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Abstract

We consider the problem of finding a stopping time that minimises the L1-

distance to θ, the time at which a Lévy process attains its ultimate supremum.

This problem was studied in [12] for a Brownian motion with drift and a finite

time horizon. We consider a general Lévy process and an infinite time horizon (only

compound Poisson processes are excluded, furthermore due to the infinite horizon

the problem is only interesting when the Lévy process drifts to −∞). Existing results

allow us to rewrite the problem as a classic optimal stopping problem, i.e. with an

adapted payoff process. We show the following. If θ has infinite mean there exists no

stopping time with a finite L1-distance to θ, whereas if θ has finite mean it is either

optimal to stop immediately or to stop when the process reflected in its supremum

exceeds a positive level, depending on whether the median of the law of the ultimate

supremum equals zero or is positive. Furthermore, pasting properties are derived.

Finally, the result is made more explicit in terms of scale functions in the case when

the Lévy process has no positive jumps.
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1 Introduction

This paper addresses the question of how to predict the time a Lévy process attains its

ultimate supremum with an infinite time horizon. (Due to the jumps a Lévy process can

experience, the word “attains” is used here in a slightly broader sense than when the

driving process is continuous, cf. Section 3). That is, we aim to find a stopping time that
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is within the set of all stopping times closest (in L1 sense) to the time the Lévy process

attains its ultimate supremum. This is an example of an optimal prediction problem. It is

related to classic and well studied optimal stopping problems, however the key difference is

that the payoff process is not adapted to the filtration generated by the driving stochastic

process. Indeed, in our case the time the Lévy process attains its ultimate supremum is

not known (with absolute certainty) at any (finite) time t. However as time progresses

more information about the time of the ultimate supremum becomes available. Examples

of optimal prediction problems where this is not the case include the “hidden target” type

problems studied in [24].

In recent years optimal prediction problems have received considerable attention, see

e.g. [2, 4, 10–13,15–17,24,27]. One reason is that such problems have very relevant appli-

cations in fields like engineering, finance and medicine. Prominent examples concern the

optimal time to sell an asset (in finance) or the optimal time to administer a drug (in

medicine).

The papers referred to above are mainly concerned with optimal prediction problems

driven by Brownian motion (with drift), particularly with a finite time horizon. Some

exceptions are [2] which deals with random walks, [15] with mean-reverting diffusions

and [4] deals with spectrally positive stable processes. The same problem as we consider

was studied in [12], however for a Brownian motion with drift and a finite time horizon.

In that paper more general Lévy processes are also briefly mentioned, and it is interesting

to note that the structure of the solution for the finite horizon case suggested there is

consistent with our results.

In this paper the driving process is a general Lévy process X drifting to −∞, i.e.

limt→∞Xt = −∞ a.s. (otherwise the problem we consider is trivial as we will briefly point

out in the sequel). We are interested in solving

inf
τ
E[|θ − τ |], (1.1)

where θ is the time X attains its ultimate supremum (cf. Section 3 for details) and the

infimum is taken over all stopping times τ with respect to the filtration generated by

X. Following [12, 27], due to the stationary independent increments of X (1.1) can be

expressed as an optimal stopping problem driven by the reflected process Y given by

Yt = X t −Xt for all t ≥ 0, where X t := sups≤tXs denotes the running supremum of X.

This allows us to show the following. If θ has infinite mean then (1.1) is degenerate in

the sense that it equals ∞. Now suppose θ has finite mean. If the law of the ultimate

supremum X∞ := limt→∞X t has an atom in 0 of size at least 1/2 then τ = 0 is optimal

in (1.1), otherwise the infimum in (1.1) is attained by the first time Y enters an interval

[y∗,∞) for some y∗ strictly larger than the median of the law of X∞. We derive pasting

properties and in the special case that X is spectrally negative we obtain (semi-)explicit

expressions for (1.1) and y∗ in terms of scale functions.

The rest of this paper is organised as follows. In Section 2 we discuss some preliminaries
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and some technicalities to be used later on. In Section 3 we prove our main result. Finally,

in Section 4 we make our result more explicit in the case X is spectrally negative.

2 Preliminaries

Let X = (Xt)t≥0 be a Lévy process starting from 0 defined on a filtered probability space

(Ω,F ,F,P), where F = (Ft)t≥0 is the filtration generated by X which is naturally enlarged

(cf. Definition 1.3.38 in [7]). Recall that a Lévy process is characterised by stationary,

independent increments and paths which are right continuous and have left limits, and its

law is characterised by the characteristic exponent Ψ defined through E[eizXt ] = e−tΨ(z) for

all t ≥ 0 and z ∈ R. According to the Lévy-Khintchine formula there exist σ ≥ 0, a ∈ R
and a measure Π (the Lévy measure) concentrated on R\{0} satisfying

∫
R(1∧x2) Π(dx) <

∞ (the tuple (σ, a,Π) is usually refered to as the Lévy triplet) such that

Ψ(z) =
σ2

2
z2 + iaz +

∫
R

(
1− eizx + 1{|x|<1}izx

)
Π(dx)

for all z ∈ R. For further details see e.g. the textbooks [6, 20,26].

We denote the running supremum at time t by X t = sups≤tXs for all t ≥ 0, so that

X∞ := limt→∞X t is the ultimate supremum of X. As is well known, see e.g. Theorem 12

on p. 267 in [6], we have

X∞ <∞ a.s. ⇔ lim
t→∞

Xt = −∞ a.s. ⇔
∫ ∞

1

1

s
P(Xs ≥ 0) ds <∞. (2.1)

In Section 3 we look at the problem of predicting the time of the ultimate supremum

of X, which is defined as

θ := inf{t ≥ 0 |X t = X∞}

(cf. the discussion in Section 3). By the Sparre Andersen identity (cf. Lemma 15 on p.

