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Abstract 

This paper describes the design and implementation of the Data Quality Query System 

(DQ2S), a query processing framework and tool incorporating data quality profiling 

functionality in the processing of queries involving quality-aware query language 

extensions. DQ2S supports the combination of performance and quality-oriented query 

optimizations, and a query processing platform that enables advanced data profiling queries 

to be formulated based on well established query language constructs, often used to interact 

with relational database management systems. DQ2S encompasses a declarative query 

language and a data model that provides users with the capability to express constraints on 

the quality of query results as well as query quality-related information; a set of algebraic 
operators for manipulating data quality-related information, and optimization heuristics. 

The proposed query language and algebra represent seamless extensions to SQL and 

relational database engines, respectively. The constructs of the proposed data model are 

implemented at the user’s view level and are internally mapped into relational model 

constructs. The quality-aware extensions and features are extremely useful when users need 

to assess the quality of relational data sets and define quality constraints for acceptable data 

prior to using candidate data sources in decision support systems and conducting big data 

analytical tasks. 

 
Keywords: Information Management, Data Quality, Query Language Extensions, Data Profiling, Decision 

Support Systems, Big Data. 

 

1. Introduction 
 

According to IDC, an explosive growth in the demand for “Big Data” analytics is 

predicted as the digital universe continues to expand (Gantz & Reinsel, 2012). To capture 

the opportunities arising from big data, data quality issues need to be addressed to enable 

the execution of the analytical tasks and tools to support users in unlocking the valuable 

knowledge patterns available from querying large data sets. Therefore, research in data 

quality including traditional techniques for data cleansing, assessment and measurement 

of data quality need to be adapted to this new trend.  

 

The challenges that big data imposes over data quality research and practice include not 

only the fact that, if data is truly “big”, then traditional main memory methods become 

unsuitable for use, but also the fact that the data being used is not well known to its users.  
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The latter can be addressed by profiling the data to reveal errors and guide data cleansing 

or data repairing processes. The result of data profiling is the generation of metadata that 

can also be used to measure the quality of a data set against previously established 

constraints and data quality benchmarks. While basic data profiling can be performed by 

simply eye-balling database tables, more advanced data profiling can be performed by 

key-word-searching in data sets or using dedicated data profiling tools (Naumann, 2014).  

 

To facilitate the process of profiling and analysing large data sets, this paper proposes a 

comprehensive framework for combining data management with data profiling for data 

cleansing, by allowing users to seamlessly model and store quality-related data properties 

in the database and associate them with their respective data; this information is used to 

profile the data in preparation for data cleansing, considering multiple data quality 

dimensions. The framework provides the following advantages: 

• Allows users to query not only data, but also its quality-related information and 

generate a profile. This is achieved by the use of the DQ
2
L query language, a 

seamless extension to SQL, and an interface to the database which hides from 

users the complexities related to the presence of the stored quality-related 

information and data profiling algorithms. Both language and interface provide an 

intuitive means of associating data with quality-related data via an extended 

relational data model whose constructs are internally mapped into relational 

model constructs.  

• Allows users to request the quality of data to be measured according to an 

extensible set of data profiling algorithms applied over the available quality-

related information. These algorithms represent an extension to the database 

engine, but are dedicated to the calculation of data quality scores. 

• Allows users to apply filters when querying the data, based on both the stored 

quality-related information and on data quality scores calculated during query 

processing. 

• Provides a complementary functionality for information quality management that 

can be bundled as a seamless architectural extension to mainstream database 

management systems. 

 

Regarding the information quality management perspective adopted by the framework 

discussed in this paper, latest research by Illari (Illari, 2014), whilst acknowledging that 

information quality (IQ) is generally defined as information that is 'fit for purpose', also 

indicates that IQ researchers agree that several dimensions of IQ, and even some aspects 

of IQ itself, are purpose-independent. Therefore, in our approach, we pursue to represent 

a set of IQ dimensions that are widely used across several application domains and which 

can be effectively and efficiently incorporated into an automated information 

management framework/system. Both perspectives are complementary and are often 

observed in practice where domain independent and domain specific tools and techniques 

are applied towards tackling complex data quality problems.  

 

The key contribution arising from our approach is the capability to combine data 

management and advanced data quality profiling allowing users to profile their data by 

having data quality scores calculated during query processing. Users have control not 



only over the data profiling metadata that is generated, but also over how the metadata is 

generated. The framework also allows individual users to set their own quality constraints 

while querying the data, without imposing the same constraints to all users. These 

features are extremely useful when users need to assess the quality of relational data sets 

and define quality filters for acceptable data and a methodology for quality management 

that allows information quality to be queried and measured for different purposes prior to 

conducting big data analytical tasks (Floridi, 2014).  

 

The paper also contributes to the literature by providing a comprehensive description of 

the key design decisions underpinning the framework, including data quality dimensions, 

high level query language extensions, query processing architecture, algebraic operators, 

mapping from query language constructs to algebraic query plans, assessment of query 

formulation simplicity of using the proposed extension compared to developing the 

queries in plain SQL. Other contributions of this paper include the following:  

 

• Insights on the development of heuristics for optimizing query execution plans in 

the presence of algorithms for measuring data quality. 

• A review of the main data quality dimensions and their respective measurement 

techniques. 

• A discussion of three information quality management implementation scenarios 

using DQ
2
S in the context of an e-Business application. 

• A preliminary empirical evaluation of the framework, illustrating the elapsed time 

of query plans taking into account query optimization actions. 

 

The paper is organized as follows: Section 2 describes background on a number of data 

quality dimensions and their respective measurement techniques. The measurement 

formulas presented in this section have an objective nature and can be applied in the 

context of a variety of application domains. They are used as basis for the DQ
2
S data 

quality profiling algorithms. Section 3 describes the design of the proposed query 

language, DQ
2
L, which is accompanied by a number of query examples and illustrations 

of the main features of the data quality model. Section 4 describes the architecture of 

DQ
2
S and provides details on its query processing, illustrating the internal query 

representations. Section 5 discusses query optimization and how it can be extended with 

heuristics based on data profiling algorithms to measure data quality. Section 6 discusses 

the empirical evaluation of the framework. Section 7 describes related work and Section 

8 summarises the paper and discusses future work. 

 

 

2. Extending the Relational Model to Support Data Quality 

Measurement 
 

This section describes the challenges of expressing and storing quality-related 

information and introduces the Data Quality Model (DQM), which enables users to 

represent and store quality-related properties associated with relational data. 

 

2.1 The Quality Relation 



 

The success of extensions to the relational model and the SQL language contemplating 

features and functionalities such as objects (Stonebraker & Moore, 1996), rules (Widom 

& Ceri, 1996), XML (Scardina, Chang, & Wang, 2004) and multimedia capabilities 

(Greenwald, Stackowiak, & Stern, 2013) among others has shown that piecemeal 

extensions to well known and widely accepted technologies often have better 

acceptability than completely new approaches developed from scratch. 

 

Based on this observation, we follow the extension approach and propose a small number 

of features and functionalities to be seamlessly incorporated into the relational model, 

aimed at facilitating the storage, retrieval and manipulation of data with its associated 

quality-related information. The proposed constructs reflect the need for additional 

structures to support functionality related to the management of quality-related data 

properties. Therefore, as originally proposed in (Wang, Reddy, & Kon, 1995), special 

tables and attributes were designed to allow automatic association between data and its 

quality and are visible at the view level of the classical ANSI-SPARC architecture. 

However, these structures are mapped into standard relational model structures at the 

conceptual and physical levels. 

 

The special tables are called Quality Relations (QRs) and are associated with the 

relational tables via attributes that have the form of a pair of values (<attribute_value, 

FK_QR>), where the first element of the pair represents the value of the attribute, and the 

second element represents a foreign key to a QR tuple in which quality information 

related to the attribute value is stored.  The foreign key element is called quality key. 

Note that each element of the pair is atomic and associated with a domain of values. 

When an attribute of the table is not associated with a QR, i.e., an attribute for which 

there is no available quality information, the value of FK_QR is NULL. All attributes in 

both relational tables and QRs share this format. Attributes in a QR represent properties 

associated with a quality dimension. Note, however, that at the conceptual and physical 

levels of a database system, all tables and attributes are implemented with traditional 

relational constructs. Figure 2.1 shows properties related to the timeliness data quality 

dimension stored in the QR associated with attribute price of relation Product via quality 

key price_QID. This relationship enables navigation from a price value to its timeliness 

information. Also note that each tuple in relation Product has its price instance associated 

with a tuple in the QR; the QR attributes represent the available timeliness information 

for a price instance. Similarly, attributes of a QR can be further associated with other 

QRs. 

 
2.2 Modelling Dimensions of Data Quality using Quality Relations 

 

This section describes how classical data quality dimensions: accuracy, completeness, 

timeliness and reputation described in the data quality literature (Olson, 2003), (Wang, 

Ziad, & Lee, 2001) are represented in the relational data model extension implemented in 

DQ
2
S. The modelled dimensions were chosen due to their general applicability across 

different data quality applications in domains such as e-Business, e-Science and 



Geographical Information Systems. Along with the dimensions, a design for the related 

QRs is provided as an example in the context of an e-Business application. 

 

2.2.1 Accuracy Dimension 

 

While a recent data quality standard has been published towards defining accuracy and 

other quality dimensions in the domain of geographical information systems (Standard, 

2013), previous work on the accuracy dimension of quality (e.g., (Han, Jiang, & Li, 

2010) and (Han, Jiang, & Song, 2008)) focuses on the development of approaches for 

assessing and quantifying accuracy, and earlier initial work is dedicated to defining 

accuracy in a general context (Redman, 1997). Earlier general definitions are still 

applicable across a number of applications. An example of a general definition is the one 

introduced in (Redman, 1997), where accuracy is defined as the proximity of a value v to 

a value v’ considered as correct in both content and form. The work in (Mecella et al., 

2002) further distinguishes between syntactic accuracy and semantic accuracy, the former 

being defined as the closeness between v and v’ where v’ is the value considered 

syntactically correct; and the latter being defined as the closeness between v and v’ where 

v’ is the value considered semantically correct, i.e., a value that is consistent with respect 

to the real world.  

 

While it is reasonably straightforward to check the syntactic accuracy of a data unit, it is 

often not feasible to check its semantic accuracy. For example, to syntactically validate 

the name of an English person, it may be enough to check the name against a dictionary 

of common English names. However, to semantically validate the name of an English 

person, verification using data sources that contain information about the person may be 

necessary, since the terms of comparison have to be derived from the real world (Mecella 

et al., 2002). For example, if v = Juhn and v’ = John than v is low in syntactic accuracy 

because its value is not acceptable according to a dictionary of English names. Regarding 

semantic accuracy, if v = Robert and v' = John, then v has low semantic accuracy 

because, even though its syntactical value is acceptable, the person whose name is stored 

as Robert actually represents a person named John in the real world. Due to the feasibility 

challenges in processing semantic data accuracy this work focuses on syntactic accuracy. 

Two methods are typically used to measure syntactic accuracy, described as follows. 

 

2.2.1.1 The Edit Distance Method 
 

(Batini & Scannapieco, 2006) suggest the comparison function EditDistance to evaluate 

the closeness between the actual value v and the expected value v’, by calculating the 

number of steps (i.e., insertions, and/or deletions and/or replacements of digits or 

characters) for converting v into v’. For example, if the value for attribute name of the 

schema element Employee is v = John Smth and the expected value is v’ = John Smith, 

then EditDistance(v, v’) = 1, since only one step is needed to convert v into v’, namely the 

insertion of ‘i’ between ‘m’ and ‘t’.  

 

(Cong, Fan, Geerts, Jia, & Ma, 2007) further suggests the use of the ratio between the 

edit distance of v and v’ and the maximum length between v and v’, to measure the 



similarity of v and v’ enforcing the idea that longer strings with one-character difference 

between v and v’ are closer than shorter strings with the same characteristic. The ratio is a 

value between 0 and 1, and the higher this ratio, the more expensive it is to convert v into 

v’. Thus, the accuracy quality can be calculated using Formula 1, where the |v| and |v’| 

represent the number of characters in the value held in v and in the value held in v’, 

respectively. 

