. (2003). The

DaQuinCIS Broker: Querying Data and Their Quality in Cooperative Information Systems.

Journal on Data Semantics I, Lecture Notes in Computer Science, 2800, 208-232.

Mezzanzanica, M., Boselli, R., Cesarini, M., & Mercorio, F. (2015). A Model-Based Evaluation of

Data Quality Activities in KDD. Information Processing & Management, 51(2), 144 - 166.

MODUM: Models for Optimising Dynamic Urban Mobility. (2014). Retrieved 17/10/2014, from

http://modum-project.eu/

Mutsuzaki, M., Theobald, M., Keijzer, A. d., Widom, J., Agrawal, P., Benjelloun, O., . . . Sugihara,

T. (2007). Trio-One: Layering Uncertainty and Lineage on a Conventional DBMS

Proceedings of the Conference on Innovative Data Systems Research (pp. 269-274).

MySQL.com. (2015). Retrieved 20/05/2015, from http://www.mysql.com.

Naumann, F. (2014). Data Profiling Revisited. ACM SIGMOD Record, 42(4), 40-49.

Olson, J. E. (2003). Data Quality: The Accuracy Dimension: Morgan Kaufmann.

Orme, A. M., Yao, H., & Etzkorn, L. H. (2007). Indicating Ontology Data Quality, Stability, and

Completeness throughout Ontology Evolution. Journal of Software Maintenance, 19(1),

49-75.

Paulson, L. D. (2000). Data Quality: A Rising E-Business Concern. IT Professional, 2(4), 10-14.

Peer, E., Vosgerau, J., & Acquisti, A. (2014). Reputation as a Sufficient Condition for Data Quality

on Amazon Mechanical Turk. Behavior Research Methods, 46(4), 1023-1031.

Pernici, B., & Scannapieco, M. (2003). Data Quality in Web Information Systems. Journal on Data

Semantics I, Lecture Notes in Computer Science, 2800, 48-68.

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment. Communications of the

ACM, 45(4), 211--218.

Poosala, V., Haas, P. J., Ioannidis, Y. E., & Shekita, E. J. (1996). Improved Histograms for

Selectivity Estimation of Range Predicates Proceedings of the ACM SIGMOD

International Conference on Management of Data (pp. 294-305): ACM.

Qin, Z., Han, Q., Mehrotra, S., & Venkatasubramanian, N. (2014). Quality-Aware Sensor Data

Management The Art of Wireless Sensor Networks, Signals and Communication

Technology (Vol. 1, pp. 429-464): Springer.

Redman, T. C. (1997). Data Quality for the Information Age: ACM.

Scannapieco, M., Mirabella, V., Mecella, M., & Batini, C. (2002). Data Quality in e-Business

Applications. Web Services, E-Business, and the Semantic Web (WES), Lecture Notes in

Computer Science, 2512, 121-138.

Scardina, M., Chang, B., & Wang, J. (2004). Oracle Database 10g XML & SQL: Design, Build, &

Manage XML Applications in Java, C, C++, & PL/SQL: Mcgraw-hill.

Sebastian-Coleman, L. (2013). Measuring Data Quality for Ongoing Improvement: A Data Quality

Assessment Framework: Morgan Kaufmann.

Segev, A. (2001). Data Quality Challenges in Enabling eBusiness Transformation Proceedings of

the International Conference on Information Quality (pp. 83-91): MIT.

Shankaranarayanan, G., & Cai, Y. (2006). Supporting data quality management in decision-

making. Decision Support Systems, 42(1), 302-317.

Standard, I. (2013). ISO 19157:2013, Geographic Information — Data Quality. Retrieved

02/04/2015, from

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=3

2575

Stonebraker, M., & Moore, D. (1996). Object-relational DBMSs: The Next Great Wave: Morgan

Kaufmann.

Taylor, A. (2003). JDBC: Database Programming with J2EE: Prentice Hall.

Tomic, K., Sandin, F., Wigertz, A., D.Robinson, Lambe, M., & Stattin, P. (2015). Evaluation of Data

Quality in the National Prostate Cancer Register of Sweden. European Journal of Cancer,

51(1), 101-111.

Wand, Y., & Wang, R. Y. (1996). Anchoring Data Quality Dimensions in Ontological Foundations.

Communications of the ACM, 39(11), 86-95.

Wang, H., & Wang, S. (2009). Discovering Patterns of Missing Data in Survey Databases: An

application of Rough Sets. Expert Systems with Applications: An International Journal,

36(3), 6256 - 6260.

Wang, H., Yang, D., Zhao, Y., & Gao, Y. (2006). Multiagent System for Reputation-based Web

Services Selection Proceedings of the International Conference on Quality Software

(QSIC) (pp. 429-434): IEEE Computer Society.

Wang, R. Y., Reddy, M. P., & Kon, H. B. (1995). Toward Quality Data: an Attribute-Based

Approach. Decision Support Systems, 13(3-4), 349-372.

Wang, R. Y., & Strong, D. M. (1996). Beyond Accuracy: What Data Quality Means to Data

Consumers. Journal of Management Information Systems, 12(4), 5-33.