170 in [6]) we have

E[θ] <∞ ⇔
∫ ∞

0

P(Xs ≥ 0) ds <∞. (2.2)

In Section 3 the presence of an atom in 0 in the law of X∞ plays a prominent role. As

is well known, this is related to a property called (ir)regularity upwards. Denoting

τ+(x) := inf{t > 0 |Xt > x},

X is said to be regular upwards if τ+(0) = 0 a.s. – i.e. if X enters (0,∞) immediately

after starting from 0; otherwise (then τ+(0) > 0 a.s.) X is said to be irregular upwards.

Similarly, X is said to be regular (resp. irregular) downwards if −X is regular (resp.
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irregular) upwards. Theorem 6.5 in [20] classifies regularity upwards in terms of the Lévy

triplet. It is a well known rule of thumb that the solution to an optimal stopping problem

driven by X exhibits so-called smooth or continuous pasting dependent on whether this

property holds or not, see e.g. [1] and the references therein. See also Theorem 7. The

following lemma concerns the connection between an atom in 0 in the law of X∞ and

(ir)regularity upwards.

Lemma 1. Suppose X is not a compound Poisson process and drifts to −∞. The law of

X∞ has an atom in 0 if and only if X is irregular upwards.

Proof. For any q > 0 let e(q) be a random variable independent of X following an expo-

nential distribution with mean 1/q. From the Wiener-Hopf factorisation (see in particular

part (ii) and (iii) of Theorem 6.16 in [20] e.g.) we know that for any β > 0

E
[
e−βXe(q)

]
= exp

(∫ ∞
0

∫
(0,∞)

1

t
e−qt

(
e−βx − 1

)
P(Xt ∈ dx) dt

)
.

Then

P(X∞ = 0) = lim
β→∞

E
[
e−βX∞

]
= lim

β→∞
lim
q↓0

E
[
e−βXe(q)

]
= exp

(
−
∫ ∞

0

∫
(0,∞)

1

t
P(Xt ∈ dx) dt

)
= exp

(
−
∫ ∞

0

1

t
P(Xt > 0) dt

)
,

hence P(X∞ = 0) > 0 iff∫ 1

0

1

t
P(Xt > 0) dt <∞ and

∫ ∞
1

1

t
P(Xt > 0) dt <∞. (2.3)

Indeed, the second integral is finite since we assumed (2.1) while the first integral is finite

iff X is irregular upwards (cf. [20] Theorem 6.5).

Next, we show that when X is not compound Poisson, the atom in 0 identified in the

above Lemma 1 is the only possible atom in the law of X∞. Recall that X is said to creep

upwards if for some (and then all) x > 0 it holds P(Xτ+(x) = x) > 0. For instance all Lévy

processes with a Gaussian component and those of bounded variation with a positive drift

creep upwards, see e.g. Theorem 7.11 in [20].

Lemma 2. Suppose X is not a compound Poisson process (still drifting to −∞). The

distribution function F of X∞ is continuous on R≥0. Furthermore, if X creeps upwards

then F is Lipschitz continuous on R≥0.

Proof. From Wiener-Hopf theory we know that X∞ is equal in law to He, where H is

the ascending ladder height process and e is an exponentially distributed random variable

independent of X and with parameter κ(0, 0), where κ denotes the Laplace exponent of
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the ladder process (see e.g. Chapter 6 in [20] for further details). The Laplace exponent

ψ of H given by

ψ(z) = −1

t
logE

[
e−zHt

]
for all t > 0

can be expressed as

ψ(z) = dHz +

∫
R>0

(
1− e−zx

)
ΠH(dx),

where dH ≥ 0 is the drift and the Lévy measure ΠH satisfies
∫
R>0

(1 ∧ x)ΠH(dx) <∞.

From [6] Proposition 17 on p. 172 and Theorem 19 on p. 175 it follows that X creeps

upwards iff dH > 0, and if this is the case F has a bounded, continuous and positive

density on R>0.

Henceforth suppose dH = 0, it remains to show that F is continuous on R≥0 when X is

not compound Poisson. If ΠH(R>0) =∞ it is not difficult to see that F is continuous, cf.

Theorem 5.4 (i) in [20]. Let now ΠH(R>0) <∞. Then H is a compound Poisson process

(with jump distribution ΠH times a constant). In this case P(X∞ = 0) = P(He = 0) > 0

and hence in particular X is irregular upwards by the above Lemma 1. Denote by Ĥ the

ladder height process of −X which is a subordinator (without killing as X drifts to −∞).

Note that Ĥ can not be compound Poisson, because if it was then by the same argument

as above X would be irregular downwards in addition to irregular upwards and hence X

would be compound Poisson which we excluded. So either dĤ > 0 or ΠĤ(R>0) = ∞ (or

both) must hold, which in turn implies (analogue to above, cf. Theorem 5.4 (i) in [20])

that the renewal measure Û of Ĥ given by

Û(dx) =

∫ ∞
0

P(Ĥt ∈ dx) dt

has no atoms. The ‘equation amicale inversée’ from [28] reads

ΠH((y,∞)) =

∫
R≥0

Π((x+ y,∞))Û(dx)

and shows that ΠH has no atoms since Û has no atoms. Hence, H is compound Poisson

with a continuous jump distribution. It is now a straightforward exercise to find an ex-

pression for the law of He (by conditioning on the number of jumps H experiences before

e) and to deduce that the continuous jump distribution garantees that the distribution

function of He is continuous on R≥0.

