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Abstract (204 words) 

Many coastal protection structures in the UK have been designed for storm surges with 

appropriate return periods but their performance during tsunami-type waves is uncertain. A 

shallow water and Boussinesq (referred to as SWAB) model is well suited to the investigation of 

both nearshore storm waves and tsunami waves. This paper makes use of the SWAB model to 

compare the effect on coastal structures of solitary waves and storm waves. Wave runup 

parameters for both types of wave are generated, and shown to be in good agreement with 

experimental data. 

 

The equations behind the SWAB model were derived assuming a small bed slope, and are 

therefore not suitable for modelling waves interacting with vertical and near-vertical structures. 

However, the introduction of a reverse momentum term, to take account of a jet of water typical 

of a breaking wave impacting against a structure, allows wave overtopping volumes to be well 

predicted although it had a minor effect on the forces acting on the structure. Comparisons with 

experimental data, both with solitary waves and storm waves, are presented. Using this model, 

the difference between the impact, in terms of wave forces and wave overtopping, of tsunami 

waves and storm waves for a given structure is investigated. 

 

Keywords chosen from ICE Publishing list 

Coastal engineering; Sea defences; Computational mechanics. 
 

List of notation (examples below) 

𝐵 constant controlling linear dispersion in SWAB model 

𝐶𝑏, 𝐶𝑏𝑡 breaking coefficients 

𝐶𝑓 Friction coefficientℎ𝑖𝑤 average water depth over a wavelength 

𝑑 still-water depth 

𝑑0 wave paddle/input still-water depth 

𝐹𝑤𝑎𝑙𝑙 reverse momentum term 

ℎ(𝑥, 𝑡) actual water depth 

ℎ𝐹 vertical distance of application of reverse momentum term 

ℎ𝑖𝑤 average water depth over a wavelength 

𝐻 wave height 

𝐻𝑖𝑤 height of an individual wave 

𝐻𝑚0 spectral significant wave height 

𝐻0 deepwater wave height (for storm waves), paddle/input wave height (for solitary waves) 

𝑘𝑤𝑎𝑙𝑙 empirical constant for reverse momentum term 

𝐿 wavelength 

𝐿0 deep-water wavelength 

𝐿𝑝 wavelength based on 𝑇𝑝 
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𝐿𝑠 representative wavelength for solitary wave 

𝐿1/3 significant wavelength, based on 𝑇1/3 

𝑞𝑚 mean wave overtopping rate (discharge/m width) 

𝑅𝑐 crest freeboard (i.e. vertical distance between crest and still water level) 

𝑅 wave runup level (vertical distance above still water level) 

𝑅2% 98
th
 percentile runup level (i.e. level exceeded by 2% of runups) 

𝑅𝑠 solitary wave runup level 

𝑡 time 

𝑇 wave period 

𝑇𝑝 spectral peak wave period 

𝑇1/3 mean wave period of highest third of waves 

𝑢 depth-averaged velocity in 𝑥 direction 

𝑥 horizontal dimension 

𝑦 horizontal dimension, perpendicular to plane in SWAB model 

𝑧𝑏 bed level, above arbitrary datum 

tan 𝛽 bed slope 

𝛾 JONSWAP spectral peak enhancement factor 

𝜂 free-surface level, above arbitrary datum (= 𝑧𝑏 + ℎ) 

𝜈𝑒 eddy viscosity, for horizontal diffusion 

𝜌 water density 

𝜏𝑏 bed shear stress 

𝜉0 surf similarity parameter 
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1. Introduction 

In the UK, coastal structures are usually designed to protect against combinations of large 

waves and extreme high water levels, caused by storms. Tsunamis affecting the UK are very 

rare; confirmed examples include the Storegga tsunami of approximately 8000 years ago (Smith 

et al., 2004) and the tsunami resulting from the Lisbon earthquake of 1755 (Dawson et al., 

2000). However, the widely publicised Indian Ocean tsunami of 2004 and the 2011 Japanese 

tsunami have led to a reassessment of the risk to the UK from such potentially catastrophic 

events. The present overall research project is investigating how climate change may cause 

crustal rebound as ice caps melt as well as causing the release of gas hydrates from marine 

sediments. This could lead to more frequent earthquakes and an increased submarine landslide 

risk (see http://arp.arctic.ac.uk/projects/landslide-tsunami/). The UK, and Scotland in particular, 

would be at risk from tsunamis from the Norwegian Sea, although the approach has a general 

international application. 

