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A method of lowest order constrained variation advocated by the present authors and previously apphed with ex- 
cellent results to a model Boltzmann problem is generalized. New constramts are formulated for general Fermi systems, 
and comparable success is demonstrated for the model Fermi problem. 

In earlier publications [1,2] we have elaborated 
a scheme for calculating the binding energy for many- 
body systems by a method of  lowest order constrained 
varxation (LOCV), which seeks to redress the objec- 
tions open to the alternatwe lowest-order approach 
of Pandharipande [3,4] .  

We have demonstrated that our approach yields 
excellent agreement with the essentially exact results 
[5] for the Bethe "homework problem" over a wide 
density range. This problem comprises a hypothetical 
system of neutrons interacting via the repulsive part 
of the Reid soft-core 1 SO potential (acting in all partial 
waves), 

V(r) = 6484.2 e-7X/x MeV, (1) 

with x = 0.7 r, and r measured in fro. Ad&tionally, 
Boltzmann rather than Fermi statistics are assumed. 
Since excellent agreement has now been reached, it 
seems appropriate to define a new homework problem 
where the particles obey Fermi statistics. To this end, 
and since there is still a demand for a reliable low- 
order approach for application to such real systems 
as nuclear matter or finite nuclei with realishc poten- 
tials, we generalize m this work our previous [1,2] 
method, and impose new constraints suited to dense 
Fermi systems. The new method is then tested on 
the Fermi homework problem, and compared with 
other recent results [6, 10]. 

As before we adopt a trial wave function, 

q, = FI f (o )~ , ,  (2) 
i<l 

where q~ is the (uncorrelated) ground-state wavefunc- 
tion of  N independent fermions of  spin-xsospin dege- 
neracy v and mass m, m a volume ~2 with number 
density p = N/~2 = Vk3F/67r 2, and Fermi wavenumber 
k F. As appropriate, the two-body potential and the 
correlation functxon, both of  which are considered 
momentum-independent, can be decomposed into 
relative partial-wave components Vl(r ) and fl(r). 

Our previous [1,2] LOCV prescription revolved 
truncation of  the Jastrow cluster series for the energy 
at the two-body level, but with constraints imposed 
on the pair correlation function f(r) which are devised 
to justify this truncation. These constraints assume 
the form of  a certain bound, 

0 <~fl(r) <~ hl(r), (3) 

and an integral inequahty of  the form, 

c o  

4zrp ~l fO Gt[ f l ( r ) 'h l (r ) ldr<I '  (4) 

with prescribed forms of  the functions hl, the functio- 
nals GI, and the parameter I. In addition, the functionals 
G l satisfy the condition, 

Gl[hl(r), hl(r)] - O . (5) 

The two-body energy in the cluster expansion can be 
expressed as, 
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Table 1 
Energy per particle versus densny using different constraints. 

3 January 1977 

p E/N (v = 2) (MeV) 
(fro-3) 

LOCVN1 LOCVN2 LOCVB1 LOCVB2 

E/N (v = 4) (MeV) 

LOCVNI LOCVN2 LOCVB1 LOCVB2 

0.2 98.35 92.03 86.13 83.36 
0.4 227.3 222 9 183.7 213.1 
0.6 386.8 381.8 311.8 306.4 
0.8 569.7 562.5 455.9 488.6 
1.0 772.0 766.0 616.4 608.8 
1.2 990.7 982.2 791.6 783.9 
1.4 1223 1217 979.5 970.2 
1.6 1467 1460 1179 1170 

89.06 87.37 78 60 76.45 
213.1 210.3 181.4 177.8 
368.3 364.5 309.7 305 1 
548.6 543.7 458.0 453.8 
747.7 741.8 626.5 620.8 
962.6 958.3 808.4 801.8 

1191 1187 1003 994.5 
1437 1427 1209 1204 

E2/N= 2rrp ~l ! [tt2m-lfl'2(r)+Vl(r)fl2(r)]a2(r)dr , 
(6) 

where the functions ¢2(k F r)= a](r)/r 2 are proport ion- 
al to the squares of the partial-wave components  of  
the antisymmetrlzed uncorrelated fermion pair wave- 
functions, averaged over the Fermi sea. The total  
energy per particle also contains a one-body kinetic 
energy of  ( ~ ) h 2 k 2 / m ,  which is included in the nu- 
merical results. In the present case the potential  Vl(r ) 
ts independent of  l, and we shall present results for the 
two cases where the correlation function f(r) is either 
state-independent (1.e. independent o f / ) ,  or at most 
depends only on the channel parity,  1.e. 