Note that the above result is not sharp: there are obvious examples of Lévy processes

not creeping upwards for which F is nevertheless Lipschitz on R≥0, for instance when

X is a compound Poisson process with positive, exponentially distributed jumps plus a

negative drift. In this case, when E[X1] < 0 so that X∞ <∞ a.s. it holds P(X∞ = 0) > 0

(by Lemma 1 above) while X∞ has a positive, bounded and continuous density on R>0
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(cf. Theorem 2 in [23]). For an interesting study of the law of the supremum of a Lévy

process we refer to [9].

Remark 3. Some examples of Lévy processes with two-sided jumps for which the density

of X∞ is known (semi-)explicitly are Lévy processes with arbitrary negative jumps and

phase-type positive jumps (cf. [23]) and the class of so-called meromorphic Lévy processes

which have jumps consisting of a possibly infinite mixture of exponentials (cf. [19]). If X

has no positive jumps it is well known that X∞ follows an exponential distribution (cf.

Section 4), while if X has no negative jumps, scale functions may be used to describe the

law of X∞ (cf. [20]).

We conclude with a technical result that will be of use later. Recall that τ+(x) =

inf{t > 0 |Xt > x} and similarly τ−(x) = inf{t > 0 |Xt < x}.

Lemma 4. Suppose that X is regular downwards, then for any c > 0

lim sup
ε↓0

P(τ+(c− ε) < τ−(−ε))
ε

> 0.

Proof. From p. 10 in [8] we know that

lim
ε↓0

P(τ+(c− ε) < τ−(−ε))
h(ε)

= n(H > c),

where n denotes the excursion measure, H the height of a generic excursion and h is the

renewal function of the downward ladder height process. This function h is subadditive

and satisfies h(0) = 0 when X is regular downwards. As h is not a constant function, it

also holds that

lim sup
ε↓0

h(ε)

ε
> 0.

Indeed, if this limsup were 0, then h′(0+) = 0 which would imply that h would be the

zero function since h is non-decreasing and for any y ≥ 0

h(y + ε)− h(y)

ε
≤ h(ε)

ε
.

This concludes the proof of the Lemma.

3 Predicting the time of the ultimate supremum

Define the time where the ultimate supremum of the Lévy process X is (first) attained

by θ, that is

θ := inf{t ≥ 0 |X t = X∞}
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where we understand inf ∅ =∞. Note that “attained” is used in a loose sense here. Indeed,

if X has negative jumps it might happen that the ultimate supremum is never attained.

However, the above definition ensures that we have Xθ = X∞ on the event {Xθ ≥ Xθ−}
while Xθ− = X∞ on the event {Xθ < Xθ−}. Furthermore, when X is not a compound

Poisson process, the set {t ≥ 0 |X t = X∞} is a singleton, see e.g. p. 158 of [20].

Our aim in this section is to find a stopping time as close as possible to θ, that is, we

consider the optimal stopping problem:

inf
τ
E[|θ − τ |], (3.1)

where the infimum is taken over all F-stopping times.

As is well known (see Theorem 7.1 in [20]), either limt→∞Xt = −∞, limt→∞Xt =∞
or lim supt→∞Xt = − lim inft→∞Xt =∞ a.s. In the latter two cases we have θ =∞ a.s.

and hence (3.1) is degenerate. Henceforth in this section we assume that

X drifts to −∞ and θ has finite mean

(we will deal with the case that θ has infinite mean in Proposition 8). Recall that these

properties were discussed in Section 2.

As E[θ] <∞ and E[|θ − τ |] ≥ |E[θ]− E[τ ]| we can without loss of generality consider

the infimum in (3.1) over all stopping times with finite mean.

Recall that we denote by F the distribution function of X∞. Furthermore we introduce

for any y ≥ 0 the process Y y, which is X reflected in its running supremum, started from

y:

Y y
t = (y ∨X t)−Xt for all t ≥ 0.

Note that Y y is a strong Markov process.

Following [12] Lemma 2 and [27] Lemma 1 we rewrite the expectation in (3.1) as an

expectation involving an F-adapted process which will allow us to apply standard optimal

stopping techniques. We include the proof for completeness.

Proposition 5. For any stopping time τ with finite mean we have that

E[|θ − τ |] = 2E
[∫ τ

0

F (Y 0
t )dt

]
+ E[θ]− E[τ ] = E

[∫ τ

0

(
2F (Y 0

t )− 1
)

dt

]
+ E[θ].

Proof. We have

|θ − τ | = θ − τ + 2(τ − θ)1{θ≤τ}

= θ − τ + 2

∫ τ

0

1{θ≤t} dt.
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Applying Fubini’s Theorem twice we deduce that

E
[∫ τ

0

1{θ≤t} dt

]
=

∫ ∞
0

E
[
1{t<τ}1{θ≤t}

]
dt

=

∫ ∞
0

E
[
1{t<τ}E

[
1{θ≤t} | Ft

]]
dt

= E
[∫ τ

0

P (θ ≤ t | Ft) dt

]
.

Furthermore, for any t ≥ 0,

P (θ ≤ t | Ft) = P
(

sup
s≥t

Xs ≤ X t

∣∣∣∣ Ft)
= P

(
S +Xt ≤ X t | Ft

)
= F (Y 0

t ),

where S denotes an independent copy of X∞. We conclude that when τ has finite mean

E|θ − τ | = 2E
[∫ τ

0

F (Y 0
t )dt

]
+ E[θ]− E[τ ] = E

[∫ τ

0

(
2F (Y 0

t )− 1
)

dt

]
+ E[θ].

Hence, by defining a function V on R≥0 as

V (y) = inf
τ
E
[∫ τ

0

(2F (Y y
t )− 1) dt

]
(3.2)

we have that an optimal stopping time for V (0) is also optimal in (3.1). Therefore let us

analyse the function V .