 

Notwithstanding the different probabilities of occurrence, there are differences between tsunami 

and storm-related flood damage. Storm surge duration is of the order of several hours to days 

and they interact with tidal oscillations. Horsburgh and Wilson (2007) suggest that in the UK 

storm surge maxima do not occur at high tide. There will also be some correlation between the 

extreme water levels and large storm waves; a joint probability analysis is often carried out to 

provide combinations of waves and water levels for a given return period (e.g. Chini and 

Stansby, 2012). 

 

It is not clear how tsunami damages compare with damages from storms. Being of the order of 

minutes in duration, a tsunami would not be expected to interact with tides in the same way; 

therefore one could occur during any part of the tidal cycle. A tsunami in the North Sea would 

take roughly one tidal cycle to propagate from north to south, so would be expected to coincide 

with high tide at some location. However, it is most unlikely that an extreme storm would 

coincide with a tsunami; therefore the associated storm and swell waves would be expected to 

be small. 

 

It is common practice to use solitary waves to represent tsunamis, both in physical model tests 

and experimental simulations. Goring (1978) stated that waves with a net positive volume can 

be shown theoretically to eventually evolve into a series of solitary waves. Synolakis (1987) 

stated the relevance of solitary waves to the study of tsunamis. More recently, experiments 

carried out at the Tsunami Research Facility at Oregon State University (e.g. Linton et al. 

(2013)) use solitary waves to represent tsunamis. Despite this, Madsen et al. (2008), Segur 

(2007) and Arcas and Segur (2012) dispute the use of solitary waves to represent tsunamis, 

stating that both in the deep ocean and on the continental shelf, the length scale is insufficient 

for solitary waves to develop. Although their argument has a sound theoretical basis, the use of 
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repeatable solitary waves for both physical and numerical investigations such as this is 

worthwhile and convenient. 

 

The aim of this paper is to use a numerical model to show how storms and tsunamis compare. 

The shallow water and Boussinesq (SWAB) model used for this analysis was developed by 

Stansby (2003) and gave accurate results for solitary waves overtopping a trapezoidal sea wall 

(Stansby et al, 2008). It was further developed by McCabe et al. (2013) for storm wave 

overtopping. Boussinesq-type equations, where nonlinearity and dispersion are small but of 

similar magnitude, were originally derived as a model for solitary waves (Boussinesq, 1872; 

Peregrine, 1967) and have been used to model solitary wave runup by, for example, Borthwick 

et al (2006) and Dutych et al (2011) and to model tsunami propagation by, for example, Watts et 

al (2003). More modern Boussinesq-type derivations, such as those of Madsen and Sorensen 

(1992), allow for greater frequency dispersion and are therefore also valid for storm waves in 

transitional depths ( 
𝑑

𝐿
<

1

2
), outside the surf zone. For breaking waves in shallow water, 

frequency dispersion is small. Here the Boussinesq terms in the equations are switched off and 

the depth-averaged nonlinear shallow water equations result. A similar method was adopted by 

Borthwick et al (2006) and Tonelli and Petti (2009). 

 

The SWAB model used for this analysis is described in Section 2. In Sections 3 and 4, the 

SWAB model’s performance in simulating storm waves and solitary waves respectively, will be 

discussed. These sections will compare SWAB model predictions against physical model data 

and empirical equations for wave overtopping volumes and forces against seawalls. In Section 

5 the SWAB model will be applied to assess how the potential impact of the storm waves and 

tsunami waves (solitary waves) effect of a hypothetical tsunami would compare, through 

analysis of simulations of wave runup and forces on a vertical wall to the overtopping 

associated with a storm event. Section 6 will provide a discussion of the results. 

 

2. The SWAB Model 

The SWAB model is described in detail by McCabe et al. (2013). Many Boussinesq-type 

equations have been derived (as reviewed by Madsen and Schäffer, 1999), but those of 

Madsen and Sorensen (1992) have been widely tested, for example by Beji and Battjes (1994), 

and are used by SWAB, in one dimension. They consist of a continuity equation (1) and a 

momentum equation (2): 
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2. 