 
Accuracy(v) = 1 – [EditDistance(v,v’) / max(|v|,|v’|)] 

   (1) 

            

2.2.1.2 The Boolean Method 

 
Unlike the Edit Distance Method, the Boolean Method measures accuracy with only two 

values as possible outcome: yes or no, representing accurate and inaccurate, respectively 

(Batini & Scannapieco, 2006), which can also be represented as 1 or 0. If a value is 

contained in its corresponding reference value domain, then it can be considered as 

syntactically accurate (i.e., yes) otherwise, it will be deemed as inaccurate (i.e., no) 

(Batini & Scannapieco, 2006). Using the previous example, the name ‘John Smth’ is 

considered as to be inaccurate.  Thus, in the Boolean Method, accuracy can be expressed 

as shown in Formula 2, where v’ represents an element in the relevant reference 

dictionary. 

 
Accuracy(v) = 1, if v = v’ 

                    OR             

Accuracy(v) = 0, if v <> v’   
(2) 

 

It is worth pointing out that different users have different concerns about data accuracy. 

For instance, a user may be more concerned with whether a data unit is accurate or not, 

rather than how many steps should be taken to improve the accuracy of the data unit. For 

such a user, the Boolean method is more suitable. Another user may be interested in not 

only detecting inaccurate data units, but also improving their accuracy, preferring in this 

case the Edit Distance Method. The requirement for developing data quality frameworks 

that support users with different information production and consumption purposes 

relating to the same data set is further discussed in (Floridi, 2014). 

     

The need for checking the accuracy of data values has raised the question of how these 

checks can be performed efficiently. Most commercial RDBMSs provide enforcing 

mechanisms for their business rules for checks to be carried out when data is entered into 

or updated in the database, for preventing invalid data. These enforcing mechanisms are 

typically implemented as functions stored in the database or as application programs 

running on the client side accessing local or remote sources of domain information. 

Therefore, for the accuracy dimension, there is no need to store quality related 

information in a QR. 

 

2.2.2 Completeness Dimension 

 



Completeness, together with accuracy and timeliness are often regarded as the three most 

used quality dimensions in specific application domains such as in Public Health 

Information Systems (Chen, Hailey, Wang, & Yu, 2014). While context-dependent 

definitions for the completeness dimension of quality can be found in (Biswas, Naumann, 

& Qiu, 2006), (Orme, Yao, & Etzkorn, 2007), (Tomic et al., 2015) and (Sebastian-

Coleman, 2013), a generic definition of completeness, proposed in (Pipino, Lee, & Wang, 

2002), is “the extent to which data are of sufficient breadth, depth, and scope for the task 

at hand”. (Pipino, Lee, & Wang, 2002) also suggest that there are three main different 

types of completeness that can be measured by calculating the ratio between the number 

of incomplete items and the overall number of items, and subtracting this result from 1. 

The three types are described as follows: 

 

• Schema completeness: At the most abstract level, completeness is the degree to 

which the properties of data (e.g. entities and attributes) are not missing from its 

associated schema.  

 

• Column completeness: At the data level, completeness is the measure of the missing 

values for a specific property or column in a table. In the context of the relational 

model, it is also known as attribute completeness.  

 

• Population completeness: This type of completeness represents the degree of 

missing values relative to a reference population. For example, if a column should 

contain at least one occurrence for each of the 50 states of the USA, but it contains 

only 43 states, then we have population incompleteness. 

 

When assessing completeness of relational data, the semantics of NULL values are 

important and should be taken into consideration. A NULL value typically indicates a 

missing value; however, it is critical to investigate the reason why a value is missing 

before assessing completeness. A value may be missing due to any of the following three 

reasons (Atzeni, Batini, & Antonellis, 1993): (i) The value does not exist; (ii) The value 

exists, but is not available; and (iii) It is unknown whether the value exists. Cases (i) and 

(iii) should not be deemed as cases of incompleteness, since, in case (i), the value does 

not exist in the real world, and, in case (iii), the existence of the value is not known. Case 

(ii), however, is a case of incompleteness.  For example, a NULL value for the mandatory 

attribute date of birth in relation Employee is a case of incompleteness since every 

employee must have a date of birth; thus, incompleteness is tenable for mandatory 

attributes. However, for non-mandatory attributes, such as e-mail address, cases (i) or (iii) 

may apply. 

 

In addition, (Batini & Scannapieco, 2006) suggest that the following two assumptions 

should also be taken into account when assessing completeness of relational data: the 

closed world assumption (CWA) and the open world assumption (OWA). The CWA 

states that the values present in a relation represent all facts of the real world, i.e., the 

relation is population-complete; the OWA assumes that values in a relation are not able to 

represent all of the facts of the real world. By combining the semantics of NULL values 



with the CWA and OWA assumptions, it is possible to derive two models for the 

assessment of completeness, described as follows (Batini & Scannapieco, 2006). 

 

• OWA Assumption without NULL Values: In this model, a reference data set 

containing all real world entities is compared against the relation being assessed, and 

the measure of completeness can be calculated by the ratio between the number of 

tuples that are present in the relation and the total number of tuples in the reference 

data set. In other words, the reference relation can be the complete relation R. 

 

• CWA Assumption with NULL Values: This model assumes that the relation on focus 

is population-complete, i.e. there are no entities in the real world that are not present 

in the relation. However, due to presence of NULL values, other types of 

completeness are considered, and further classified regarding different data 

properties, described as follows: 

 

• Value Completeness: takes into consideration the presence or absence of 

value for an attribute. If an attribute value is not NULL, then it is complete. 

Otherwise, it is incomplete. 

 

• Tuple Completeness: considers a tuple as complete, if all of its fields are 

complete (value-complete). It can, therefore, be measured by the ratio 

between the number of non- NULL values in a tuple and the overall number of 

values in this tuple. 

 

• Relation Completeness: it considers the presence of non-NULL values in an 

entire relation. It can, therefore be measured by the ratio between the number 

of non-NULL values in the relation and the overall number of the values in the 

relation.  

 

Assessment of schema and population completeness, as well as adoption of the OWA 

model prescribes the use of a reference data set against which the relation being assessed 

is to be compared. However, in application domains such as e-Business, such reference 

data sets are not always available and access to and integration of a potentially large 

number of external sources may be required. As the access and integration of a number of 

data sources is out of the scope of this research, we focus on the CWA with NULL Values 

Model for the assessment of tuple and relation completeness.  

 

A possible implementation of the CWA with NULL values approach involves the 

automatic and periodic counting of non-NULL values and the saving of that in a 

histogram, rather than frequent counting and updating whenever information about 

completeness is needed, which can incur high maintenance costs. Therefore, for the 

completeness dimension, there is no need to store quality related information in a QR, 

except for the semantics behind the presence of a NULL value, which can impact on the 

completeness score. 

 

 



2.2.3 Timeliness Dimension 
 

The timeliness data quality dimension has grown in importance due to the widespread 

adoption of real-time information systems and large-scale sensor data management 

applications (Qin, Han, Mehrotra, & Venkatasubramanian, 2014). Work on the timeliness 

dimension of data quality has focused on the analysis of processes involved in the 

implementation of information services to understand their dependences and impact on 

the timeliness of the information provided (e.g., (Aktaş & Karğin, 2011) and (Yom-Tov 

& Diaz, 2011)), earlier work has focused on defining timeliness for use in broader 

contexts. A general definition can be found in (Ballou, Wang, Pazer, & Tayi, 1998) 

where timeliness is defined as the degree to which data is timely enough for its intended 

use. For instance, the data of a Sales Company will present low timeliness if the various 

branches of the company fail to record the latest regional sales information in time for a 

quarterly meeting. Moreover, in different application domains data sets can vary 

significantly in their update frequency. For example, a weekly update frequency for the 

prices displayed in an e-Shop comparison engine will usually satisfy the vast majority of 

shoppers; whilst for an investor willing to buy stocks, a one-hour update frequency will 

be unacceptably long, incurring low timeliness quality.  

 

(Pernici & Scannapieco, 2003) and (Bouzeghoub & Peralta, 2004) have divided data into 

two main categories regarding update frequency: (i) Static data, defined as data which 

will not be updated during its lifecycle, for example data representing mathematical 

formulas, planet names, continent names, etc.; and (ii) Dynamic data, defined as data 

which has the possibility of being updated during its lifecycle. The update frequency of 

dynamic data can be user defined or can occur randomly. Considering update time 

intervals, dynamic data can be further divided into two main categories: (ii.a) Seldom-

update data, defined as data considered to have a low update frequency (e.g., yearly or 

monthly), such as customers’ home addresses and telephone numbers; and (ii.b) 

Frequent-update data, defined as data considered to have a high update frequency (every 

minute or second), such as sensor data from weather stations. For static data, a measure 

of timeliness may not be relevant in the context of many applications, since it is known 

that static data do not become outdated. In the design phase, when selecting which 

attributes are relevant for timeliness, only dynamic attributes may be considered.  

 

(Ballou, Wang, Pazer, & Tayi, 1998) provide formulas to measure the timeliness of data, 

based on the concepts of currency and volatility, described as follows: Currency is 

defined as the age of data when it is delivered to the user. It is dependent upon three key 

factors: (i) the time when the data is delivered to the user as query results (delivery time), 

(ii) the time when the data was entered or modified in the database (last update time), and 

(iii) how old the data was when it was entered into the system (age). Based on the 

measurement formula proposed in (Ballou, Wang, Pazer, & Tayi, 1998), currency can be 

formally described as shown in Formula 3, where the currency of a unit of data v is a 

function of its delivery and last update times, and its age. 

 
Currency(v) = DeliveryTime(v) – LastUpdateTime(v) + Age(v) 

(3) 

 



Volatility is defined as the length of time during which the data remains valid. It is also 

dependent upon three key factors: (i) the time when the data expires or becomes invalid 

(expiry time), (ii) the last update time of data, and (iii) the age of the data. Volatility can 

be formally defined as shown in Formula 4, where the volatility of a unit of data v is a 

function of its expiry and last update times, and its age. 

 
Volatility(v) = ExpiryTime(v) – LastUpdateTime(v) + Age(v) 

(4) 

 

Based on the definitions for currency and volatility, timeliness of a data unit v can be 

formally defined as shown in Formula 5. 

 
Timeliness(v,s) = {max[(1 – Currency(v)/Volatility(v)), 0]}

s
 

(5) 

 

Exponent s in Formula 5 is a parameter that allows control of the sensitivity of timeliness 

to the currency-volatility ratio, and its value should be chosen depending on context. For 

high volatility the ratio is large, while for low volatility the ratio is small; furthermore, as 

the ratio increases, timeliness can be slightly (e.g., s = 0.5) or significantly (e.g., s = 2) 

affected, or neither (e.g., s = 1). To be able to measure the timeliness of a given unit of 

data using the formulas described above, it is necessary to store values for each of the 

elements (quality factors) in the formulas, namely last update time, expiry time and age, 

for that data unit. As quality factor delivery time has its value recorded only on the event 

of the delivery of the data unit to a user, its value will differ from event to event, 

therefore it should not be stored. The storage of timeliness information in relational 

databases has been discussed in more detail in (Dong, Sampaio, & Sampaio, 2006), 

where the concept of QR is introduced as a mechanism for storing quality information. 

For example, in relation Product(product_ID, name, category, price) attribute 

price is a dynamic data unit, as its value can change frequently over time. Attributes 

name and category can be deemed as static, since the value for each will not change 

frequently over time. As illustrated in Figure 2.1, timeliness related information is stored 

in the QR associated with attribute price via quality key price_QID, which enables 

navigation from a price value to its timeliness information.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: A QR for the timeliness of attribute price in relation Product. 

Product 

<product_ID,nil> <name,nil> <description,nil> <price,price_QID> 

<001,nil> <Family100,nil> <Basic,nil> <399,101> 

<002,nil> <Family200,nil> <Advanced,nil> <599,102> 

 
QRef_Timeliness_price 

<price_QID,nil> <lastUpdateTime,nil> <expiryTime,nil> <age,nil> 

<101,nil> <2013-10-01 12:00:00,nil> <2013-12-01 12:00:00,nil> <6:00:00,nil> 

<102,nil> <2013-09-01 12:00:00,nil> <2013-11-01 12:00:00,nil> <9:00:00,nil> 

 



 

2.2.4 Reputation Dimension 

 

The reputation dimension of data quality was first defined in (Wang & Strong, 1996). 