Inspecting the integrand in (3.2) makes it clear that a quantity of interest is the (lower)

median of the law of X∞, that is:

m := inf{z ≥ 0 |F (z) ≥ 1/2} ∈ R≥0.

(It is interesting to compare this with the “median rule” in [24] where the “hidden target”

is assumed to be independent of the underlying process X). If m = 0, that is if P(X∞ =

0) ≥ 1/2, it is easy to see it is optimal to stop immediately.

Proposition 6. The time τ = 0 is optimal in (3.2) for all y ≥ 0 if and only if m = 0. In

this case V (y) = 0 for all y ≥ 0.

Proof. Suppose m = 0. This implies F (z) ≥ 1/2 for all z > 0 and in particular also

F (0) ≥ 1/2 (by right continuity). Hence 2F (z)−1 ≥ 0 for all z ≥ 0 and the result follows.

Next suppose m > 0. Denoting σ(x) = inf{t ≥ 0 |Y 0
t ≥ x} we have
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V (0) ≤ E

[∫ σ(m)

0

(
2F (Y 0

t )− 1
)

dt

]
< 0,

since σ(m) > 0 a.s. by right continuous paths of Y 0 and F < 1/2 on [0,m).

We now turn our attention to the more interesting case m > 0. Note that it is still

possible that F has a discontinuity in 0 with size less than 1/2. Recall our standing

assumptions that X drifts to −∞ and θ has finite mean. Recall also that Lemma 2 states

that F is Lipschitz continuous on R≥0 at least when X creeps upwards. In the result below

we denote by V ′− and V ′+ the right and left and right derivative of V , respectively.

Theorem 7. Suppose that X is not a compound Poisson process and is such that m > 0.

Then there exists an y∗ ∈ [m,∞) such that an optimal stopping time in (3.2) is given by

τ ∗ = inf{t ≥ 0 |V (Y y
t ) = 0} = inf{t ≥ 0 |Y y

t ≥ y∗}.

Furthermore V is a non-decreasing, continuous function satisfying the following:

(i) if X is regular downwards and F is Lipschitz continuous on R≥0, then y∗ > m and

V ′−(y∗) = V ′+(y∗) = 0 (smooth pasting);

(ii) if X is irregular downwards then y∗ > m is the unique solution on R>0 to the

equation (in y)

E

[∫ σ+(y)

0

(2F (Y y
u )− 1) du

]
= 0

where σ+(y) = inf{t > 0 |Y y
t > y}. Furthemore, when F ′ exists and is positive on

R>0 smooth pasting does not hold, i.e. V ′−(y∗) > V ′+(y∗) = 0.

Proof. We break the proof up in a five steps.

Step 1 (V is non-decreasing and V (x) ∈ (−∞, 0]).

Denote the payoff process when started from y ≥ 0 by Ly, i.e.

Lyt =

∫ t

0

(2F (Y y
u )− 1) du for all t ≥ 0.

Clearly V is non-decreasing (due to monotonicity of Y y in y and z 7→ 2F (z) − 1) and

takes values in R≤0. Indeed we can see that V (0) > −∞ as follows. Note that

V (0) ≥ −E
[∫ ∞

0

1{Y 0
u≤m} du

]
= −E[ρ(m)],

where

ρ(x) = sup{t ≥ 0 |Y 0
t ≤ x}
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denotes the last time the reflected process is in [0, x]. Let us show that ρ(x) has finite

mean for any x > 0. Note that ρ(x) = θ+ ζ(x), where ζ(x) is the time the final excursion

of Y 0 leaves [0, x]. As we assume that θ has a finite mean, the results in [22] allow us

to deduce that the post-maximum process has the same law as −X conditioned to stay

positive. Therefore ζ(x) is the last passage time over the level x of −X conditioned to stay

positive. From p. 357 in [14] and Lemma 4 in [5] we know that ζ(x) is equal in distribution

to gτ̂+(x), where τ̂+(x) denotes the first passage time of −X over level x and gt denotes

the time of the last maximum of −X prior to time t > 0. Therefore

E[ζ(x)] = E[gτ̂+(x)] ≤ E[τ̂+(x)] <∞,

where the last inequality holds since −X drifts to +∞, see for example [6] Proposition

17 on p. 172.

Step 2 (V is continuous).

To prove that V is continuous we introduce the notation

σ(x) := inf{t ≥ 0 |Y y
t ≥ x} (3.3)

and we first show there exists an ȳ (large enough) such that for all y ≥ 0

V (y) = inf
τ∧σ(ȳ)

E [Lyτ ] . (3.4)

Indeed for any y ≥ 0 and τ ≥ σ(ȳ)

E[Lyτ ] = E

[∫ σ(ȳ)

0

(2F (Y y
t )− 1) du

]
+ E

[∫ τ

σ(ȳ)

(2F (Y y
u )− 1) du

]
.

Analogously to the situation in Step 1,

E
[∫ τ

σ(ȳ)

(2F (Y y
u )− 1) du

]
≥ −E[ρ(m)]

with E[ρ(m)] <∞ and

E

[∫ σ(ȳ)

0

(2F (Y y
u )− 1) du

]
≥ −E[ρ(k)] + E

[∫ ρ(ȳ)

ρ(k)

(2F (Y y
u )− 1) du

]

≥ −E[ρ(k)] +
1

2
E

[∫ ρ(ȳ)

ρ(k)

du

]
, (3.5)

where k := inf{z ≥ 0 |F (z) ≥ 3/4}. As E[ρ(k)] <∞ and E[ρ(ȳ)] can be made arbitrarily

large by increasing ȳ we see that ȳ exists such that for all y ≥ 0 and τ ≥ σ(ȳ) it holds

that E[Lyτ ] > 0, implying (3.4).