 

where 𝑢 is depth-averaged velocity, ℎ water depth, 𝑑 still-water depth, 𝑧𝑏 the bed level, 𝜏𝑏 bed 

shear stress, 𝜌 water density, 𝜈 kinematic viscosity of water, 𝜈𝑒 the wave breaking eddy 

viscosity and 𝐹wall is the reverse momentum term (see equation 6). The Boussinesq terms are 

the non-breaking part on the second and third lines of equation (2), where 𝐵 is a constant that 

controls the linear dispersion characteristics. The horizontal diffusion terms are the breaking 

part on the fourth line. Madsen and Sorensen (1992) found that 𝐵 = 1 15⁄  gives the best linear 

dispersion. The model calculates numerical solutions for h using a Crank-Nicolson semi-implicit 

method following Stansby (2003). This has the advantage of being more stable than fully explicit 

methods, without the damping effects of fully implicit methods. The bed shear stress is 

calculated using equation (3): 

 

𝜏𝑏

𝜌
=

𝐶𝑓𝑢|𝑢|

2
 

3. 

 

where 𝐶𝑓 is a friction coefficient. McCabe (2011) found that reducing 𝐶𝑓 from 0.01 to 0.005 could 

increase the highest storm wave runup crests by 10 %, although it has little effect on wave 

heights in the surf zone. 

 

The equations have no intrinsic wave breaking mechanism. Therefore, some criterion is 

required to determine where the wave breaking process occurs. At these locations, the non-

breaking terms of equation (2) are set to zero and the breaking (horizontal diffusion) term is 

switched on. McCabe et al. (2013) showed that a good breaking criterion for storm waves is: 

 

𝐻𝑖𝑤

ℎ𝑖𝑤
> 𝐶𝑏 

4 
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where 𝐻𝑖𝑤 is the height of an individual wave; and ℎ𝑖𝑤 is the mean water depth over that 

wavelength. 𝐶𝑏 is the breaking coefficient; McCabe et al. (2013) showed that 𝐶𝑏 = 0.6 works 

well for all tested regular and random wave conditions. Other Boussinesq type models have 

used criteria based on the free surface slope, either as a spatial gradient (e.g. Schaffer et al., 

1993), or a rate of change of surface elevation with respect to time, which is equivalent to a 

surface slope (e.g. Kennedy et al., 2000). The following will be tested in this investigation. 

 

𝜕𝜂

𝜕𝑡
> 𝐶𝑏𝑡√𝑔ℎ 

5. 

 

where 𝐶𝑏𝑡 is a coefficient. It is likely that the best criterion or breaking coefficient value for 

solitary waves or tsunami-like waves may be different from that for storm waves. 

 

The model equations were derived assuming small bed slopes and are therefore not suited to 

the modelling of steep revetments and vertical walls without modification. However McCabe et 

al. (2013) showed that inclusion of a reverse momentum term could greatly improve predictions 

of volumes for waves overtopping a revetment with a recurve wall. The reverse momentum is 

derived from the force imposed on a jet of water in a breaking wave impacting against a wall: 

 

𝐹𝑤𝑎𝑙𝑙 =
𝑘𝑤𝑎𝑙𝑙ℎ𝐹𝑢2

Δ𝑥
 

6. 

 

where ℎ𝐹 = min(ℎ, Δ𝑧) ; 𝑘𝑤𝑎𝑙𝑙 is an empirical constant; Δ𝑥 is the cell size and Δ𝑧 is the change in 

bed level from the given cell to the next cell (e.g. the wall height). 

 

3. SWAB Model – Storm Waves 

McCabe et al. (2013) compared SWAB model runs with laboratory and field datasets of wave 

overtopping volumes at a sea wall in Anchorsholme, near Blackpool, north-west England. The 

sea wall consists of a concrete stepped revetment (of 1 in 2 approximate slope), with a recurve 

wall set back 2.3 m from the top of the slope. A diagram of the sea wall profile (at the 1/15 scale 

used in the laboratory) is given by McCabe et al. (2013). 