This dimension received attention in the context of Healthcare (Deursena, Kostera, & 

Petkovica, 2008), Science (Gamble & Goble, 2011) and Web applications (Barbagallo, 

Cappiello, Francalanci, & Matera, 2010), (Peer, Vosgerau, & Acquisti, 2014). A broad 

definition is one that focuses on the reputation of data sources, indicating whether a data 

source is of high standing. Usually, long-established data sources have a higher 

reputation. For instance, stock information from the official NASDAQ website may have 

a higher reputation than the stock information from a local newspaper website.  

 

There is as yet no widely accepted measurement mechanism for reputation in the 

literature, due to its highly subjective nature. However, since the notion of reputation is 

mainly based on users’ experience accessing data sources, we have adapted the work 

discussed in (H. Wang, Yang, Zhao, & Gao, 2006), which proposes measuring the 

reputation of a data source using users’ experience, expressed through an arbitrary 

number of data source reputation-related attributes, such as accessibility and reliability. 

As an example, Figure 2.2 shows instances of a relation associated with a data source 

(represented as the URL from which each instance was obtained), via a QR, and the data 

source's reputation-related attributes, which enable the calculation of the reputation for 

that data source.  

 

Weights can be associated with each reputation-related attribute, to represent its relative 

level of importance among other reputation-related attributes. Each attribute and its 

weight have to be agreed on by the database administrators, data domain experts and end 

users upon metadata creation. Associated with each reputation-related attribute in the QR 

in Figure 2.2 is a score computed upon metadata creation. The computation is based on 

aggregating individual measures for each pair (data_source, reputation_attribute) 

submitted by end users of the data sources, since they have experience accessing the 

fitness for use of each data source.   

 

As any number of end users may submit a score, an aggregate function such as average 

may be used to calculate an aggregate of the available scores per pair, as shown in 

Formula 6, where Score_Attr(s,a) denotes the overall score for the reputation attribute 

a, calculated by averaging all available scores for that attribute (score[a,j]), submitted 

by a number (m) of users considering data source s. In other words, the score of a 

particular attribute is computed as the average of a number of ratings submitted by users 

of a given data source. A domain [0, 1] can be given to the users of the data source for 

expressing their ratings or existing ratings have to be mapped in terms of that domain, 

where 1 represents the highest quality level and 0 represents the lowest.  

 

Finally, the reputation measurement for a data source can be obtained by computing the 

weighted sum of the aggregated scores for each attribute as shown in Formula 7, where s 

denotes the data source whose reputation is being calculated, Weight[a] denotes the 

weight assigned to each attribute to reflect its importance among the other reputation 



attributes, Score_Attr[s,a] denotes the overall score for each attribute considering data 

source s, as described in Formula 6, and n denotes the number of attributes. 
                   m 

Score_Attr(s,a) = 
 

 score[a,j]  /  m 

                  j=1 

(6) 

 
               

 

                 n 

Reputation(s) = 
 

 Weight[a] * Score_Attr[s,a] 

                a=1 
 (7) 

 

The example in Figure 2.2 illustrates a QR storing information about the data sources 

from which values for attributes part_price and quantity_available in relation 

Part_Supply were obtained. In this example, the used reputation attributes are the level 

of accessibility and reliability of the data sources according to the users of these sources. 

The stored scores represent an aggregation of all scores for each attribute submitted by 

users, as suggested in Formula 6. Using the scores, the reputation quality for the sources 

described in the QR can be calculated. Note that more than one instance can be associated 

with the same data source. The quality of the data source from which an instance was 

obtained indirectly reflects the quality of that instance, since a user may choose to discard 

an attribute value if it was retrieved from an unreliable data source, and users can discard 

a data source and choose to find another one, depending on its reputation. 

 

2.3 Impact of Extensions on Integrity Constraints 
 

In this section, the following rules are proposed to support the relational integrity 

constraints in the presence of the extensions described in the previous sections.  

 

• Presence of NULL Values in QRs: NULL values for the quality factors mean that 

quality information is currently unavailable or it is unknown, rather than low quality. 

For instance, a NULL value for a reputation attribute indicates absence of input from 

users rather than a low quality score. 

 

 

 

 

 

 

 

 

 

 

 

 

Part_Supply 

<part_ID,nil> <supplier_ID,nil> <part_price,source_QID> <quantity_available,source_QID> 

<201,nil> <301,nil> <189.99,01> <505,01> 

<202,nil> <301,nil> <299.99,02> <467,02> 

 
QRef_Reputation_Part_Supply 

<source_QID,nil> <description,nil> <accessibility,nil> <reliability,nil> 

<01,nil> <www.alphacomputers.com,nil> <0.5,nil> <0.5,nil> 

<02,nil> <www.betacomputers.com,nil> <0.8,nil> <0.2,nil> 

 



Figure 2.2: A QR for the reputation of the data sources associated with attributes 

part_price and quantity_available in relation Supplier. 

 

• Atomicity of Attributes: Attributes of the form <attribute_value, FK_QR> are treated 

as an atomic unit, i.e., operations on such attribute cascades to its associated QR and 

quality factors. Consequently, tuple insertion, update and deletion are defined as 

follows: 

 

Tuple Insertion: Inserting tuples with non-NULL quality keys into a relation requires 

the associated QR also to have an inserted tuple with quality information, or requires 

the association of the inserted tuple with existing quality information in the QR. 

 

Tuple Deletion: Deleting tuples with non-NULL quality keys from a relation requires 

the associated quality information to be deleted from the QR, unless the information 

is associated with other tuples present in the database. 

 

Tuple Update: Updating tuples in a relation incurs the described tuple insertion and 

deletion actions.   

 

 

3. The Data Quality Query Language (DQ
2
L) 

 

DQ
2
L was designed to express data quality requests in relational databases as an 

extension to SQL, aiming at profiling the data with regard to a number of data quality 

dimensions. The extensions include an additional clause and a number of quality 

profiling functions to enable users to specify quality requests using declarative query 

expressions, and to measure the quality of intermediate and final query results, by 

calculating quality scores for individual data units, and to filter out low quality instances. 

 

DQ
2
L extends SQL with a single additional clause, called the WITH-QUALITY-AS clause, 

which is similar to the one proposed in (R. Y. Wang et al., 1995), (Dong, Sampaio, & 

Sampaio, 2006) in syntax and semantics. Therefore it supports the expression of 

constraints in the quality of the queried data and filtering capabilities. In addition, our 

framework provides facilities for the definition and implementation of quality profiling 

functions associated with the dimensions of quality against which data is measured, and 

which are a part of the database engine. For example, Accuracy, Completeness, 

Timeliness and Reputation are the currently implemented functions, discussed in 

Section 3.1.  

 

The quality profiling functions can be called from the WITH-QUALITY-AS clause as well 

as the SELECT clause. This simplicity combined with the extensibility of the set of 

algorithms that can be applied to implement each quality dimension distinguishes our 

framework from previous work. For example, to add a new quality profiling function that 

measures the reputation of data sources from which instances of the database were 

obtained (see Sections 2.2.4 and 4.3.4 for more details about the Reputation dimension 

and operator), considering that an operator for that dimension already exists, the 



implementation of an algorithm to represent the new Reputation operator is necessary. It 

is required a single operator to perform all of the new reputation-related functionality, 

i.e., the functionality must not be divided between two or more new operators, because if 

it is, then there will be dependencies between the (sub-) operators that will need to be 

incorporated into the optimization process, causing extensions to become more complex. 

The insertion of the new operator into a list of all physical operators is also necessary, so 

that this new operator can be taken into consideration during query optimization. Because 

the profiling operators share similarities in their implementation, one operator can be 

used as a template for the implementation of new operators, not incurring new operator 

dependencies other than the ones already anticipated and incorporated into the 

optimizers, making unnecessary the addition of new optimization heuristics. Research on 

common data quality application domains indicates that the dimensions of quality that 

mostly satisfy data quality requests have been incorporated into DQ
2
L (Wand & Wang, 

1996). However, if a new dimension of quality is to be added into the system, then an 

extension to the DQ
2
L syntax is necessary to add a new function to represent this new 

dimension, in addition to the physical level implementation of the new operator, and the 

insertion of this into the list of operators to be taken into consideration during logical and 

physical optimizations. These design decisions are often necessary in order to isolate the 

typical database user from the need to specify complex extensions to the functionality 

used by the query processor via advanced application programming interfaces. There is 

often a trade-off between flexibility and performance and in our framework we opted for 

a design that attempts to minimize the cognitive burden on the end user and to maximize 

performance towards scaling the approach for Big Data Scenarios, thus with some 

sacrifices to the flexibility provided to the end user when considering the addition of new 

quality dimensions. The complete DQ
2
L syntax is specified in Appendix A using an 

extension of Backus Naur Form.  

 

3.1 Querying with DQ
2
L 

 

In this section, examples of queries expressed in DQ
2
L are given to illustrate the usability 

and expressiveness of the language when specifying requests or constraints on the quality 

of relational data. The example queries are based on the business processes of an e-

commerce company that sells computer hardware. The focus is particularly on the 

business function of order fulfilment, where a variety of data quality problems that affect 

processes, such as sales, procurement, shipping, customer services, etc., are detected. In 

the following sections, a number of scenarios describing the company’s main business 

rules are described along with common database queries associated with each scenario, in 

which data quality requests and constraints are specified. The database schema against 

which the queries are submitted is described in Figure 3.1. Note that no QRs appear in the 

schema, indicating that users are unaware of the presence of quality-related information 

associated with the data. 

 

3.1.1 Scenario I: Sales 
 

The Sales Department accepts two different types of customer orders: direct and indirect. 

Direct orders are submitted electronically via a Web site, and are less likely to be 



incomplete, since to be able to submit a direct order, customers have to fill in all of the 

form’s fields. However, indirect orders are received from third party agencies varying in 

format, and so, are more likely to present completeness problems due to data being lost or 

transposed during translation.  

 

Completeness checks can be regularly performed on all orders using a simple DQ
2
L 

query, to identify incompleteness. Query 1, in Figure 3.2(a), shows how the checks can 

be expressed in DQ
2
L. It retrieves order numbers and customer IDs for all orders whose 

completeness quality is less than 1 (i.e., less than 100%). The query is particularly useful 

when a broad profile of a database is required for auditing purposes, where the overall 

completeness of each relation is requested and individual tuples that need to be 

completed have to be identified. Function completeness is applied over every tuple in 

table Order, returning true if the tuple completeness (see definition in Section 2.2.2) is 

less than 1. Notice that the ‘WITH QUALITY AS’ clause is used to specify quality-related 

filters. With standard SQL constructs, this query could not be easily expressed, since all 

attributes in each tuple would have to be tested for value completeness. Figure 3.2(b) 

illustrates this query in SQL. As all attributes are tested in the WHERE clause, for 

relations with a large number of attributes in their schemas, it becomes harder to write 

this query as all attributes need to be specified, imposing on the user an additional 

cognitive burden required to formulate the query. However, simpler completeness checks 

are possible using only SQL, for example, to retrieve all tuples in relation Order and 

leave for the database user the task of checking which tuples contain null values, or to 

retrieve all tuples in relation Order that have a null value for a couple of attributes only. 

Queries to check population completeness can also be expressed using SQL by the 

specification of predicates in the WHERE clause that require all tuples to have value "x" 

for attribute a, for example. 

 

Subsequently, incomplete orders are put in a pending status until they are revised and 

corrected.  For that, requests for further information are sent to the relevant customers or 

departments to confirm the order. Normally, a period of 14 days is given for the status of 

an order to change from pending to progressing. But half way into this period, the status 

of the order is checked and, if it is still pending, a further message is sent as a reminder 

about the order status. Query 2 in Figure 3.3(a) supports the process of checking the 

status of orders that have been pending for at least 7 days. This is done by finding all the 

orders that are currently pending and, among these, further selecting the orders whose 

status has remained unchanged for 7 days. 

 



 
 

Figure 3.1: Database Schema used in all example queries.  

 

 

 

 

Figure 3.2(a): Query example in DQ
2
L where the completeness function is used. 

 

Note that Query 2 could not be easily expressed in plain SQL using the database schema 

shown in Figure 3.1, and to enable the user to express an equivalent plain SQL 

expression to address the information request, the hidden QRs would have to be made 

visible. Figure 3.3(b) illustrates Query 2 expressed in SQL, assuming that all QRs are 

visible to the user. The additional join(s), the decision about which Timeliness formula to 

use and the complexity associated with expressing the formula using SQL without any 

errors, represent the additional work that is avoided when DQ
2
L is used. Note that, by 

using DQ
2
L, the user can simply set a timeliness threshold for all pending orders and 

keep only the pending orders whose timeliness is less than or equal to 0.5.  