Now, since Ly is a continuous process and
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E
[
sup
t≥0

∣∣∣Lyt∧σ(ȳ)

∣∣∣] ≤ E[σ(ȳ)] <∞ (3.6)

it is clear that the optimum in (3.4) is attained. As F is continuous on R≥0 (cf. Lemma

2) it is uniformly continuous on [0, ȳ]. Take any ε > 0. Let δ > 0 be such that for all

y1, y2 ∈ [0, ȳ] with |y1−y2| < δ it holds |F (y1)−F (y2)| < ε. For any y ≥ 0 we have, where

τy is the optimal stopping time when starting from y and we use Y y+δ
t − Y y

t ≤ δ for all

t ≥ 0:

V (y + δ)− V (y) ≤ E[Ly+δ
τy ]− E[Lyτy ] ≤ 2E

[∫ σ(ȳ)

0

(
F (Y y+δ

u )− F (Y y
u )
)

du

]
≤ 2εE[σ(ȳ)],

establishing the continuity of V as E[σ(ȳ)] <∞.

Step 3 (Stopping region of the form [y∗,∞)).

Following the usual arguments from general theory for optimal stopping, taking into

account (3.6) and that L is continuous, an optimal stopping time for (3.2) is given by

τ ∗ = inf{t ≥ 0 | L̂yt = Lyt }, where the Snell envelope L̂y satisfies, on account of the Markov

property of (Ly, Y y) :

L̂yt = ess inf
τ≥t

E [Lyτ | Ft] = Lyt + ess inf
τ≥t

E [Lyτ − L
y
t | Ft] = Lyt + V (Y y

t )

and hence indeed τ ∗ = inf{t ≥ 0 |V (Y y
t ) = 0}. See e.g. Theorem 2.4 on p. 37 in [25] for

details. The properties of V we have established in Step 1 and Step 2 ensure that we may

also write τ ∗ = σ(y∗) (as defined in (3.3)), where

y∗ := inf{y ≥ 0 |V (y) = 0} ∈ [0, ȳ].

It is immediate that y∗ ≥ m, since if y∗ < m we could pick any y ∈ (y∗,m) and derive

V (y) ≤ E[Lyσ(m)] < 0 which contradicts with V (y) = 0.

Step 4 (Continuous vs. smooth fit).

First, suppose X is regular downwards. As V is non-decreasing, for V ′−(y∗) = 0 it is

enough to show that

lim sup
ε↓0

V (y∗)− V (y∗ − ε)
ε

≤ 0. (3.7)

Denoting for any x, y

σ(x, y) = inf{t ≥ 0 |Y x
t ≥ y}

we know from Step 3 that for any ε > 0

V (y∗ − ε) = E[Ly
∗−ε
σ(y∗−ε,y∗)] and V (y∗) ≤ E[Ly

∗

σ(y∗−ε,y∗)]

11



and hence, where C is a Lipschitz constant of F

V (y∗)− V (y∗ − ε) ≤ 2E

[∫ σ(y∗−ε,y∗)

0

(
F (Y y∗

u )− F (Y y∗−ε
u )

)
du

]

≤ 2E

[∫ σ(y∗−ε,y∗)

0

C
(
Y y∗

u − Y y∗−ε
u

)
du

]
≤ 2CεE[σ(y∗ − ε, y∗)].

The result (3.7) now follows by remarking that

σ(y∗ − ε, y∗) ≤ inf{t ≥ 0 | y∗ − ε−Xt ≥ y∗} ≤ inf{t ≥ 0 |Xt ≤ −ε} ↓ 0 a.s. as ε ↓ 0

on account of X being regular downwards.

Next, suppose X is irregular downwards. With the notation σ+(y) = inf{t ≥ 0 |Y y
t >

y} we have σ+(y) > 0 a.s. for all y > 0 (as X is irregular downwards and X t ↓ 0 as t ↓ 0)

and for y < y∗ we may write (by a similar argument as in Step 3):

V (y) = E
[
Lyσ+(y) + V (Y y

σ+(y))
]
.

Letting y ↑ y∗ and using that V (y) = 0 for all y ≥ y∗ we see (recall V is bounded and

continuous, and (3.6) holds)

V (y∗−) = E

[∫ σ+(y∗)

0

(
2F (Y y∗

u )− 1
)

du

]
. (3.8)

By continuity of V we have V (y∗−) = 0 and hence the above rhs vanishes. Furthermore,

since the integrand is monotone in y and for y1 < y2 we have σ+(y2) ≥ σ+(y1), the

inequality being strict with positive probability, it is clear that y∗ is the unique element

in R>0 for which the rhs of (3.8) vanishes.

However, smooth pasting (i.e. V ′−(y∗) = V ′+(y∗) = 0), does not hold when F has a

positive derivative on R>0. Namely, we have for any ε > 0

V (y∗ − ε) ≤ E

[∫ σ+(y∗)

0

(
2F (Y y∗−ε

u )− 1
)

du

]
and using (3.8) we get

V (y∗)− V (y∗ − ε) ≥ E

[∫ σ+(y∗)

0

2
(
F (Y y∗

u )− F (Y y∗−ε
u )

)
du

]
.

Dividing by ε and applying Fatou’s Lemma yields

lim inf
ε↓0

V (y∗)− V (y∗ − ε)
ε

≥ 2E

[∫ σ+(y∗)

0

lim inf
ε↓0

1{Xu<y∗−ε}
F (Y y∗

u )− F (Y y∗
u − ε)

ε
du

]
.

(3.9)

12



As Y y∗
u − Y y∗−ε

u = ε on the event {Xu < y∗ − ε} we see that the rhs in (3.9) is indeed

strictly positive since F ′ is.