 

Best results for mean wave overtopping rates were achieved when the reverse momentum term 

was applied at the recurve wall only, with a value of 𝑘𝑤𝑎𝑙𝑙 = 1. Different wall profiles may require 

different values for 𝑘𝑤𝑎𝑙𝑙. A friction factor, 𝐶𝑓 = 0.01, was used for the SWAB model tests. Figure 

1 (originally published in McCabe et al., 2013) shows SWAB calculated mean wave overtopping 

volumes for the entire set of physical model tests, in comparison with calculations using 

equation 5.8 of the Eurotop Manual (Pullen et al., 2007) and the Overtopping Neural Network 
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tool (van Gent et al., 2007). Tested wave steepnesses (
2𝜋𝐻𝑚0

𝑔𝑇𝑝
2 ) were between 0.026 and 0.038, 

and relative crest freeboards (
𝑅𝑐

𝐻𝑚0
) were between 0.73 and 2.24. In general, all three methods 

give similar results for mean overtopping rates; most predictions were within a factor of 2 of the 

experimental data, with the SWAB model tending to overestimate these volumes. Repeated 

SWAB model experiments using the same input wave spectrum with different random phases 

gave even large variation, with highest mean overtopping rates being approximately twice the 

lowest. 

 

SWAB model runs were carried out to calculate maximum forces from random waves against a 

vertical breakwater. These forces were compared with those calculated using the formulae of 

Goda (2000, equations 4.2 to 4.8), with the results shown in Figure 2. Goda’s basic method is 

valid for breaking and non-breaking waves propagating against vertical breakwaters. SWAB 

model runs consisted of 250 waves each; this is consistent with Goda’s method, which uses a 

design wave based on the mean of the highest 1/250 of waves. For four selected wave 

conditions, SWAB simulations were repeated using different trains of random waves. Variation 

is large; in one case the largest recorded maximum was double the smallest maximum force. 

This reflects the random nature of the storm waves; the variation would reduce with longer 

model runs, but cannot be avoided entirely. 

 

4. SWAB Model – Solitary Waves 

Hsiao et al. (2008) investigated solitary wave propagation and runup, carrying out large-scale 

wave flume experiments with a 1 in 60 beach slope. 54 tests were carried out, with water depths 

at the paddle (𝑑0) of 1.2 m or 2.2 m, wave heights from 0.024 m to 0.406 m and wave height to 

depth ratios (nonlinearity) from 0.011 to 0.338. A range of SWAB model runs was carried out, 

using a model domain with the same bed slope and wave input position as the physical model 

tests. A friction factor, 𝐶𝑓 = 0.005, was used for the SWAB model tests. Experiments were 

carried out investigating the effect of changing the wave breaking criterion on wave propagation 

and wave runup levels. 

 

Figure 3 shows free-surface levels at various locations along the domain, in comparison with 

the physical model data. In each part of Figure 3, the respective wave is shown pre- and post-

breaking; in Figure 3(a) the wave starts to break at 𝑥 = 136 m, and in Figure 3(b) at 𝑥 = 160 m. 

Wave propagation speeds and wave heights are accurately predicted for breaking and non-

breaking waves. However, the SWAB model appears to under-predict the wave height and the 

wave speed near the breaking point for Trial 43 (Figure 3(a)). The wave height under-prediction 

at 𝑥 = 140 m could be due to the weak nonlinearity of the model equations being insufficient for 

simulation of the highly nonlinear waves that occur near where they start to break. In Figure 3(a) 

the shift to the nonlinear shallow water equations at the wave breaking location causes the 
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celerity to become too small (𝑐 = √𝑔ℎ, instead of 𝑐 = √𝑔ℎ (1 +
𝐻

2ℎ
)); therefore the wave in the 

SWAB model arrives later than should be expected. In Figure 3(b) the increased breaking 

coefficient delays the onset of breaking, causing the wave to arrive at approximately the correct 

time. However this also allows a wave to become too large in the region where it should have 

started breaking (Figure 3(b), 𝑥 = 156 m). 