 

Query 1: “Select all incomplete orders with their order numbers and customer 

IDs.” 

In DQ
2
L: 
SELECT order_No, customer_ID 
FROM Order 
WITH QUALITY AS COMPLETENESS(Order) < 1 
 



 

 

 

 

 

 

 

 

 

Figure 3.2(b): Query 1 expressed in SQL. 

 

Figure 3.4 shows the QR associated with the status attribute of Table Order. Note that 

the timeliness model described in Section 2.2.3 is used to calculate the timeliness of 

orders. In this example, the 14-day deadline represents the expiryTime for the pending 

status of an order; the 7-day deadline for checking the status of an order represents the 

deliveryTime for the status of the order, since it is the time up to which the change in 

the order status is assumed to have happened without delay; the time when the status of 

the order was last updated represents its lastUpdateTime; as the semantics associated 

with the age of an order is expressed inside the context of the other quality-related 

properties, it is set to zero for all tuples. Calculations of currency and volatility are 

performed by subtracting attribute values from the QR QRef_Timeliness_status, using 

hours as unit. For example, for the tuple whose order_No is 302, currency is 168 hours 

(7 days) and volatility is 336 hours (14 days), giving a total timeliness of 0.5. 

  

 

 

 

 

 

 

 

 

Figure 3.3(a): Query example in DQ
2
L where the timeliness function is used in both the 

‘select’ clause and the ‘with quality as’ clause. 

 

3.1.2 Scenario II: Procurement Management 
 

If orders in progress require the purchase of a large number of units of a specific PC part, 

then it is the responsibility of the procurement department to negotiate the supply of the 

parts from the available suppliers. In this context, it is important to obtain reliable 

information from the suppliers about prices and resources in stock to avoid failure in 

order fulfilment and loss of customers.  Query 3 shown in Figure 3.5(a) reflects this 

scenario, representing a request on the reputation of the source of information about price 

of a specific part  based on the experience of previous users of that source. The same 

query in SQL is shown in Figure 3.5(b). As for Query 2, the extra work that DQ
2
L 

isolates the user from is proportional to the number of joins between relations and QRs, 

Query 2: “Select the orders that are pending and have been waiting 

to be validated for more than 50% of the total waiting time.” 

In DQ
2
L: 
SELECT order_No, TIMELINESS(status) 
FROM Order 
WHERE status = ’Pending’ 
WITH QUALITY AS TIMELINESS(status) <= 0.5 

 

Query 1: “Select all incomplete orders with their order numbers and customer 

IDs.” 

In SQL: 
 SELECT order_No, customer_ID 
 FROM Order` 
 WHERE quantity IS NULL OR  
    submit_date IS NULL OR 
    ship_date IS NULL OR 
    status IS NULL; 

 



and, in this example, the number of reputation-related attributes the user wants to use 

with the associated weights. When DQ
2
L is used, the system automatically decides which 

attributes and weights are to be used, and specifies which joins are to be performed.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3(b): Query 2 expressed in SQL. 

 

 

Order 

 

 

 

 

QRef_Timeliness_status 

<status_QID,nil> <lastUpdateTime,nil> <expiryTime,nil> <deliveryTime,nil> <age,nil> 

<01,nil> < 2013-09-07 

13:00:00,nil> 

< 2013-09-15 

13:00:00,nil> 

< 2013-09-08 

13:00:00,nil> 

<0,nil> 

<02,nil> < 2013-09-09 

13:00:00,nil> 

< 2013-09-23 

13:00:00,nil> 

< 2013-09-16 

13:00:00,nil> 

<0,nil> 

<03,nil> < 2013-09-02 

13:00:00,nil> 

< 2013-09-16 

13:00:00,nil> 

< 2013-09-09 

13:00:00,nil> 

<0,nil> 

Figure 3.4: Extended relational schema for table Order, including the Quality Relation 

associated with attribute status. 

 

 

 

 

 

 

 

 

 

 

Figure 3.5(a): Query example in DQ
2
L where the reputation function is used in the 

‘select’ clause. 

<order_No,nil> … <status,status_QID> … 

<301,nil> … <progressing,01> … 

<302,nil> … <pending,02> … 

<303,nil> … <pending,03> … 

Query 3: “Select the price and reputation of the source from which the price 

for part 201 was obtained, if the reputation score for the source is greater than 

0.8.” 

In DQ
2
L: 
SELECT part_price, REPUTATION(part_price) 
FROM Part_Supply 
WHERE part_ID = '201' AND REPUTATION(part_price) > 0.8 
 

Query 2: “Select the orders that are pending and have been waiting 

to be validated for more than 50% of the total waiting time.” 

In SQL: 
 SELECT order_No, GREATEST(1 -  
 (TIMEDIFF(deliveryTime, lastUpdateTime) / 
 TIMEDIFF(expiryTime, lastUpdateTime)), 0) as timelinessStatus 
 FROM  Order, QRef_Timeliness_status 
 WHERE  status = 'pending' AND GREATEST(1 - 
 (TIMEDIFF(deliveryTime,lastUpdateTime) / 
 TIMEDIFF(expiryTime,lastUpdateTime)), 0) <= '0.5' AND 
 Order.status_QID = QRef_Timeliness_status.status_QID;  

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3.5(b): Query 3 expressed in SQL. 

 

Figure 2.2 illustrates the association between Table Supply_Part and a Reputation QR in 

which scores on the accessibility and reliability of data sources from which 

information about available quantities and prices of computer parts are provided. Note 

that, in this example, the data sources are web-based and may or may not be completely 

reliable or accessible at all times. Other reputation-related attributes can be associated 

with these sources, including trustworthiness or update frequency. 

 

3.1.3 Scenario III: Shipping Management 

 

When delivering products to customers, correct information about delivery periods and 

addresses is important, as delays impact on customer satisfaction. Data obtained from 

third party agencies may differ in format and may not be syntactically accurate when 

stored in the database. For instance, using different data formats for customer address, 

e.g. postcodes, may result in incorrect or inexistent addresses, thus, address checks are 

necessary before shipment. 

 

Illustrating the context of this scenario is Query 4 in Figure 3.6, expressing a check in the 

postcode of a customer to whom goods are to be delivered. The execution of this query 

involves the validation of a customer’s postcode by looking it up in an accurate data 

source, such as an address book. In other words, the accuracy function call is translated in 

terms of an SQL query to retrieve data stored in another table followed by an accuracy 

evaluation using one of the methods described in Section 2.2.1.  

 

Note that the accuracy evaluation method cannot be directly called from SQL, and has to 

be implemented as a separate function. Therefore, this query could not be easily 

expressed in SQL, and a more procedural implementation style is likely to be necessary. 

In Section 5, a discussion on the choice of evaluation method according to a number of 

criteria is provided. 

 

 

 

 

 

Query 3: “Select the price and reputation of the source from which the price 

for part 201 was obtained, if the reputation score for the source is greater than 

0.8.” 

In SQL: 
SELECT part_price, ((0.5 * accessibility) + (0.5 * reliability)) as 

 reputation_part_price 
FROM Part_Supply, QRef_Reputation_Part_Supply 
WHERE Part_Supply.source_QID = 

 QRef_Reputation_Part_Supply.source_QID AND part_id = '201' AND   
((0.5 * accessibility) + (0.5 * reliability)) > 0.8; 
 



 

 

 

Figure 3.6: Query example in DQ
2
L where the accuracy function is used in the ‘select’ 

clause. 

 

The expression of queries in which multiple dimensions of quality are involved is also 

possible. As an example, Query 5 in Figure 3.7 requests information about the timeliness 

of an attribute and the completeness of a relation. The combination of multiple 

dimensions of quality in a single query, will make it harder to write the equivalent query 

in plain SQL, highlighting the advantages of our approach.  

 

4. DQ
2
S Architectural Overview 

 

This section describes the main architectural components of DQ
2
S, its query processing 

approach, including extensions to the relational database engine with data profiling 

operators and the query execution plan generation. 

 

4.1 Design Approach and Main Components 

 

When designing DQ
2
S, the layered modular architecture of RDMSs was taken into 

consideration for the fulfilment of the following requirements: (i) no changes to the 

underlying host RDBMS; (ii) no interference between the DQ
2
S components and the 

host’s components; and (iii) easy porting of DQ
2
S to other RDBMSs. These requirements 

were fulfilled by allowing the DQ
2
S functionality to be a non-invasive complementary 

query processing engine (dual-path architecture), allowing users to submit SQL and 

DQ
2
L queries alike via the same interface.  The DQ

2
L engine is used as an alternative to 

the host’s engine, for the cases when DQ
2
L query expressions are submitted.  

 

The approach of having two engines to execute query expressions avoids any need for 

changes to the host RDBMS. As described in Section 4.2, during query processing a 

DQ
2
L expression is translated into SQL form and processed by the DQ

2
S optimizer.  

Requirement (iii) was fulfilled by developing the DQ
2
S layer as a seamless extension to 

the host’s architecture and supporting the communication between DQ
2
S and the host via 

a JDBC interface providing unified access to a wide range of database back-ends (Taylor, 

2003).  

 

 

 

 

 

 

 

 

 

 

Query 4: “Select the customer’s name and the accuracy of his/her postcode for the 

customer with id equal to 10.” 

In DQ
2
L: 
SELECT name, ACCURACY(postcode) 
FROM Customer 
WHERE customer_ID = 10 

 

Query 5: “Select the supplier’s ID, price and available quantity of all parts whose 

model include ‘WM’, (for example, ‘WM19’), considering the Part-Supply tuples 

whose completeness score is greater than 0.8 and whose timeliness score for price is 

greater than 0.5.” 

In DQ
2
L: 
SELECT PS.supplier_ID, PS.part_price, PS.quantity_available 
FROM Part_Supply PS, Part P 
WHERE P.part_model LIKE ‘%WM%’ AND  
             PS.part_ID = P.part_ID 
WITH QUALITY AS 

COMPLETENESS(Part_Supply) > 0.8 AND 
 TIMELINESS(PS.part_price) > 0.5 

 



 

 

 

Figure 3.7: Query example in DQ
2
L where functions Timeliness and Completeness are 

both used in the ‘with-quality-as’ clause. 

 

The main architectural components are illustrated in Figure 4.1 where the DQ
2
S 

components are depicted in grey colour and described as follows: 

 

• Application Interface: This is the interactive interface to formulate and submit 

queries as well as browse query results. Two query languages are supported: SQL 

and DQ
2
L. Thus, there are two alternative paths to the underlying database 

through this unified interface, either of which is taken depending on the 

expression input by the user. 

 

• Pre-parser: The role of the pre-parser is to distinguish between DQ
2
L query 

expressions and SQL ones; an SQL query is sent to the host RDBMS for 

processing, while a DQ
2
L one is sent to the DQ

2
L processing component. 

 

• DQ
2
L Component: In this component, queries from users are further parsed, 

translated into a plan, optimized and executed; query results are evaluated, 

marked, filtered, and possibly ranked. In particular, a DQ
2
L query is translated 

into a logical algebraic query plan with data quality assessment operations. 

Following that, the query optimization process takes place to construct an 

execution strategy from the logical plan. A detailed description of the query 

processing framework is presented in Section 4.2. Note the dashed arrow in 

Figure 4.1 representing the communication channel linking the DQ
2
L component 

to the host RDBMS. 

 

• RDBMS: The host RDBMS stores data and quality-related data as relations to 

answer both SQL and DQ
2
L queries.  

 

 
Figure 4.1: Main Architectural Components. 



4.2 Query Processing 
 

Figure 4.2 illustrates the functional components involved in the processing of DQ
2
L 

queries. Once a DQ
2
L expression takes the DQ

2
L path, it is submitted for further parsing, 

during which it is transformed into a parse tree. The parse tree is translated into an 

algebraic expression by the Logical Query Plan Generator (LQPG), generating a Logical 

Query Plan (LQP) (please, refer to Section 4.4 for a more detailed description of this 

translation step). At this stage, the LQP contains solely relational algebra operators, 

namely select, project, join, etc. Next, the LQP is submitted to optimization, which is 

traditionally composed of logical optimization and physical optimization. 