Step 5 (y∗ > m).

Recalling from Step 3 that y∗ ≥ m, it remains to show that y∗ 6= m in cases (i) and

(ii) of the theorem. First case (ii). If X is irregular downwards, then we have (recall that

σ+(m) = inf{t ≥ 0 |Y m
t > m})

V (m) ≤ E[Lm
σ+(m)] = E

[∫ σ+(m)

0

(2F (Y m
u )− 1) du

]
.

The rhs is strictly negative on account of the following facts: it holds that F (z) < 1/2 for

z < m, Y m
t < m for 0 < t < σ+(m) and σ+(m) > 0 a.s. (as X is irregular downwards).

Hence the continuity of V implies y∗ > m.

Next case (ii), so suppose that X is regular downwards and F is Lipschitz continuous

on R≥0. Assume we had y∗ = m. We will show that this violates smooth pasting. Recall

τ+(a) = inf{t > 0 |Xt > a} and τ−(a) = inf{t > 0 |Xt < a}. For all ε > 0 small enough,

using a similar argument to that in Step 3 shows

V (m− ε) = E

[∫ τ−(−ε)∧τ+(m−ε)

0

(
2F (Y m−ε

u )− 1
)

du+ V
(
Y m−ε
τ−(−ε)∧τ+(m−ε)

)]
.

As Y m−ε
t ≤ m for t < τ−(−ε) ∧ τ+(m− ε) the first integral in the above expectation

is non-positive and hence

V (m− ε) ≤ E
[
V
(
Y m−ε
τ−(−ε)∧τ+(m−ε)

)]
≤ E

[
1{τ+(m−ε)<τ−(−ε)}V

(
Y m−ε
τ−(−ε)∧τ+(m−ε)

)]
= V (0)P(τ+(m− ε) < τ−(−ε)).

The result now is a consequence of V (0) < 0 and Lemma 4.

We conclude this section by showing that if θ has infinite mean it is impossible to find

a stopping time which has finite L1-distance to θ. This is intuitively not very surprising

given the above Theorem 7. Namely, suppose we approximate X in a suitable sense by a

sequence of Lévy processes, indexed by n say, for each of which the corresponding time of

the ultimate supremum θn has finite mean. For each element in the sequence, a stopping

time minimising the L1-distance to θn is the first time the reflected process exceeds a level

y∗n. Suppose the y∗n’s have a limit y∗∞. If y∗∞ is finite then the limit of the optimal stopping

times, say τ̂ , is the first time the reflected process associated with X exceeds the level y∗∞.

However this would mean that τ̂ has finite mean and hence E[|θ− τ̂ |] =∞. On the other

hand, if y∗∞ is infinite then τ̂ =∞ a.s. and hence still E[|θ − τ̂ |] =∞.

Proposition 8. Suppose as before that X is not a compound Poisson process and drifts

to −∞. Suppose now that E[θ] =∞. Then (3.1) is degenerate, i.e. for all stopping times

τ it holds E[|θ − τ |] =∞.

13



Proof. For any q > 0, let e(q) denote an exponentially distributed random variable with

mean 1/q, independent of X. (For convenience we denote the joint law of X and e(q) also

by P). We denote

θ(q) := θ ∧ e(q)

and similarly for any stopping time τ we denote

τ (q) := τ ∧ e(q).

Let us assume that a stopping time τ̂ exists with E[|θ−τ̂ |] <∞ and derive a contradiction.

First, note that since |θ(q) − τ̂ (q)| → |θ − τ̂ | a.s. as q ↓ 0 and |θ(q) − τ̂ (q)| ≤ |θ − τ̂ | for all

q > 0 (this is readily checked from the definition of θ(q) and τ̂ (q)) dominated convergence

yields

lim sup
q↓0

inf
τ
E[|θ(q) − τ (q)|] ≤ lim

q↓0
E
[
|θ(q) − τ̂ (q)|

]
= E[|θ − τ̂ |] <∞. (3.10)

Now, using that for any t ≥ 0 we have

P(θ(q) ≤ t | Ft) = P(e(q) ≤ t) + P(e(q) > t)P(θ ≤ t | Ft) = 1− e−qt + e−qtF (Y 0
t ),

the same reasoning as in Proposition 5 yields for any stopping time τ

E[|θ(q) − τ (q)|] = E[θ(q)] + E

[∫ τ (q)

0

(
1 + 2e−qu

(
F (Y 0

u )− 1
))

du

]

= E[θ(q)] + E
[∫ τ

0

e−qu
(
1 + 2e−qu

(
F (Y 0

u )− 1
))

du

]
. (3.11)

To examine the rhs of (3.11), define the function Vq on R≥0 × R≥0 as

Vq(t, y) := inf
τ
E
[∫ τ

0

e−qu
(
1 + 2e−q(t+u) (F (Y y

u )− 1)
)

du

]
. (3.12)

Note that the mappings t 7→ Vq(t, y) for any fixed y ≥ 0 and y 7→ Vq(t, y) for any fixed

t ≥ 0 are non-decreasing. Furthermore for any t ≥ 0

Vq(t, 0) ≥ −
∫ ∞

0

e−qu du > −∞ (3.13)

and hence Vq is a bounded function taking values in R≤0. It is a straightforward exercise

to slightly adjust the arguments from Step 2 (using (3.13)) in the proof of the above

Theorem 7 to see that Vq is a continuous function. Following the same arguments as in

Step 3 of the proof of the above Theorem 7, the Snell envelope L̂ of the process L defined

as

14



Lt =

∫ t

0

e−qu
(
1 + 2e−qu

(
F (Y 0

u )− 1
))

du for all t ≥ 0

satisfies

L̂t = ess inf
τ≥t

E[Lτ | Ft] = Lt + ess inf
τ≥t

E[Lτ − Lt | Ft]