 

Wave runup levels for all the Hsiao et al. (2008) tests, with SWAB simulations are shown in 

Figure 4. Three sets of SWAB simulations were carried out: two using the criterion of equation 

(4), with 𝐶𝑏 = 0.6 and 𝐶𝑏 = 1.4; and one using equation (5), with 𝐶𝑏𝑡 = 0.2. It is apparent that the 

value of 𝐶𝑏 makes little difference to the results, with both 𝐶𝑏 = 0.6 and 𝐶𝑏 = 1.4 giving close 

matches to the experimental data. The criterion of equation (5) does not give a consistent match 

with the experiments, with runup levels being increasingly overestimated as the incident wave 

nonlinearity (𝐻0/𝑑0) increases. Similar results have been observed when using the equation (5) 

criterion for storm waves (McCabe et al., 2013), with runup levels becoming overestimated for 

longer period waves. 

 

Linton et al. (2013) presented experiments on the tsunami induced loading on wooden vertical 

walls, above the still water level. Although the experiments were carried out to simulate forces 

on buildings from tsunami waves, these loads can be equally representative of those likely to be 

encountered by coastal defence structures, as long as the structure is located above the still 

water level. Experiments were carried out in the Large Wave Flume at the Network for 

Earthquake Engineering (NEES) Tsunami Facility at Oregon State University; the flume set-up 

is shown in Figure 5. A vertical wooden structure, with load cells to measure horizontal forces, 

was placed on a horizontal berm above the still water level, approximately 0.08 m vertical 

distance and 8.2 m horizontal distance from the shoreline; Linton et al. (2013) provide a 

diagram of the experimental setup. Five different wave conditions were selected, for solitary 

waves; these are given in Table 1. 

 

Figure 6 shows the progression of solitary wave L7 as it shoals and breaks in shallow water. 

Comparison of Figure 6(a) and Figure 6(b) show that the breaking coefficient makes negligible 

difference to the wave progression. In fact, a small difference in free surface level was noticed 

at 𝑥 ≈ 48 m (not shown in the figure) where the wave starts to break when 𝐶𝑏 = 0.8 but 

continues to shoal when 𝐶𝑏 = 1.4; however, by 𝑥 = 50.4 m this difference is no longer visible. 

 

Figure 7 shows time series of the forces imposed on the vertical wall. In all cases the SWAB 

model prediction of maximum force is within 20 % of the experimental data. For wave L1, the 

difference is most apparent; the SWAB model records a force earlier than would be expected, 

suggesting that the incident bore is too large in height. For the other waves these differences 

are less apparent. It should be noted that the forces calculated by the SWAB model should be 
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slightly higher than those recorded experimentally, due to the deflection of the wooden wall up 

to a maximum of approximately 6 cm for the L7 case. In an alternative approach, Cunningham 

et al. (2014) have used the DualSPHysics SPH model with Abaqus to simulate these wave 

structure interactions. 

 

Figure 8 shows that the contribution of the reverse momentum term (equation (6)) to the total 

force imposed is actually very small. As the bore makes contact with the vertical wall the depth-

averaged velocity soon drops, and the force is largely due to hydrostatic load. By the time the 

maximum load is reached, the depth-averaged velocity is equal to zero. 

 

Depending on the incident wave conditions, very large impulsive wave loads may be possible. 

These occur where a wave first breaks at the location of the breakwater or sea wall. Despite 

numerous experiments on impulsive loads (e.g. Kirkgoz, 1990, 1991, 1992; Cuomo et al., 2010, 

2011) the physics of impulsive loading is not fully understood. It is clear however, that impulsive 

loads can be highly variable, with Kirkgoz (1991) showing that 90
th
 percentile loads are 

approximately double median loads for regular waves. The pressure on the wall is localised at a 

level close to the still water level. Impulse events are very short in duration; loading rise times 

are inversely proportional to the maximum load (i.e. the greatest impacts have the shortest 

duration). Impulses for the largest regular wave impacts recorded by Kirkgoz (1990) were less 

than 5 ms in duration. Two SWAB model runs were set up to attempt to reproduce the impulse 

forces; one with waves breaking near the wall (𝐶𝑏 = 0.6, using equation 4), and the other 

without breaking waves (𝐶𝑏 = 2.0, using equation 4). Figure 9 shows that neither case was able 

to simulate the impulsive behaviour recorded by Kirkgoz (1990). The SWAB model is unable to 

reproduce such impacts. The nature of these impacts cannot be approximated as depth-

averaged, and are affected by factors such as plunging jets and air trapping. It was observed by 

Stansby and Feng (2005) that even the start of spilling breaking had a plunging form. It is 

unlikely that any shallow-water type model can accurately simulate the forces imposed. 