 

The logical optimization of DQ
2
L queries is performed by the Query Rewriter (QRw), 

and is divided into two sub-phases, the first comprising traditional logical optimization 

and a second comprising an extended logical-level optimization focused on the insertion 

of data profiling operators into the LQP. During the first sub-phase, the LQP has 

operators reordered, removed and/or inserted, according to traditional heuristics 

developed for relational databases. Examples of such heuristics include: placing selection 

and projection operations so that these are executed the earliest as possible in the plan; 

placing the most selective joins to be executed before the least selective joins, etc. During 

the second sub-phase, data profiling operators are inserted into the LQP (e.g., 

timeliness, accuracy, etc.) causing operators to be further reordered or inserted into 

the LQP. The result is an extended LQP with explicit quality assessment functionality 

(LQPext). An LQPext for each example query in Section 3.1 is described in Section 4.3. 

This sub-phase does not have a counterpart in traditional relational query optimization. 

 

Next, the generated LQPext is submitted to physical optimization, carried out by the 

Physical Query Plan Generator (PQPG), to generate a Physical Query Plan (PQP). 

During this phase, the operators in the LQPext are replaced with operators of the extended 

physical algebra, i.e. the set of algorithms that implement each of the operators in the 

logical algebra. A description of the process of selecting appropriate algorithms for each 

operator in the LQPext is discussed in Section 5.  

 

Finally, the PQP is submitted to execution, carried out by the Query Executor (QE), 

which is also responsible for delivering query results to users. The QE, in turn, is 

composed of the Data Evaluator (DE) and the Data Manager (DM). While the DE 

comprises the database engine (described in Section 4.3), the DM is responsible for 

communicating with the host RDBMS. The unit of communication between the DM and 

the host RDBMS is a general and system-independent tuple-like data type, into which 

data coming from the host are mapped. Thus, the reuse of the DQ
2
L query processor 

across relational products requires this mapping to be implemented making the DM the 

only component that needs to be rewritten when bundling DQ
2
L with a host RDBMS.  

 

4.3 Examples of Extended Logical Query Plans (LQPext) 

 

For the application described in Section 3.1, four logical operators have been added to the 

database engine, namely completeness, timeliness, reputation and accuracy, to 



address the most common data quality problems (Paulson, 2000), (Segev, 2001), 

(Scannapieco, Mirabella, Mecella, & Batini, 2002). These four data profiling operators 

represent the four data quality dimensions described in Section 2.2 and the examples 

relate to the queries shown in Figures 3.2(a), 3.2(b), 3.3(a), 3.3(b), 3.5(a), 3.5(b) and 3.7. 

The following sections describe each of the four operators. 

 

4.3.1 The Accuracy Operator 
 

The accuracy operator, represented as accuracy(R.a), calculates the accuracy score for 

each instance of attribute a in relation R and outputs a new relation Rres, whose schema is 

identical of that of R, except that Rres has an additional attribute associated with the 

calculated accuracy score. For example, consider Query 4 described in Figure 3.6. The 

LQPext for this query is shown in Figure 4.3, and an illustration of the tuples output by 

each operator in the LQPext is illustrated in Figure 4.4. Note from Figure 4.3 that while 

the select operator retrieves tuples from the Customer table and filters out the ones whose 

value for customer_ID is different to 10, the accuracy operator adds attribute 

accuracy_postcode to its input tuple. 

 

4.3.2 The Completeness Operator 

 

The completeness operator, represented as completeness(List[R.ai]), calculates the 

completeness score for a list of attributes ai in relation R. If all attributes in R are 

considered, then the operator can be represented as completeness(R). When a sub-set of 

the attributes in R is considered, tuple completeness is calculated considering only the 

listed attributes. Once the completeness score for each tuple is calculated, the 

completeness operator adds a new attribute to each tuple containing the calculated 

completeness score. For example, consider Query 1 described in Figure 3.2(a). The 

LQPext for this query is shown in Figure 4.5. Note that two select operators are present in 

the plan: the first, at the leaf of the tree, is used to retrieve all tuples from relation Order, 

and the second is used to filter out Order tuples for which the completeness score is less 

than 1. The completeness score is calculated by the completeness operator and attached 

as a new attribute to each input tuple (completeness_Order). 

 



 
Figure 4.2: Query Processor Components of DQ

2
S. 

 

 
Figure 4.3: LQPext for Query 4. 

 
     Project 
 

 Accuracy 
 

Select 

 

Figure 4.4: Tuple types output by each operator in the LQPext for Query 4. 

 

 

C.name C.accuracy_postcode 

C.customer_ID … C.postcode … C.accuracy_postcode 

C.customer_ID … C.postcode … 

Project(C.name, 
C.accuracy_postcode 

Accuracy(C.postcode) 

Select(Customer C,     

C.customer_ID=10) 



 
Figure 4.5: LQPext for Query 1. 

 

4.3.3 The Timeliness Operator 

 

The timeliness operator, represented as timeliness(R.a), receives an attribute a of 

relation R and calculates the timeliness score for each instance of R.a, attaching the 

scores onto R as the value of a new attribute. The timeliness score calculation formula 

was originally proposed in (Ballou, Wang, Pazer, & Tayi, 1998), and was adapted in this 

paper to be used in the context of the application described in Section 3.1. Figure 4.6 

shows an LQPext for Query 2, illustrated in Figure 3.3(a). The timeliness operator is 

located between two select operators. The one at the leaf of the tree is used to retrieve all 

tuples from QR Q_Ref, and the second is used to filter out Q_Ref tuples for which the 

timeliness score is less than 0.5 (please, refer to Figure 3.4 for a description of the 

schema for relation Order and its QR). The timeliness score is calculated by the 

timeliness operator and attached as a new attribute to each input tuple. Note that the input 

tuples to the timeliness operator are Q_Ref tuples, despite the fact that the timeliness 

being calculated is that for attribute Order.status. The reason for placing timeliness 

before the join operator on the Q_Ref branch of the tree is performance improvement 

obtained from the decreased cost of the execution of the join due to the high selectivity of 

the select filtering on the timeliness scores, as discussed in Section 4.4. 

 

4.3.4 The Reputation Operator 
 

The reputation operator, represented as reputation(R.a, List<attr,w>), receives as 

input an attribute a of relation R and a list of pairs composed of a reputation indicator 

(i.e., a reputation attribute) and its assigned weight, specified in a DQ
2
L query expression 

(e.g., <accessibility, 0.5>). It uses this input to calculate the reputation score for 

each instance of a, and attaches the scores to R as the value of a new attribute. Figure 4.7 

shows an LQPext for Query 3, illustrated in Figure 3.5(a). 
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Figure 4.6: LQPext for Query 2. 

 

 
Figure 4.7: LQPext for Query 3. 

 

4.4 Mapping DQ
2
L Query Expressions into Algebraic Query Plans 

 

As described in Section 4.2, a parsed DQ
2
L query tree is submitted to a number of 

transformations for the generation of a PQP. The following describes the four-step 

process of transforming a parsed DQ
2
L query tree into a PQP. Figures 4.8 and 4.9 

illustrate the application of steps 1 and 2, respectively, over Query Q2 (Figure 3.3(a)). A 

description of the schema for relation Order and its QR (QRef_Timeliness_status) are 

shown in Figure 3.4.  

 

Note from Figure 4.8 that the FROM and WHERE clauses of the SQL expression appear 

expanded when compared to their counterparts in the DQ
2
L expression in Figure 3.3(a), 

to include the following details: table QRef_Timeliness_status  (or QRef, for short) 

and predicates ‘timeliness(status)<=0.5’ and ‘O.status_QID = Q.status_QID’. 

The first predicate includes a call to a quality function involving the Order.status 

attribute, which accesses data stored in QRef. This function call is translated in terms of 

an operator from the extended algebra during STEP 3. However, at STEP 2, it is treated 

as an unchecked attribute. Also note that attribute ‘Order.status_QID’ represents the 

foreign key attribute that associates tuples from table Order with tuples from QRef. 

Project(order_No, 
timeliness_status) 

Select(Order O, 

O.status=’Pending’ 

Timeliness( 

Q.timeliness_status) 

Join(O.status_QID = 

Q.status_QID) 

Select(Q_Ref Q) 

Select( 

Q.timeliness_status<0.5) 

Project(O.order_No, 

O.status_QID) 

Project(Q.status_QID, 

Q.timeliness_status) 

Project(P.part_price,P.reputation_part_price) 

Reputation(P.part_price,(<accessib,0.5>,<reliab,0.5>)) 

Select(Part_Supply P, P.part_ID='201') 



 

STEP 1. Mapping of a parsed DQ
2
L query tree into a SQL query tree: 

During this step, the FROM clause of a DQ
2
L query is expanded to include all the 

QRs not explicitly mentioned in the query, but which are relevant to its execution; 

the WHERE clause is also expanded to include any predicates involving the QRs, 

specified in the ‘WITH QUALITY AS’ clause of the original DQ
2
L expression; 

and the ‘WITH QUALITY AS’ clause is removed. The result is a SQL query tree 

that is parsed and type-checked against schema information. However, calls to 

data profiling functions, such as timeliness(), are not ignored and are, instead, 

treated as unchecked attributes.  

 

STEP 2. Mapping of a SQL query tree into a logical (relational) algebra plan: 

This step encompasses the traditional procedures for generating a (logical) 

relational algebra expression from a parsed query tree. At the end of this process, 

a LQP is generated, which contains operators of the relational algebra, but does 

not include any data profiling operators, since calls to data profiling functions 

continue to be ignored.  

 

STEP 3. Mapping of a logical (relational) algebra plan into a logical DQ 

algebra plan: 

In this step, data profiling function calls are replaced with appropriate attribute 

names and related (logical) data profiling operators are added to the query plan. 

This step is followed by logical optimization for DQ
2
L queries, performed by the 

QRw component. The result of this step is an LQPex, as discussed in Section 4.2. 

 

STEP 4. Mapping of a logical DQ algebra plan into a physical DQ algebra 

plan: 
During this step, an LQPex is mapped into a PQP, considering traditional physical 

optimisation rules and heuristics, as well as a few additional optimisation rules, 

discussed in Section 5. 

 

 

 

 

 

 

 

 

 

Figure 4.8: Equivalent SQL expression for Query 2.  

 

During STEP 3, the LQP generated in STEP 2 is mapped into an LQPext, by replacing 

data profiling function calls with operators of the extended relational algebra. An LQPext 

for Query 2 is illustrated in Figure 4.6. Note the following details:  In the LQP expression 

(Figure 4.9), the predicate involving the Order.status attribute is a part of the select 

operator that retrieves tuples from the Order relation; in the corresponding LQPext 

“Select the orders that are pending and have been waiting to be 

validated for more than 50% of the total waiting time.” 

In SQL syntax: 
SELECT O.order_No, TIMELINESS(O.status) 
FROM Order O, QRef_Timeliness_status Q 
WHERE O.status = ’Pending’ and TIMELINESS(O.status) <= 0.5     
and O.status_QID = Q.status_QID; 

 



(Figure 4.6), this predicate is translated into the combination of a timeliness and a select 

operators which are executed before the join operator. This change is the result of 

optimization performed by the QRw component whereby the timeliness score for each 

tuple in relation QRef is calculated and the tuples are filtered based on this score before to 

the join between Order tuples and QRef_Timeliness_status tuples takes place, to 

minimise the cost associated with the join operator. Details of STEP 4 are discussed in 

Section 5.  

 

Figure 4.9: LQP for query expression in Figure 4.8. 

 

 

5. Query Optimization in the Presence of Data Profiling Operators 
 

This section shows how traditional heuristics developed for optimizing query execution 

plans in relational databases can be applied in the presence of data profiling algorithms. 

The heuristics focus on the reordering of operators in a query plan, performed during 

logical optimization, and are described in Section 5.1. Section 5.2 discusses the selection 

of appropriate algorithms for data profiling with a focus on specific quality dimensions 

and the task at hand. A discussion about the trade-offs between selecting suitable 

algorithms and performance issues is also provided. 

 

5.1 Applying Traditional Heuristics over Extended Query Plans  
 

Although heuristics are typically combined with cost models for efficient cost based 

optimization, cost models are not the main focus in this paper and shall be addressed in 

future work. In this section, we revisit the most common heuristics used in the pruning of 

the search space of possible execution plans for a relational query in the presence of the 

data profiling operators discussed in Section 4.  