= Lt + e−qt ess inf
τ≥t

E
[∫ τ

t

e−q(u−t)
(
1 + 2e−qu

(
F (Y 0

u )− 1
))

du

∣∣∣∣ Ft]
= Lt + e−qtVq(t, Y

0
t )

for any t ≥ 0. Therefore general theory of optimal stopping dictates that a stopping time

minimising the rhs of (3.11) and, equivalently, which is optimal for Vq(0, 0), is given by

τ ∗q = inf{t ≥ 0 | L̂t = Lt} = inf{t ≥ 0 |Vq(t, Y 0
t ) = 0} = inf{t ≥ 0 |Y 0

t ≥ bq(t)}, (3.14)

where bq(u) := inf{y ≥ 0 |Vq(u, y) = 0} ∈ R>0 for all u ≥ 0. Note that the final step uses

the monotonicity of Vq in y. (Cf. Theorem 2.4 on p. 37 in [25] for details.) Note that the

monotonicity of t 7→ Vq(t, y) implies that bq is non-increasing.

Now we are ready to return to our main argument. Taking the infimum over τ in (3.11)

yields

inf
τ
E[|θ(q) − τ (q)|] = E[θ(q)] + Vq(0, 0),

where the infimum in the lhs (and in Vq(0, 0)) is attained by τ ∗q as defined in (3.14). Letting

q ↓ 0 in this equation it follows on account of (3.10) and θ(q) ↑ θ so E[θ(q)] → E[θ] = ∞
that Vq(0, 0)→ −∞ as q ↓ 0.

Next, we show that this implies

for any u0 > 0 we have bq(u0)→∞ as q ↓ 0. (3.15)

Indeed, suppose this were not the case, i.e. that (qk)k≥0 exists with qk ↓ 0 as k → ∞
such that bqk(u0) ≤ a for some a > 0 and all k ≥ 0. The monotonicity of b then implies

bqk(u) ≤ a for all u ≥ u0 and k ≥ 0. Hence for all k ≥ 0

τ ∗qk ≤ inf{u ≥ u0 |Y 0
u ≥ a},

where the stopping time in the rhs has finite mean due to the fact that X drifts to −∞
(see the relevant comment in Step 1 of the proof of Theorem 7). However, due to (3.12)

it holds that Vqk(0, 0) ≥ −E[τ ∗qk ], violating Vqk(0, 0)→ −∞ as qk ↓ 0. Hence (3.15) holds.

For any u0 > 0 we see from (3.15) together with the monotonicity of bq that
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inf
u∈[0,u0]

bq(u) ≥ bq(u0)→∞ as q ↓ 0

and consequently

P(τ ∗q ≤ u0) ≤ P
(

sup
s≤u0

Y 0
s ≥ bq(u0)

)
→ 0 as q ↓ 0.

This implies that

inf
τ
E[|θ(q) − τ (q)|] = E[|θ(q) − τ ∗(q)q |]→∞ as q ↓ 0. (3.16)

However, this violates (3.10) and hence we have arrived at the required contradiction.

Indeed, one way to see that (3.16) holds is the following. Fix some x > 0. For an arbitrary

ε > 0 pick θ0 so that P(θ > θ0) ≤ ε. Then

P(|θ(q) − τ ∗(q)q | ≤ x) ≤ P(θ > e(q)) + P(|θ − τ ∗(q)q | ≤ x)

≤ P(θ > e(q)) + P(θ > θ0) + P(τ ∗(q)q ≤ x+ θ0)

≤ P(θ > e(q)) + P(θ > θ0) + P(e(q) ≤ x+ θ0) + P(τ ∗q ≤ x+ θ0),

and as q ↓ 0 all the terms in the final rhs vanish except for the second, which is bounded

above by the arbitrarily chosen ε.

Remark 9. If θ has infinite mean a possibility is to replace the L1-distance by a more

interesting metric, an alternative would for instance be to consider

inf
τ
E[|τ − θ| − θ]

as done in [16].

4 Example: spectrally negative

One special case for which the results from Theorem 7 can be expressed more explicitly

is when X is spectrally negative, i.e. when the Lévy measure Π is concentrated on R<0

but X is not the negative of a subordinator. In this section X is assumed to be spectrally

negative. Further details of the definitions and properties used in this section can be found

in [20] Chapter 8.

Let ψ be the Laplace exponent of X, i.e.

ψ(z) =
1

t
logE

[
ezXt

]
.

Then ψ exists at least on R≥0, it is strictly convex and infinitely differentiable with

ψ(0) = 0 and ψ(∞) =∞. Denoting by Φ the right inverse of ψ, i.e. for all q ≥ 0
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Φ(q) = sup{z ≥ 0 |ψ(z) = q} ∈ R≥0,

the ultimate supremum X∞ follows an exponential distribution with parameter Φ(0) with

the usual convention that X∞ =∞ a.s. when Φ(0) = 0. It follows that

X∞ <∞ ⇔ Φ(0) > 0 ⇔ ψ′(0+) < 0. (4.17)

If the properties in (4.17) hold then the assumptions in Theorem 7 are satisfied. Indeed,

ψ′(0+) < 0 implies that E[X1] < 0 and hence X drifts to −∞ (cf. Theorem 7.2 in [20]).

Furthermore Corollary 8.9 in [20] yields∫ ∞
0

P(Xt ≥ 0) dt = lim
q↓0

∫ ∞
0

e−qtP(Xt ≥ 0) dt = lim
q↓0

∫ ∞
0

Φ′(q)e−Φ(q)x dx

which is finite as Φ(0) > 0, implying that θ has finite mean (cf. Section 2).