Numerous articles have solved the full Navier-Stokes equations to model the impact forces 

during wave breaking. One of the most promising methods is smoothed particle hydrodynamics 

(SPH). Colagrossi et al (2010) and Hughes and Graham (2010) for example, have used an SPH 

model to simulate such impacts. 

 

5. Comparison between storm waves and solitary waves 

Two important parameters will be considered here: wave runup on a sloping beach; and wave 

forces on a vertical wall. Comparisons between storm waves and solitary waves are 

complicated by the fact that some parameters associated with one type of wave (such as 

wavelength or 98
th
 percentile runup level) do not have a direct equivalent for the other type of 

wave; however, it is possible to calculate representative quantities. 
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Wave runup levels are closely related to wave overtopping; hence any conditions that cause 

high runup levels will correspond to those that cause substantial overtopping. Based on 

extensive random wave tests, Mase (1989) calculated equations for a range of runup 

parameters of form: 

 

𝑅

𝐻0
= 𝑎𝑟𝜉0

𝑏𝑟 

7. 

 

where 𝑅 is the given runup parameter; 𝜉0 =
tan 𝛽

√𝐻0/𝐿0
 is the surf similarity parameter, based on 

deepwater significant wave height and wavelength, with bed slope tan 𝛽; and 𝑎𝑟 and 𝑏𝑟 are 

empirical constants. The most widely used parameter is the 98
th
 percentile runup level, 𝑅2% , for 

which Mase (1989) calculated values of 1.86 and 0.71 for 𝑎𝑟 and 𝑏𝑟 respectively. Solitary wave 

runups have likewise been extensively researched. In general, following the analytical approach 

of Synolakis (1987), solitary wave runup levels are commonly presented in the form: 

 

𝑅𝑠

𝑑0
= 𝑎𝑠 (tan 𝛽)𝑏𝑠 (

𝐻0

𝑑0
)

𝑐𝑠

 

8. 

 

where 𝐻0 and 𝑑0 are the flat-bed (input) solitary wave height and still water depth respectively; 

and 𝑎𝑠, 𝑏𝑠 and 𝑐𝑠 are empirical parameters. Hsiao et al. (2008), based on solitary wave runup 

tests with slopes between 1 in 15 and 1 in 60, gave values of 7.712, 0.632 and 0.618 for 𝑎𝑠, 𝑏𝑠 

and 𝑐𝑠 respectively. (Note: Hsiao et al. (2008) used sin (
𝐻0

𝑑0
) in their relationship; for the values of 

(
𝐻0

𝑑0
) that were considered, this is very close to the form of equation (8).) 

 

A representative wavelength for a solitary wave can be calculated from its height and water 

depth: 

 

𝐿𝑠 =
4𝜋

√3
√

𝑑0
3

𝐻0
 

9. 

 

Equation (9) allows a representative surf similarity parameter (
tan 𝛽

√𝐻0/𝐿𝑠
) for solitary waves to be 

calculated. Then, equation (8) can be re-written in terms of  
𝑅𝑠

𝐻0
, giving the following relationship 

for solitary wave runup: 
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𝑅𝑠

𝐻0
= 𝑎′𝑠 (

tan 𝛽

√𝐻0/𝐿𝑠

)

𝑏𝑠

(
𝐻0

𝑑0
)

𝑐𝑠
′

 

10. 

 

where 𝑎𝑠
′ = 𝑎𝑠 (

√3

4𝜋
)

𝑏𝑠
2

  and 𝑐𝑠
′ = 𝑐𝑠 − 1 +

3𝑏𝑠

4
. Using the values for 𝑏𝑠 and 𝑐𝑠 given by Hsiao et al. 

(2008), the exponent 𝑐𝑠
′ is relatively small (0.092); this means that the form of equation (7) is 

approximately valid for solitary waves. 