  

As suggested in Section 4, there is no dependence relationship between the data profiling 

operators in the sense that the attribute generated by an operator is not used in the 

execution of another one of those operators. However, dependencies between data 

profiling operators and traditional operators of the relational algebra may be identified. 

Figure 4.6 illustrates an example, where attribute timeliness_status, added to each 

input tuple by the timeliness operator, is involved in a selection predicate applied to the 

tuples prior to the join between tables Q_Ref and Order, indicating a dependency 
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Select(Order O, 

O.status=’Pending’ ), 

timeliness(O.status)<0.5) 
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between timeliness and this particular instance of the select, which forces timeliness to be 

executed before this select.  

 

Below, the relational heuristic rules of execution of selections and projections as early as 

possible in query execution for decreasing the size of intermediate results (Yu & Meng, 

1998), (Garcia-Molina, Ullman, & Widom, 2013), (Connolly & Begg, 2014) are revisited 

to deal with LQPext.  

 

• Heuristic Rule 1: If the attribute generated by a data profiling operator is not 

relevant to any select operator, execute the data profiling operator as late as 

possible.  

 

Because data profiling operators increase the size of the input tuples, pulling them 

up in the LQPext tree can minimize resource consumption and, hopefully, improve 

performance by keeping the size of intermediate results small for most of the 

query execution time. 

 

• Heuristic Rule 2: If the attributes generated by data profiling operators are 

relevant to any selection predicate, execute the operators as early as possible.   

 

This rule is based on the traditional heuristic of placing selection operations as 

early as possible in the query plan to decrease the size of intermediate results. The 

earlier a data profiling operator is performed, the earlier the select operator   that 

uses its data profiling attribute can be executed. Data profiling operators add one 

attribute to the input tuples, however a decrease in the number of input tuples 

represents a more significant performance improvement in most cases, especially 

when the number of input tuples is large and the selectivity of the predicate is 

high. 

 

• Heuristic Rule 3: Projections that discard attributes relevant to the execution of 

data profiling operators should be pushed down the query plan for only as far as 

these attributes are not discarded before they are used. 

 

This rule extends the traditional heuristic of pushing projections down the query 

plan to improve system performance in case of memory constraints (Yu & Meng, 

1998), (Garcia-Molina, Ullman, & Widom, 2013), since projections discard 

attributes that are irrelevant to the query execution.  

 

• Heuristic Rule 4: Assuming a pipelined approach to implementation, for queries 

in which quality profiles involving multiple dimensions are requested, the use of 

query plans shaped as left-deep or right-deep trees can gain in performance since 

these queries incur multiple joins. 

 

This rule extends the traditional heuristic of exploiting pipelining to concurrently 

execute the operators of a left-deep or right-deep tree to improve system 

performance  (Garcia-Molina, Ullman, & Widom, 2013). 



 

To illustrate the application of the heuristic rules, consider the LQPext in Figure 4.6. The 

application of Heuristic Rules 1 and 2 has ensured that the selection involving the 

timeliness attribute is executed before the join, by placing both the selection and the 

timeliness operators down on the left branch of the plan. Note that, although the input to 

the timeliness operator is attribute status of relation Order, its placement onto the left 

branch of the plan was necessary to enable the calculation of the timeliness score for 

attribute status as well as the filtering of tuples based on this score before the join 

between relation Order and its QR. The application of DQ Heuristic Rule 3 represents a 

performance improvement when dealing with the problem of memory constraints. In such 

case, projections are executed before the join to decrease the size of tuples in the LQPext 

in Figure 4.6. 

  

In the presence of predicates involving multiple data profiling attributes, the most 

selective predicate should be executed first, as suggested in the example illustrated in 

Figure 3.7, which shows a more complex query with two data profiling operators, two 

selections over data profiling attributes and two join operators. The corresponding LQPext 

in Figure 5.1 shows the joins ordered according to predicate selectivity and all select 

operators being executed before the joins, to decrease runtime costs. Since pipelining is 

not supported in the current prototype, the application of Heuristic Rule 4 is not yet 

possible. 

 
Figure 5.1: LQPext for Query 5 in Figure 3.7. 

 

5.3 Physical Optimization 
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Adding data profiling capabilities to query processing incurs, in most cases, the execution 

overhead of an additional join operation between a relation and its QR (a detailed 

performance evaluation will be provided in future work). Moreover, the selection of the 

best algorithm for executing a data profiling operation should not be based on execution 

cost, but on the task at hand. For example, if two different methods for measuring 

accuracy are available, e.g., EditDistance and Boolean, then, even though the Boolean 

algorithm may be the cheapest in terms of running costs, the algorithm implementing the 

most suitable method for measuring the accuracy of a particular data unit for a particular 

user should be selected.  

 

While a user should be allowed to choose the most suitable methods to measure the 

quality of a data item for the task at hand, some users may prefer for this choice to be 

made automatically. For this purpose, a mechanism for automatically identifying users’ 

quality requirements was devised which uses ideas from view management in database 

systems.  Based on information associating data units with quality measurement methods 

and user groups, a query optimizer is able to select the method that represents the 

preferred choice by the users of a certain group in most cases. For example, in an 

organization, different departments have different quality requirements, data access 

patterns and views of how quality should be measured, so each department can represent 

a user group. By collecting statistics on data access and selected method to measure 

quality to build user group profiles, and by enabling these profiles to be accessed and 

interpreted by the query optimizer, a quality-targeted optimization is achieved. These 

profiles are called view_packages.   

 

Consider the view_packages described in Tables B.1 and B.2 in appendix B, associated 

with users from the Sales and the Shipping departments of the company described in our 

examples, respectively. Each view_package has an id, a name, and a list of the most 

frequently accessed attributes by its group users. The association of an attribute 

with a data quality measurement method represents the most appropriate choice at 

physical-level optimization regarding a dimension of quality. However, an attribute may 

be associated with a number of evaluation methods, if each such method is related to a 

different dimension of quality. Data profiling operators applied over attributes for which 

no association with evaluation methods is available should be selected based on response 

time, if multiple alternatives are present.  

 

The set of all view_packages is extensible and is stored in the Data Dictionary, being 

accessed by the PQPG component. In addition, individual users are able to write their 

own view_package, which has priority over any the group package, and users can select 

their preferred quality measurement methods at query submission, via the user interface. 

 

 

6. Preliminary Empirical Evaluation 
 

This section describes a preliminary evaluation of the approach, with a focus on the 

optimization heuristics suggested in Section 5.  



 

6.1 Test Queries and Environment 

 
Queries 2 and 5, described in Figures 3.3(a) and 3.7, respectively, were used in this 

preliminary evaluation, since they share properties with all other queries presented in 

Section 3. Query 2 is simple, containing one profiling operator and one join. Query 5 is 

more complex, containing two profiling operators and two joins. For both queries, the 

scores generated by the profiling operators were used to filter the query results.  Two 

query plans were tested for each query, the first being an optimized plan, resulting from 

the application of the heuristics described in Section 5, and the second, non-optimized, 

having the profiling operators added to the top of the query plan, as the query processing 

steps described in Section 4.4 suggest. Figures 4.6, 6.1, 5.1 and 6.2 show the query plans.  

 

 
Figure 6.1: Non-optimized LQPext for Query 2. 

 

Three MySQL relational databases with similar schemas were used in the experiments. 

Refer to the schema described in Figure 3.1 and the QRs described in Figures 2.1, 2.2, 

and 3.4 for the three databases. The first database contained 1,000 tuples in each relation 

(DB1), while the second contained 10,000 tuples (DB2) and the third 100,000 tuples in 

each relation (DB3). When populating the databases, we made sure that value 

distributions remained with the same proportions to keep the selectivity of the predicates 

constant as the size of the database increased. 

  

Each query plan was run three times over each database and the average elapsed time was 

obtained for each pair (queryPlani, DBsizej). The experiments were performed on an Intel 

(R) Core (TM) i5-4200U CPU @ 1.60 GHz 2.30 GHz machine, with 8.00 GB of RAM, 

running a 64-bit Windows 7 OS. In between runs both OS and MySQL database 

management system caches were flushed. 

 

6.2 Results 

 

Figure 6.3 shows the experimental results. In the figure's legend, four query plans are 

specified, two for Query 2 and two for Query 5. The notation (NO) and (O) distinguishes 

between the non-optimized and the optimized query plans, respectively. Axis x shows the 
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variation in database size and axis y shows the average elapsed time associated with each 

pair (queryPlani, DBsizej). 

 

Note that, for both queries, the optimized query plans (O) presented a shorter elapsed 

time than their non-optimized counterparts (NO). Table C.1 in appendix C shows the 

average elapsed times for Query 2. For DB1, the optimized plan was 1.38 times faster 

than the non-optimized plan. For DB2, the optimized plan was 2.64 times faster than the 

non-optimized plan. And for the DB3, the optimized plan was 3.42 times faster than the 

non-optimized plan. As the size of the data increased from DB1 to DB2, the application 

of the heuristics showed a significant advantage, being that of the optimized plan over the 

non-optimized one 28% for DB1, and 62% DB2. However, this advantaged was less 

significant when the data was increased from DB2 to DB3 (only 71%), due to the intense 

paging carried out during query execution, as there was not enough memory for the input 

relations. The paging could have been minimized by a change in implementation 

approach from fully materialization of relations in memory to pipelining of tuples from 

the leaves of the query plan to its root. 

 

 
Figure 6.2: Non-optimized LQPext for Query 5. 

 

Table C.1 in appendix C shows the average elapsed times for Query 5. For DB1, the 

optimized plan was 1.09 times faster than the non-optimized one. For DB2, the optimized 

plan was 1.58 times faster than the non-optimized plan. And for the DB3, the optimized 
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plan was 1.49 times faster than the non-optimized plan. Similar to Query 2, the 

application of heuristics for Query 5 showed to be more advantageous when data 

increased from DB1 to DB2 (from 9% to 37% improvement) and less significant with the 

increase from DB2 to DB3 (from 37% to 33% improvement), also due to the intense 

paging carried out during query execution. 

 

 

 
Figure 6.3: Experimental results. 

 

The three heuristics described in Section 5 optimized the execution of Query 2 and Query 

5 by decreasing the sizes of intermediate results. Considering the optimized query plan of 

Query 2 in Figure 4.6, the project operator on the left branch of the tree decreases the size 

of each tuple from relation Order by 6 attributes. Taking all tuples flowing from that 

branch, for DB1, this represents a decrease of (500 x 6) attributes, taking into account 

that the selectivity of predicate O.status=’Pending’is 50%; for DB2 it represents a 

decrease of (5,000 x 6) attributes; and for DB3, it represents a decrease of (50,000 x 6) 

attributes. The project operator on the right branch of the tree, in turn, decreases the size 

of each tuple by 5 attributes. This decrease in tuple size not only saves memory space, but 

also makes the sequential search for an attribute in a tuple to become faster, causing the 

execution of several operators to become more efficient. The select operator that depends 

on the timeliness calculation on the right branch of tree discards 50% of the tuples 

flowing from that branch, making the join faster as its right input becomes significantly 

smaller. 

 

Considering the optimized query plan of Query 5 in Figure 5.1, the project operator on 

the left branch of the tree decreases the size of each tuple from relation Part by 2 

attributes. Taking into account that the selectivity of the predicate is 50%, that represents 

a decrease of (500 x 2), (5,000 x 2) and (50,000 x 2) for DB1, DB2 and DB3, 

respectively. The project operators on the right branch and the extreme right branch of 

the tree decrease the size of each of their input tuples by 2 and by 5 attributes, 



respectively. The select operator that depends on the completeness calculation has a 

selectivity of 0%, given that there were no incomplete tuples in relation Part_Supply in 

any of the databases, and so, the placement of this select in the query plan does not incur 

any benefit. Therefore, the join between relations Part and Part_Supply has the same 

cost as its correspondent in the non-optimized plan. This may be one of the reasons why 

the optimized plan for Query 2 represented a greater improvement over its non-optimized 

equivalent than it seems to be the case for Query 5. On the other hand, the select operator 

that depends on the timeliness calculation has a selectivity of 50%, making the join 

between relations Part_Supply and the timeliness Q_Ref faster. 