Wang, R. Y., Ziad, M., & Lee, Y. W. (2001). Data Quality (Vol. 23): Kluwer.

Widom, J., & Ceri, S. (1996). Active Database Systems: Triggers and Rules for Advanced Database

Processing: Morgan Kaufmann.

Yakout, M., Berti-Equille, L., & Elmagarmid, A. K. (2013). Don't Be SCAREd: Use SCalable

Automatic REpairing with Maximal Likelihood and Bounded Changes Proceedings of the

ACM SIGMOD International Conference on Management of Data (pp. 553-564): ACM.

Yao, H., & Hamilton, H. J. (2008). Mining Functional Dependencies From Data. Data Mining and

Knowledge Discovery, 16(2), 197-219.

Yeganeh, N. K., Sadiq, S., & Sharaf, M. A. (2014). A Framework for Data Quality Aware Query

Systems. Information Systems, 46, 24 - 44.

Yom-Tov, E., & Diaz, F. (2011). Location and Timeliness of Information Sources During News

Events Proceedings of the International ACM SIGIR Conference on Research and

Development in Information Retrieval (pp. 1105-1106): ACM.

Yu, C. T., & Meng, W. (1998). Principles of Database Query Processing for Advanced Applications:

Morgan Kaufmann.

APPENDIX A - DQ
2
L Syntax in BNF

The syntax specification of DQ
2
L is expressed using the Backus Naur Form (BNF)

language for grammar specification, which was automatically generated by JJDoc

provided by JavaCC. BNF enables the specification of the concrete syntax of the

language, and checks the syntactic correctness for the strings of characters. The BNF

language has been slightly extended by JJDoc in the following aspects:

• The meta-symbols “(” and “)*” are used to enclose a sequence of symbols that

can occur any number of times (zero or more).

• The meta-symbols “(” and “)+” are used to enclose a sequence of symbols that

can occur one or more times.

• Lexical tokens of the language are placed within double quotes, e.g., “SELECT”.

The distinguished symbol of the grammar is Start. In order to resolve ambiguities in

parsing, alternative forms of each right-hand side of the rule are in order of decreasing

precedence. The reserved words of the language are: SELECT, FROM, WHERE,

ORDER BY, AND, WITH QUALITY AS, ACCURACY, TIMELI-NESS,

COMPLETENESS, REPUTATION, TOPSIS.

 Start ::= SFWQ <EOF>

SFWQ ::= SelectStatement FromStatement (WhereStatement)? (

QualityStatement)? (OrderStatement)?

SelectStatement ::= "SELECT" Item ("," Item)*

Item ::= (Attribute | QualityFunction)

FromStatement ::= "FROM" Relation ("," Relation)*

WhereStatement ::= "WHERE" Condition (“AND” Condition)*

Condition ::= Attribute <OPER> (Constant | Attribute)

QualityStatement ::= "WITH QUALITY AS" QualityConstraint (“AND”

QualityConstraint)*

QualityConstraint ::= QualityFunction <OPER> NumLiteral

OrderStatement ::= "ORDER BY " RankingReference

RankingReference ::= Attribute

 | QualityFunction

QualityFunction ::= AccuracyFunction

 | CompletenessFunction

 | TimelinessFunction

 | ReputationFunction

 | TOPSISFunction

AccuracyFunction ::= "ACCURACY" "(" Attribute ")"

CompletenessFunction ::= "COMPLETENESS" "(" Relation ")"

TimelinessFunction ::= "TIMELINESS" "(" Attribute ")"

ReputationFunction ::= "REPUTATION" "(" Attribute "," NumLiteral ":"NumLiteral ")"

TOPSISFunction ::= "TOPSIS" "(" Weights ")"

Weights ::= QualityFunction ":" NumLiteral (";" QualityFunction ":"

NumLiteral)*

Attribute ::= <VARIABLE>

Relation ::= <VARIABLE>

Constant ::= NumLiteral

 | TextLiteral

NumLiteral ::= <NUM_LITERAL>

TextLiteral ::= <TEXT_LITERAL>

APPENDIX B - View-Packages

View_Package_id 1

View_Package_name Sales

Most accessed attributes Access

frequency

Preferred method

Order.product_ID 97%

Order.status 89%

Order.submit_date 76%

Product.product_price 70% <reputation,[<accessibility,

0.5>,<reliability,0.5>]>

Customer.name 61% <accuracy,editDistance>

Table B.1: View_package for Department Sales.

View_Package_id 2

View_Package_name Shipping

Most accessed attributes Access

frequency

Preferred method

Order.product_ID 98% <accuracy,boolean>

Order.status 98% <accuracy,boolean>

Order.submit_date 93%

Product.product_price 65%

Customer.name 61%

Table B.2: View_package for Department Shipping.

APPENDIX C - Experimental Results

 Query Elapsed Time (in seconds)

DB Size Query2 (NO) Query2 (O) Query5 (NO) Query5 (O)

1,000 1.32 0.95 1.16 1.06

10,000 36.79 13.92 46.32 29.24

100,000 3370.9 982.86 4456.14 2987.63

Table C.1: Average Elapsed Times of optimized (O) and non-optimized (NO) Queries 2

and 5, varying database size.