 

Figure 10 shows values of 𝑅2%, calculated using the SWAB model, for storm waves presented 

alongside runup levels for solitary waves, as a function of surf similarity parameter. All tests 

used the model domain from the Hsiao et al. (2008) tests. The storm wave tests used a 

JONSWAP spectrum (𝛾 = 3.3), with approximately 200 waves per test. The surf similarity 

parameter used for the storm wave conditions in Figure 10 is based on the input wave 

conditions (i.e. 𝜉𝑖𝑛 =
tan 𝛽

𝐻𝑚0,𝑖𝑛 𝐿1 3⁄ ,𝑖𝑛⁄
), as opposed to deepwater conditions; this was to ensure that 

the parameter is as comparable as possible to that applied to the solitary waves. All conditions 

are given in Table 2. 

 

It is clear that solitary waves give runup levels considerably higher than the extreme storm wave 

runup levels, for a given surf similarity parameter. The solitary wave results have been split 

depending on their value of  
𝐻0

𝑑0
: a strong dependency on (

𝐻0

𝑑0
)

𝑐𝑠
′

 would cause a distinct shift in 

runup levels between the separate series; this is not apparent, which suggests that 𝑐𝑠
′ ≈ 0. The 

storm wave data is more spread; that is the dependence of runup levels on surf similarity 

parameter is not as strong. This is partly due to the random nature of the waves: given only 200 

waves per model run, considerable variation may be possible with a 98
th
 percentile runup level.  

 

Storm wave runs for the tests of Linton et al. (2013) tests were set up using the SWAB model. 

Model runs of 200 random waves were run, with significant wave heights corresponding to the 

heights of the solitary waves of Table 1; a friction coefficient 𝐶𝑓 = 0.005 was used for both 

random and solitary wave tests. A wave steepness (
𝐻𝑚0,in

𝐿𝑝,0
) of 0.015 was used for the random 

wave tests, which would be a very low value for waves in the North Sea, giving relatively high 

runup levels for a given wave height. Figure 11 shows the maximum force imposed on the wall 

from random waves for each of the five tests, alongside the experimental and numerical results. 

In all cases, the maximum force imposed on the wall from the storm waves is considerably less 

than that imposed by a solitary wave. For 𝐻𝑚0 = 0.1 m, no storm waves reach the wall. A 

comparison between runs L5a, and L5b, with almost identical input conditions, shows that 

variation in maximum input forces for storm waves can be very large (the maximum force for 

L5b is 37% larger than that for L5a). 
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6. Discussion 

This paper has showed how the SWAB model can be used as a convenient tool for analysis of 

both storm waves and solitary waves. Simulations of wave overtopping rates, wave runup levels 

and forces on vertical structures all show good agreement with physical model datasets and 

widely used empirical formulae. 

 

For solitary waves, very accurate predictions of wave runup levels on a 1 in 60 slope were 

obtained. Although the solitary waves were found to break before they reached the shore, and 

the height of the wave during the initial stage of breaking was affected by the breaking 

coefficient, this coefficient, 𝐶𝑏, had negligible influence on wave runup levels. As McCabe et al. 

(2013) found for storm waves, controlling the initiation of breaking with a limiting value of 
𝐻

ℎ
 

(equation 4) gives considerably better results for wave runup levels than a criterion based on 
𝜕𝜂

𝜕𝑡
. 

 

Forces are accurately predicted for non-breaking storm waves (in comparison with the formulae 

of Goda (2000)) as well as for breaking storm waves. For breaking solitary waves, the SWAB 

model also gives very good predictions of force imposed on a vertical wall. Photographs from 

the 2011 Japanese tsunami and the 2004 Indian Ocean tsunami show a wave that is already 

breaking by the time it reaches the shore. However, when breaking first occurs at the structure 

(impulsive loading), the SWAB model cannot simulate this phenomenon. It is unlikely that any 

shallow water model is able to simulate such impacts and a more sophisticated two-dimensional 

tool, such as the SPH model employed by Cunningham et al (2014), would be required.  

 

The reverse momentum term (equation 6), that was shown by McCabe et al. (2013) to have a 

large influence on overtopping volumes for storm waves against a sea wall, does not appear to 

have a great effect on the force imposed on a wall because the loading is predominantly 

hydrostatic. 