 

This preliminary evaluation has shown that the combination of data profiling operators 

with relational algebra operators in the query engine, in particular, the application of 

select operations over data quality profiling scores, has provided an opportunity for 

further decreasing the sizes of intermediate results during query processing, improving 

overall elapsed time of query execution. We believe this to be a promising way of 

discarding lower quality data from query results using more complex criteria other than 

simple attribute value-based filtering of very large data sets, as the query is executed. Our 

future work includes increasing sizes of relations horizontally as well as vertically to 

further test the benefits of our approach to query processing, implement our operators 

using multi-pass algorithms and implement our framework using the MapReduce 

programming paradigm. 

  

 

7. Related Work 
 

Techniques and tools have been proposed to facilitate the task of data profiling, enabling 

users to (semi-) automatically profile their data, preparing it for optimization, as 

described in the work by Poosala et al. (Poosala, Haas, Ioannidis, & Shekita, 1996), 

knowledge discovery, as described in the work by Yao and Hamilton (Yao & Hamilton, 

2008), or data repairing and cleansing, as described in the works by Fan et al. (Fan, 

Geerts, Jia, & Kementsietsidis, 2008), Bravo et al. (Bravo, Fan, & Ma, 2007) and Huhtala 

et al. (Huhtala, Kärkkäinen, Porkka, & Toivonen, 1999); the four previous references are 

mostly focused on detection of inconsistencies in relational data sets, identified as 

violations of dependencies between attributes.  

 

More recent work in detection of data quality problems focused on violation of 

dependencies in relational data, e.g., functional, conditional functional and inclusion 

dependencies, includes the work by Beskales et al. (Beskales, Ilyas, Golab, & Galiullin, 

2014), Dallachiesa et al. (Dallachiesa et al., 2013) and Geerts et al. (Geerts, Mecca, 

Papotti, & Santoro, 2013). Acknowledging the sole use of such dependencies may 

overlook other, more subtle, data quality problems, other work such as Fan et al. (Fan, Li, 

Ma, Tang, & Yu, 2012) and Yakout et al. (Yakout, Berti-Equille, & Elmagarmid, 2013) 

have relied on mechanisms to extend the range of data quality problems in consideration, 

including the use of master data and statistical machine learning. In the same spirit, our 

work seeks to offer an additional mechanism for revealing data quality problems to the 

database user by facilitating the querying of stored data quality information with which 



relational data is annotated, and by easing the measurement of data quality levels and 

data filtering, considering objective definitions of common data quality dimensions. To 

obtain data quality measurements in DQ
2
S, quality-related metadata is associated with the 

stored data. From assessing the data quality literature, previous work that has also used 

metadata to describe quality-related information includes the following:  

 

• Mecella et al. propose a framework for managing data quality in a distributed and 

cooperative information system, which includes an XML data model that enables 

each site in the system to export its data and quality data according to an agreed 

model. The framework also includes a centralised broker responsible for answering 

requests from all sites and serving a requesting site with the best quality units of data 

according to the exported information (Mecella et al., 2003);  

 

• Shankaranarayanan and Cai propose a data quality management tool to be used in 

integration with Information Systems that support decision making tasks. The tool 

allows users to construct maps describing stages in the lifecycle of the target data, 

which include information about how the data has been composed and processed at 

each stage, taking completeness into account (Shankaranarayanan & Cai, 2006);  

 

• Furber and Hepp (Furber & Hepp, 2011) propose a conceptual, ontology-based model 

for representing quality-related knowledge and requirements for Web data. In this 

model, data quality requirements are expressed as executable rules, enabling the 

cleansing of data sources via Semantic Web formalisms; 

 

• Klein et al. (Klein, Do, Hackenbroich, Karnstedt, & Lehner, 2007) propose a model 

to propagate streams of data along with its corresponding quality information in 

sensor-based data servers. In addition, meta-model constructs are proposed, extending 

the relational model, in order to allow the storage of the streaming data in a relational 

database. It is not clear how query processing is affect by the proposed extensions;  

 

• The work that is most related to ours is by Mutsuzaki et al. (Mutsuzaki et al., 2007) 

which propose extensions to SQL and the relational data model to enable users to 

access information about lineage of data as well as uncertainty in the context of the 

Trio database management system. Queries in the Trio Query Language (TrioQL) are 

translated into SQL statements, and are executed over standard relational tables in 

which lineage-related data is also stored (Mutsuzaki et al., 2007).  In this approach, 

functional extensions to the relational model are added as stored procedures, and so, it 

cannot be combined and optimized together with other data manipulation functions.  

 

Another work proposing query language extensions to facilitate data quality assessment 

is (Embury, Missier, Sampaio, Greenwood, & Preece, 2009), proposed by Embury et al., 

where the focus is in the specification of domain-specific quality constraints to be 

enforced during query processing, considering XQuery as the target query language. In 

this work, the quality assessment can also be shared amongst users in the form of Web 

services. However, in this approach, each user must be able to implement its own 

services and/or select the most suitable service for the task at hand and explicitly call it  



using XQuery. The approach relies on a workflow-based execution of web services 

(quality views) without the use of mainstream query optimization strategies. 

 

Regarding data quality management frameworks and systems, the DQAQS Framework 

by Yeganeh et al. (Yeganeh, Sadiq, & Sharaf, 2014) provides a comprehensive solution 

to the problem of quality-aware information management enabling users to express 

quality related queries on top of multiple relational data sources integrated via a wrapper-

mediator architecture. The data quality dimensions are user defined and extensible, and 

profiling is based on both attribute and conjunctive conditions on the universe of possible 

queries issued over the global schema. The query processing approach involves the 

mediator translating the query into a set of query plans against different data sources and 

the utility of a query plan is estimated based on data quality of query results combined 

with other optimization factors such as execution time. Statistical formulas are used to 

estimate the data quality of a query plan based on the estimated data quality result against 

individual data sources that take part in the plan. Plans are ranked based on the overall 

utility function. The DQAQS mechanism to generate and update the profile is costly, 

both from disk space used and CPU load perspective. This presents a particular challenge 

to maintain and update the profiles especially when taking into account big data 

scenarios. Our approach to data profiling could be seen as complementary to theirs in that 

they could use DQ
2
L to issue quality profiling queries to perform complex calculations 

and filter data of undesirable quality, particularly in cases where specific data quality 

metadata is not necessary. The mediator would be responsible for translating the 

equivalent SQL query into a set of plans and gathering results. 

 

The SLIMPad system and application architecture by Delcambre et al. (Delcambre et al., 

2001) is aimed at extending information sources with data management functionality for 

superimposed annotations representing underlining, bookmarks and cross-references. The 

data model for the annotations and data regarding annotations are managed externally 

from the host data sources. The digital “bundles” linked to the data sources can represent 

observations about data quality, however, the computations regarding quality 

measurements need to be manually calculated by the end user developing the annotations. 

This approach is not directly aimed at data quality management, however, due to the 

flexibility of the proposed annotations, the system can provide some level of support to 

tagging quality information to data sources and instances. 

 

The pSQL system by Bhagwat et al. (Bhagwat, Chiticariu, Tan, & Vijayvargiya, 2004) 

proposes an annotation management system for relational databases providing support for 

“Where” data provenance analysis. Relations are extended with additional columns to 

provide annotations and schemes are developed for end users to specify how annotations 

should propagate. Annotations are restricted to attributes of tuples. An extension of SQL 

is developed to specify the propagation of annotations according to user-defined schemes. 

The system architecture has a translator module that rewrites pSQL queries into target 

SQL queries sent for execution at the host DBMS API. Tuples returned from the host 

DBMS are post-processed to merge annotations and provide annotated outputs for 

display to end-users. No optimization is performed on generated SQL queries. DQ
2
S 

shares architectural features with pSQL, but differs in functionality. 



 
Feature 

 

 

 

Approach 

Query Language 

Design 

Query Processing and 

Optimization  

Architectural 

Approach 

Framewor

k/ System 

Focus 

Data Types 

Supported 

DQ
2
S Development of high-

level query language 

constructs to express 

quality preferences 

based on SQL 

extensions. Profiling is 

developed on the fly 

alongside end user 

queries 

Translation algorithm 

maps queries with 

extended data quality 

requests and profiling 

information into 

mainstream SQL 

queries. 

Development and 

integration of algebraic 

query optimization into 

framework extensions 

External quality-

aware engine 

layered on top of 

relational DBMS 

with pre-processing 

and post-processing 

of host API results 

Data 

quality 

managemen

t for 

standardize

d provider 

defined 

quality 

measures 

Relational 

data with data 

quality 

metadata 

DQAQS/ 

Squid  

 

(Yeganeh, 

Sadiq, & 

Sharaf, 

2014) 

Quality related user 

preferences are 

encoded in a model 

based on partial order 

prioritizations. 

Development of SQL 

extensions to capture 

user preferences on 

data quality in the 

form of partial orders 

Mediator translates the 

query into a set of query 

plans against different 

data sources and utility 

of query plans is 

estimated based on data 

quality of query results 

combined with other 

optimization factors such 

as execution time 

Wrapper/mediator 

quality aware data 

integration. DQ 

profiling involves 

significant CPU and 

storage overheads to 

generate and update 

profiles 

Data 

quality 

managemen

t for user 

defined 

quality 

measures 

Relational 

data with data 

quality 

metadata 

Quality 

Views/ 

Qurator 

 

(Embury, 

Missier, 

Sampaio, 

Greenwoo

d, & 

Preece, 

2009) 

User defined quality 

preferences 

incorporated as 

extensions to XQuery.  

 

Development of data 

quality language 

features that can be 

combined with other 

declarative query 

languages 

Quality views 

incorporate declarative 

and procedural 

constructs for computing 

transformations of input 

data sets into quality-

annotated output data 

sets.  

Workflow-based 

execution of web 

services (quality views) 

without the use of 

mainstream query 

optimization strategies 

Quality views 

implemented as 

reusable web 

services with 

standard interfaces 

and annotations 

expressing the 

semantics of 

components and 

parameters specified 

using ontologies 

Data 

quality 

managemen

t for user 

defined 

quality 

measures 

Semi-

structured and 

multi-model 

type support 

SLIMPad  

 

(Delcambr

e et al., 

2001) 

Graphical user 

interface to visualize 

and navigate generic 

annotations. Data 

manipulation 

constructs for creating, 

updating, removing, 

storing and loading 

annotations 

Based on allowing 

components to obtain 

pointers to referenced 

objects, which can be 

used for retrieval of 

annotations.  

Query processing and 

optimization of 

annotations not 

performed 

Superimposed 

application 

implemented as 

plug-in to existing 

storage managers. 

Extensible 

architecture with 

minimal coupling 

interface to host 

Tool to 

manage 

super-

imposed 

information 

and 

annotations 

Semi-

structured and 

multi-model 

type support 

pSQL  

 

(Bhagwat, 

Chiticariu, 

Tan, & 

Vijayvargi

ya, 2004) 

Development of high-

level query language 

constructs to 

manipulate data 

provenance 

information.  

 

Translation algorithm 

maps queries with 

extended provenance 

information into 

mainstream SQL 

queries.  

No optimization is 

performed on generated 

SQL queries 

 

Additional column 

storing annotations 

assumed to avoid 

lazy computation of 

provenance. Layered 

component with pre-

processing and post-

processing of host 

API results 

“Where” 

provenance 

managemen

t and also 

data 

sensitivity 

and access 

control 

managemen

t 

Relational 

data with data 

provenance 

and 

annotation 

metadata 

Trio-One  

 

(Mutsuzaki 

et al., 

2007) 

Development of SQL 

extensions to express 

uncertainty and 

lineage requests 

Encodes uncertainty and 

lineage present in the 

data model as relational 

tables and uses query 

rewriting for query 

processing 

Layered on top of a 

relational base with 

extensions added as 

relations and stored 

procedures 

Handling 

uncertainty 

and lineage 

Relational 

data with 

metadata for 

lineage and 

uncertainty 

Table 7.1: Data Quality Management Frameworks and Systems. 



 

Table 7.1 illustrates differences and similarities between DQ
2
S and some of the 

frameworks and systems found in the literature. The contributions discussed in Table 7.1 

work primarily by building database quality profiling and management engines layered 

on top of database management systems.  

 

Other complementary approaches and techniques addressing data quality issues include: 

inconsistency detection in integration of data from multiple sources from a computational 

complexity perspective, consistent query answering, duplicate record detection, database 

repairing, handling missing data and model-based techniques for data quality 

improvement, discussed as follows. 