f(r) =f+(r)P+ + f_(r)e_ , 

where P_+ are projectors on to the even and odd partial 
waves respectively. In these cases, the summation over 
l in eq. (6) can be simplified, using the results, 

½ ~l [l+(-l)l]¢p2(x)-a2(r)/r2 (7) 

= (v ¥ 1)/(2v)[1 -+ 9x-2j2(x)], a2(r)-a2(r) +a2(r), 

where x - kFr. We have shown [2] that eq. (6) can be 
minimized subject to the constraints ( 3 ) - ( 5 )  as fol- 
lows. The solutions to each of  the Euler-Lagrange 
equations, 

gt (at h2 gt +2h2a t -  6 f  t -  = 0 ,  (8) 

where gt(r) =- at(r)ft(r), are first obtained in the range 
0 <~ r <. dt, where the correlation distances d t are 
gwen bY ft(dt) = ht(dt); and for r ~ d  t we set ft(r ) = 
ht(r ). The index t ranges over the number of  distinct 

correlation functions used. The constant k in eq. (8), 
which is the Lagrange multiplier for constraint (4), is 
either set to zero if this constraint is thus satisfied as 
an inequality, or is varied iteratively until it is satisfied 
as an equality. 

Previously [1,2,  7] we have used the above con- 
stramts in the form, 

ht(r ) = 1, l= 1, Gt[ft,ht] = [h2 ( r ) - f2 ( r ) ] a2 ( r ) .  (9) 

The first of  these constraints has been justified for 
Bose systems on the basis that it is unreasonable to 
allow the long-range behaviour of  the potential  to 
have a large effect on the two-body correlation func- 
tion. Similarly the other two constraints, which imply 
that the correlations do not expel more than one par- 
ticle from within their mutual  range of  strong influence 
(i.e. from within the correlation distances), seem to 
be a natural choice for consistency within a two-body 
approximation.  

On the other hand, for Fermi systems, the Pauli 
exclusion principle induces short-range correlations 
in the system even in the absence of  interactions. This 
is reflected in the suppression near the origin of  the 
factor a2(r) of  eq. (7) (assuming state-independence) 
in comparison with its Bose counterpart  (1 - 1/N)r 2", 
and hence constraint (4) becomes a weaker constraint 
for fermions than for bosons. Accordingly we shall 
reformulate the constraints (9) for fermions, but  in 
such a manner that for bosons they remain unchanged. 

We first note that for bosons, the minimum value 
of E2/.N from eq. (6) is changed only by O(1 /N)  if 
the first of  eqs. (9) is changed to read ht(r ) = 
(1 - l /N) -1/2. This purely formal procedure shows 
that constraint (4) now reads, 
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Fig. 1 Compar ison of  the results of  several approximat ions  
for the  u = 2 Fermi homework  problem, displayed as E / N )  x 

- E / N ) K T ,  where the label x shown in the figure indicates 
the approximat ion  used. The KT and LOH results are taken 
from ref. [6],  the FHNC and FPY results are taken from ref. 
[10], and the remainder f rom the present  calculations 

p f {1  - f2(r)¢2} dr ~< I .  (10) 

Taking the equality sign and I =  1 as before, eq. (10) 
merely expresses the two-body approximation to the 
normalization condition, which must be satisfied by 
any exact radial distribution function [8]. Since it is 
known that imposition of the normalization condition 
has the effect of stimulating rapid convergence of the 
energy cluster series [9], this may indicate why con- 
straints (9) give such demonstrably good results for 
bosons. 

Employing a similar procedure for fermions leads 
by analogy to the choice, 

ht(r) =Ha(r), I= 1, 

Gt [ft, ht] = [h2(r) - / 2  (r)] a2(r), (11) 

where a(r) is given by eq. (7), and use of eq. (7) easily 
shows that this choice satisfies the Fermi analogue of 
the normalization condition (10). A simple rearrange- 
ment and a trwial integration also shows that one of 
the convergence parameters [2], k, associated with the 
cluster series, 

k=aTrp ~ ? [ l -  f l2(r ) la2(r)dr ,  (12) 
l 0 
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Fig. 2. The correlat ion functions f (r)  of  several approximat ions 
for the p = 2 Fermi homework  problem at a density p = 1.0 
fm-3 .  The arrows indicate the correlation distances d t for the 
present  calculations. Notice the  change of  scale at r = 1.0 fm, 
applicable only to the KT result taken from ref. [6]. 

is identically zero when the integral constraint of eqs. 
(4) and (11) operates. 