Next, we briefly introduce scale functions. The scale function W associated with X is

defined as follows: it satisfies W (x) = 0 for x < 0 while on R≥0 it is continuous, strictly

increasing and characterised by its Laplace transform:∫ ∞
0

e−βxW (x) dx =
1

ψ(β)
for β > Φ(0).

Furthermore on R>0 the left and right derivatives of W exist. Note that in this case X is

regular (resp. irregular) downwards when X is of unbounded (resp. bounded) variation.

For ease of notation we shall assume that Π has no atoms when X is of bounded variation,

which guarantees that W ∈ C1(0,∞). Also, when X is of unbounded variation it holds

that W (0) = 0 with W ′(0+) > 0 (see [21]), otherwise W (0) = 1/d where d > 0 is the

drift of X.

For several families of spectrally negative Lévy processes W allows a (semi-)explicit

representation, see [18] and the references therein. Scale functions are a natural tool

for describing several types of fluctuation identities, relevant for this paper is that the

potential measure of the reflected process Y y starting from y ≥ 0 killed at leaving the

interval [0, a], i.e.

Ua(y, dx) =

∫ ∞
0

P(Y y
t ∈ dx, t < σ(a)) dt,

where σ(a) = inf{t ≥ 0 |Y y
t ≥ a} can also be expressed in terms of scale functions (cf. [20]

Theorem 8.11):

Lemma 10. When X is spectrally negative the measure Ua(y, dx) has a density on (0, a)

a version of which is given by

ua(y, x) = W (a− y)
W ′(x)

W ′(a)
−W (x− y)
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and only when X is of bounded variation it has an atom at zero which is then given by

Ua(y, {0}) =
W (a− y)W (0)

W ′(a)
.

The results of Theorem 7 are expressed in terms of scale function as follows.

Corollary 11. When X is spectrally negative and satisfies any of the properties in (4.17),

then y∗ is the unique solution on R>0 to the equation in y:∫
[0,y]

(1− 2e−Φ(0)x)W (dx) = W (0) (4.18)

and

V (y) =

∫ y∗

0

(
2e−Φ(0)x − 1

)
W (x− y) dx for all y ≥ 0. (4.19)

Proof. Denoting σ(x) = inf{t ≥ 0 |Y y
t ≥ x} we have from Theorem 7 that V (y) =

V (y, y∗) := E[Lyσ(y∗)], where

V (y, y∗) = E
[∫ ∞

0

(2F (Y y
t )− 1)1{t<σ(y∗)} dt

]
=

∫ ∞
0

∫
[0,y∗]

(2F (x)− 1)P(Y y
t ∈ dx, t < σ(y∗)) dt

=

∫
[0,y∗]

(2F (x)− 1)

∫ ∞
0

P(Y y
t ∈ dx, t < σ(y∗)) dt

=

∫ y∗

0

(2F (x)− 1)uy∗(y, x)dx− Uy∗(y, {0}).

Plugging in the result from Lemma 10 yields

V (y, y∗) =

∫ y∗

0

(
1− 2e−Φ(0)x

)(
W (y∗ − y)

W ′(x)

W ′(y∗)
−W (x− y)

)
dx− W (y∗ − y)W (0)

W ′(y∗)

=

∫ y∗

0

(
2e−Φ(0)x − 1

)
W (x− y) dx

+
W (y − y∗)
W ′(y∗)

(∫ y∗

0

(
1− 2e−Φ(0)x

)
W ′(x) dx−W (0)

)
.

If X is of bounded variation, i.e. irregular upwards, continuity of V requires in particular

V (y∗−, y∗) = V (y∗, y∗) = 0, which readily implies that y∗ solves (4.18) and that (4.19)

holds, since W (x) = 0 for x < 0 and W (0) > 0. If X is of unbounded variation, i.e. regular

upwards, the smooth pasting condition at y∗ (Theorem 7 (i)) again readily implies that

y∗ solves (4.18) and (4.19) holds, since in this case W (x) = 0 for x < 0, W (0) = 0 and

W ′(0+) > 0.
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Finally it remains to show that (4.18) has at most one solution. This is straightforward

since the function g defined by

g(y) =

∫ y

0

(1− 2e−Φ(0)x)W ′(x) dx

satisfies g(0) = 0, g′(y) < 0 for y ∈ (0,m) (here m = log(2)/Φ(0)) and g′(y) > 0 for

y > m.

Example 12. Consider the jump-diffusion Xt = σBt +µt−
∑Nt

i=1 Yi, where B is a Brow-

nian motion, N is a Poisson process with intensity λ > 0, (Yi)i≥1 is a sequence of iid

exponentially distributed random variables with parameter θ > 0, σ > 0 and µ ∈ R. Then

the Laplace exponent ψ is given by

ψ(z) =
σ2

2
z2 + µz − λz

θ + z
.

Choosing the parameters such that ψ′(0) < 0 we see that ψ has roots β1 < −θ, β2 = 0 and

β3 > 0, with

β1,3 = −
(
θ

2
+

µ

σ2

)
±

√(
θ

2
+

µ

σ2

)2

− 2

(
µθ − λ
σ2

)
.

Furthermore

W (x) = C1e
β1x + C2 + C3e

β3x for x ≥ 0

where

C1 =
2(θ + β1)

σ2β1(β1 − β3)
, C2 =

2θ

σ2β1β3

and C3 =
2(θ + β3)

σ2β3(β3 − β1)

as follows directly from the definition (see also [3]). Plugging this together with Φ(0) = β3

into (4.18) and (4.19) leads to Figure 1.
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Figure 1: A plot of the value function V in the setting of Example 12, with σ = µ = 1/2

and λ = θ = 1. Note that y∗ ≈ 2.0.
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