 

The problem of data inconsistency and failure to satisfy integrity constraints in relational 

databases resulting from integration of data drawn from a variety of sources has been 

studied by Chomicki and Marcinkowski (Chomicki & Marcinkowski, 2005) from a 

computational complexity perspective. The authors argue that aborting transactions 

leading to integrity violations is not a viable strategy when dealing with multi-source data 

integration, proposing integrity-restoration as a separate maintenance process executed to 

improve data quality. This approach provides an important contribution to the data 

quality management literature by investigating the computational complexity of repair 

checking and consistent query answering (CQA) techniques for data retrieved from 

multiple data sources. The repair checking techniques investigated can be highly valuable 

towards improving the data quality of data warehouses generated using Extraction, 

Transform and Load (ETL) processes.  

 

Bertossi (Bertossi, 2006) provides an extensive overview of the key principles and 

theoretical issues involved in consistent query answering in relational databases, 

including discussions on the characterization of the CQA problem, computational 

complexity analysis of CQA, semantics of different database repair techniques applied in 

CQA, consistency computational complexity analysis of CQA taking into account NULL 

values, dynamic and incremental computations.  

 

In (Greco, Greco, & Zumpano, 2001), a set of sound and consistent techniques for 

computing repairs and consistent answers over inconsistent databases are developed 

using a logic programming framework. The approach to repairing and CQA is based on 

rewriting integrity constraints into disjunctive rules that can be used to generate repairs 

for the database and produce consistent answers. The main limitations of the logic 

programming-based approach arise from the computational complexity associated with 

computing some of the techniques, which may limit the ability to compute consistent 

answers in “big data” applications. 

 

Data quality can also be improved via the application of duplicate record detection, where 

databases are analyzed to identify different records in a database (duplicates) representing 

the same entity in the real world, leading to accuracy problems. Elmagarmid et al. 

(Elmagarmid, Ipeirotis, & Verykios, 2007) provide a comprehensive survey of the area 



including discussions about similarity metrics for detecting duplicate records in databases 

and an analysis of the efficiency and scalability of duplicate record detection algorithms. 

 

Wang and Wang (H. Wang & Wang, 2009) propose an approach to derive knowledge 

from missing data in survey data sets. The approach uses association rules to express 

patterns of missing data such as clashing, hiding and disclosing, which can be very useful 

in performing data profiling of data sources in data quality management. 

 

The Multidimensional Robust Data Quality Analysis (MRDQA) approach by 

Mezzanzanica et al. (Mezzanzanica, Boselli, Cesarini, & Mercorio, 2015) proposes 

model checking aimed at formalizing and verifying data quality and the effectiveness of 

business processes used to create and populate data sources and develops techniques and 

tools to verify the consistency of databases before and after the application of database 

cleansing functions. The authors argue that applying model-driven verification methods 

to data cleaning activities help to identify the quality constraints that need to be modelled, 

with the positive impact in generating higher quality data sets for knowledge discovery 

tasks. The verification methods proposed include iterative techniques to evaluate the 

effectiveness of data cleansing functions and the development of visualization techniques 

to identify problems in data sets. 

 

 

8. Conclusions and Future Work 
 

This paper presented DQ
2
S a comprehensive framework and tool for combining 

traditional data management with data profiling targeted at data cleansing. The 

framework allows database users to profile their data while querying the database in a 

declarative way, in preparation for data cleansing, considering multiple dimensions of 

data quality, such as accuracy, completeness, timeliness, etc. For that, modelling and 

storage of quality-related data properties can be performed using the same means for 

modelling and storing relations in a relational database. The quality-related data 

properties together with the data profiling algorithms represent the criteria under which 

data is assessed, measured and filtered, in accordance with definitions of data quality 

dimensions chosen and modelled by the user. An implementation of the framework is 

also described in which a number of data quality dimensions are modelled and 

implemented for illustration using e-Business application scenarios. The proposed 

architecture represents a seamless extension to relational database management systems; 

and the proposed query language and data model represent user-friendly extensions to 

SQL and the relational data model. 

 

DQ
2
S enables the ad-hoc exploration and profiling of data and its associated quality as it 

is queried, using data quality-aware SQL query extensions. The level of sophistication of 

the profiling algorithms is variable and decided by the end user and/or database 

application programmer, ranging from simple calculation of scores, to aggregation of 

multiple scores, including complex calculation strategies and access to multiple sources 

of information on data-quality properties.  

 



The query language allows comparisons to be made between scores, use of thresholds 

and filtering of data based on arbitrary predicates. To illustrate the features of our 

approach to quality profiling, we have selected a number of quality dimensions that are 

widely used across several application domains and that can be effectively incorporated 

into an automated information management framework/system. Our choice for a solution 

with a limited number of profiling operators based on dimensions of quality that have a 

general purpose is based on the premise that, according to the latest research on purpose 

and dimensions of Information Quality (IQ) by Illari (Illari, 2014), it is generally agreed 

that "While the MIT group thinks IQ is best generally defined as information that is 'fit 

for purpose', both they and many others still think that at least some dimensions of IQ, 

and even some aspects of IQ itself, are purpose-independent.". Based on the "Law of the 

Vital Few" (i.e., the Pareto Principle), and experience in practical data quality 

management projects, only a limited number of quality dimensions and definitions often 

represent the majority of quality requests from end users. There is also a trade-off 

between flexibility, performance and usability of data quality techniques and tools. 

Highly flexible frameworks tend to overburden the end user with the need to learn highly 

complex application programming interfaces towards expressing quality-aware queries. 

The balance lies somewhere in a spectrum between highly flexible and extensible 

solutions and less flexible but efficient and user-friendly frameworks. Typically, what we 

found in practice is that a combination of complementary tools and techniques will be 

needed in a data quality management project. 

 

The combined set of features supported by DQ
2
S allows individual users to set their own 

quality constraints while querying the data, without imposing the same constraints to all 

users. These features are extremely useful when users need to assess the quality of 

relational data sets and define quality filters for acceptable data, as well as a methodology 

for quality management that allows information quality to be queried and measured for 

different purposes prior to conducting big data analytical tasks (Floridi, 2014). Future 

work will include the exploration and quality auditing of large data sets generated by the 

EC-Funded MODUM project (MODUM: Models for Optimising Dynamic Urban 

Mobility, 2014) on multi-modal transportation planning, including data generated by 

urban traffic data sensors from highways in the United Kingdom with data sets in the 

range of 1-10 Terabytes.  

 

Figure 8.1 shows a screen shot taken from the MODUM system interface, delivering real-

time traffic information to a user interested in the traffic conditions in the city of 

Nottingham on Tuesday the 21
st
 of October 2014 around nine o'clock. In the figure, green 

lines indicate free flow of vehicles on roads, and yellow lines indicate mildly congested 

roads. The data feeding the system is based on data collected by sensors distributed 

across the city. Figure 8.2 shows a fragment of the data in relational format. Traffic 

dynamic properties such as average speed of vehicles and flow of vehicles across roads 

are present in the data. Figure 8.3 shows a DQ
2
L query requesting the measurement of 

the completeness for attribute flow.  

 

We also plan to conduct further experimental evaluation aimed at identifying overheads 

resulting from the score calculations and access to quality relations for a number of 



queries of varying complexity. Regarding suitability for use in big data scenarios, 

additional implementation of the data profiling algorithms as multiple-pass algorithms 

will be necessary, considering that main-memory solutions are not appropriate for such 

scenarios. The use of data partitioned parallelism will also be considered as well as 

cloud-based deployment strategies. 

 

 
Figure 8.1: MODUM System interface showing traffic information. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: MODUM System traffic data. 
 

 

 

 

 

 

Figure 8.3: DQ2L query requesting the completeness of column flow. 

 

 

Link 

<link_ID, nil> 
<co2emissions, 

nil> 

<density, 

nil> 

<avgspeed, 

nil> 

<flow, nil> 

<-100170072#1, 

nil> 
<5.38e+01, nil> 

<4.13e-02, 

nil> 

<1.10e+01, 

nil> 

<4.55e-01, 

nil> 

<-100170078, 

nil> 
<2.45e+01, nil> 

<1.47e-02, 

nil> 

<1.28e+01, 

nil> 

<1.89e-01, 

nil> 

 

SELECT COMPLETENESS(flow) 
FROM Link 
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APPENDIX A - DQ
2
L Syntax in BNF 

 

The syntax specification of DQ
2
L is expressed using the Backus Naur Form (BNF) 

language for grammar specification, which was automatically generated by JJDoc 

provided by JavaCC. BNF enables the specification of the concrete syntax of the 

language, and checks the syntactic correctness for the strings of characters. The BNF 

language has been slightly extended by JJDoc in the following aspects: 

 

• The meta-symbols “(” and “)*” are used to enclose a sequence of symbols that 

can occur any number of times (zero or more). 

• The meta-symbols “(” and “)+” are used to enclose a sequence of symbols that 

can occur one or more times. 

• Lexical tokens of the language are placed within double quotes, e.g., “SELECT”. 

 

The distinguished symbol of the grammar is Start. In order to resolve ambiguities in 

parsing, alternative forms of each right-hand side of the rule are in order of decreasing 

precedence. The reserved words of the language are: SELECT, FROM, WHERE, 

ORDER BY, AND, WITH QUALITY AS, ACCURACY, TIMELI-NESS, 

COMPLETENESS, REPUTATION, TOPSIS. 

 

  Start ::= SFWQ <EOF> 

SFWQ ::= SelectStatement FromStatement ( WhereStatement )? ( 

QualityStatement )? ( OrderStatement )? 

SelectStatement ::= "SELECT" Item ( "," Item )* 

Item ::= ( Attribute | QualityFunction ) 

FromStatement ::= "FROM" Relation ( "," Relation )* 

WhereStatement ::= "WHERE" Condition ( “AND” Condition )* 

Condition ::= Attribute <OPER> ( Constant | Attribute ) 

QualityStatement ::= "WITH QUALITY AS" QualityConstraint ( “AND” 

QualityConstraint )* 

QualityConstraint ::= QualityFunction <OPER> NumLiteral 

OrderStatement ::= "ORDER BY " RankingReference 

RankingReference ::= Attribute 

 | QualityFunction 



QualityFunction ::= AccuracyFunction 

 | CompletenessFunction 

 | TimelinessFunction 

 | ReputationFunction 

 | TOPSISFunction 

AccuracyFunction ::= "ACCURACY" "(" Attribute ")" 

CompletenessFunction ::= "COMPLETENESS" "(" Relation ")" 

TimelinessFunction ::= "TIMELINESS" "(" Attribute ")" 

ReputationFunction ::= "REPUTATION" "(" Attribute "," NumLiteral ":"NumLiteral ")" 

TOPSISFunction ::= "TOPSIS" "(" Weights ")" 

Weights ::= QualityFunction ":" NumLiteral ( ";" QualityFunction ":" 

NumLiteral )* 

Attribute ::= <VARIABLE> 

Relation ::= <VARIABLE> 

Constant ::= NumLiteral 

 | TextLiteral 

NumLiteral ::= <NUM_LITERAL> 

TextLiteral ::= <TEXT_LITERAL> 

 

 



APPENDIX B - View-Packages 

 

View_Package_id 1 

View_Package_name Sales 

Most accessed attributes Access 

frequency 

Preferred method 

Order.product_ID 97%  

Order.status 89%  

Order.submit_date 76%  

Product.product_price 70% <reputation,[<accessibility, 

0.5>,<reliability,0.5>]> 

Customer.name 61% <accuracy,editDistance> 

Table B.1: View_package for Department Sales. 

 

View_Package_id 2 

View_Package_name Shipping 

Most accessed attributes Access 

frequency 

Preferred method 

Order.product_ID 98% <accuracy,boolean> 

Order.status 98% <accuracy,boolean> 

Order.submit_date 93%  

Product.product_price 65%  

Customer.name 61%  

Table B.2: View_package for Department Shipping. 

 



APPENDIX C - Experimental Results 

 

 

 Query Elapsed Time (in seconds) 

DB Size Query2 (NO) Query2 (O) Query5 (NO) Query5 (O) 

1,000 1.32 0.95 1.16 1.06 

10,000 36.79 13.92 46.32 29.24 

100,000 3370.9 982.86 4456.14 2987.63 

Table C.1: Average Elapsed Times of optimized (O) and non-optimized (NO) Queries 2 

and 5, varying database size. 

 