We present in table 1 results obtamed by the 
method outlined above for fermlons of either degene- 
racy v = 2 or 4, interacting via the homework poten- 
tial of eq. (1), and employing constraints (3)-(5)  with 
both the forms expressed in eq. (9) as well as in eq. 
(11). We refer to these constraints as boson constraints 
and normalization constraints respectively, and the 
corresponding methods are labelled LOCVBn and 
LOCVNn, where the additional integer n indicates the 
number of distinct correlation functions employed, 
i.e. the range of the label t in eq. (8). 

Krotscheck and Takahashi (KT) [6] perform an 
unconstrained variational calculation for the same 
v = 2 Fermi problem, with a single parametrized corre- 
lation function of assumed analytic form, summing an 
infinite partial series of cluster contributions which 
reduce to those included in the hypernetted chain ap- 
proximation in the limit of Bose statistics. We com- 
pare our results in fig. 1 with the most ambitious cal- 
culations of KT which attempt to go beyond the lowest 
order hypernetted chain (LOH) approximation by in- 
clusion of the leading basic diagrams, but we also show 
their LOH results for comparison. 
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In a very recent communication, Fantoni and Ro- 
sati (FR) [10] also examine the same model Fermi 
problem using their Fermi hypernetted chain (FHNC) 
and Fermi Percus-Yevick (FPY) formalisms, wherein 
the dynamic and statistical correlations are both 
treated to the same level. In particular the FHNC 
method takes into account all cluster diagrams con- 
tributlng to the radial distribution function except 
those containing elementary subdiagrams. In their cal- 
culations, FR also use a state-independent Jastrow 
correlation function of  the same single-parameter ana- 
lytic form used by both KT [6], and Chakravarty et al. 
(CMW) [11] for the corresponding model Bose pro- 
blem, but FR have not optimised this choice by mini- 
mlsing the energy at each density with respect to va- 
riations in this parameter. They give FHNC results 
usmg the "opt imum" correlation functions obtained 
by both KT [6] for the model Fermi liquid, and by 
CMW [11] for the corresponding model Bose liquid. 
The differences in energy so obtained, whilst small 
(~ 1-2%), indicate that optimization might well de- 
crease their results still further by a few percent. 
These results are also displayed in fig. 1. (Note that 
we have used their FHNC values obtained with the 
CMW correlation functions, since these lie lower in 
energy.) 

Of the methods displayed in fig. 1, the FHNC re- 
sults are certainly the most ambitious in that they 
sum the largest class of duster diagrams, and until 
each has been checked for convergence by including 
more terms (e.g. by extending FHNC to FHNC/4, 
etc.), they should probably presently be regarded as 
the most rehable. On the other hand, the difference 
between the KT and FHNC results can probably be 
regarded as an indication of  the remaining uncertainty. 

The following points should be noted: (i) As ex- 
pected our LOCVN results are in markedly better 
agreement with both the KT and FHNC results than 
our LOCVB results, or indeed than the LOH results. 
Even at nearly ten tunes nuclear matter density, the 
LOCVN results agree to within 7% with the KT re- 
sults and to within 4% with the FHNC results, where- 
as the LOCVB results are out by 15-20% even with 
the KT results. In addition the LOCVN results lie 
above the KT results for most densities, by contrast 
with the LOCVB and LOH results which always lie 
below; and although all other results lie below the 
FHNC results, it should again be remembered that 

these have not yet been optimised. (ii) By contrast 
with the LOCVB results, the LOCVN results now bear 
qualitatively the same relationship to the KT results 
as did our previous results with Boltzmann statistics 
to the comparable "exact" Bose results of  CMW [11]; 
and although the LOCVN results lie lower than the 
FHNC results, their overall agreement is excellent. 
(ill) Mlowing state-dependence into the correlation 
function typically gives a decrease in energy of  about 
5 - 8  MeV per particle, and although we clearly do not 
trust our methods to anything approaching this accu- 
racy, we believe this difference is an accurate indicator 
of the state-dependence to be expected in the more 
ambitious calculations. (iv) Finally we compare in 
fig. 2 the correlation functions obtained by our me- 
thod with that obtained in the unconstrained KT cal- 
culation. The long-range behaviour of  the LOCVN 
correlation functions, which is dictated by the first 
constraints (11) is now characterised by an "overshoot",  
although this is seen to be small and of  quite short 
range in comparison with the KT result. 

In conclusion, these results indicate that LOCV cal- 
culations with properly chosen constraints can pro- 
bably be made as successful for Fermi as for Boltzmann 
systems, at least for repulsive short-range potentials 
of the type considered here. Comparable agreement 
with "exact" results is also found for other more 
"realistic" model potentials including attraction. Fur- 
ther details of  the present method and applications 
to such other models will appear elsewhere [12]. 
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