 

Comparison between runup levels from storm waves and solitary waves show that the solitary 

waves consistently give higher runup levels than the highest storm waves. At a typical wave 

steepness for storms in the North Sea, (≈ 0.01), runup levels are approximately 50% higher for 

a solitary wave with a similar ratio of wave height to representative wavelength. It has also been 

shown that the force imposed by a solitary wave on a structure is likely to be greater than that 

from the highest storm waves of a similar wave height. It should be noted that this investigation 

used solitary waves as an idealisation for tsunamis where there is data for validation; future 

research will make use of more realistic tsunami waves. 

 

7. Conclusion 
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In the UK, coastal structures have been designed to protect against waves and high water 

levels due to storms. Although tsunamis are very rare in this region, consideration of their 

impact may require different design guidance. It has been shown that the shallow water and 

Boussinesq (SWAB) model is a suitable tool for the analysis of both storm wave and solitary 

wave impact. It has been used here to make a comparison of the relative potential effects, in 

terms of wave runup and forces on vertical structures, from both types of wave. Further work 

would be required to analyse how consideration of tsunami impact may require changes to 

coastal structure design. 
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Tables 

Table 1. Selected wave conditions from Linton et al. (2013) experiments. 

Run Name 
Input wave height, 

𝐻0 (m) 

Input water depth, 

𝑑0 (m) 
𝐻0

𝑑0
⁄  

L1 0.1 2.276 0.044 

L3 0.3 2.283 0.131 

L5a 0.5 2.274 0.220 

L5b 0.5 2.285 0.219 

L7 0.7 2.281 0.307 

 

Table 2. Input storm wave conditions for comparison with solitary wave runup levels. 

Input wave 

height, 𝐻𝑚0,𝑖𝑛 

(m) 

Input peak 

wave period, 𝑇𝑝 

(s) 

Significant 
wave period at 
input, 𝑇1/3,𝑖𝑛 

(s) 

Significant 
wavelength at 
input, 𝐿1/3,𝑖𝑛 

(s) 

tan 𝛽

𝐻𝑚0,𝑖𝑛 𝐿1 3⁄ ,𝑖𝑛⁄
 

0.01 2.53 2.43 8.50 0.486 

0.02 3.58 3.43 13.92 0.440 

0.03 4.38 4.10 17.35 0.401 

0.04 5.06 4.79 20.83 0.380 

0.05 5.66 5.32 23.42 0.361 

0.06 6.20 5.78 25.67 0.345 

0.07 6.70 6.42 28.73 0.338 

0.08 7.16 6.80 30.58 0.326 

0.09 7.59 7.33 33.11 0.320 

0.1 8.00 7.36 33.27 0.304 

0.11 8.39 7.79 35.31 0.299 

0.12 8.77 8.11 36.85 0.292 

0.13 9.12 8.51 38.73 0.288 

0.14 9.47 9.02 41.14 0.286 

0.15 9.80 9.29 42.41 0.280 

0.16 10.12 9.69 44.31 0.277 

0.17 10.43 9.81 44.87 0.271 

0.18 10.74 10.17 46.59 0.268 

0.19 11.03 10.23 46.87 0.262 

0.2 11.32 10.67 48.92 0.261 

0.1 2.53 2.37 8.20 0.151 

0.15 3.10 2.94 11.32 0.145 

0.2 3.58 3.47 14.12 0.140 

0.25 4.00 3.78 15.75 0.132 

0.3 4.38 4.11 17.42 0.127 

0.35 4.73 4.56 19.67 0.125 

0.4 5.06 4.77 20.72 0.120 

0.45 5.37 5.11 22.40 0.118 
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0.5 5.66 5.33 23.49 0.114 

0.55 5.94 5.58 24.69 0.112 

0.6 6.20 5.71 25.32 0.108 

0.65 6.45 5.69 25.22 0.104 

0.7 6.70 6.11 27.24 0.104 

0.75 6.93 5.85 26.01 0.098 

0.8 7.16 6.12 27.31 0.097 

0.85 7.38 6.02 26.83 0.094 

0.9 7.59 6.18 27.58 0.092 

0.95 7.80 6.43 28.82 0.092 

1 8.00 6.65 29.85 0.091 

1.05 8.20 7.13 32.17 0.092 

0.35 2.12 2.03 6.28 0.071 

0.4 2.26 2.17 7.06 0.070 

0.45 2.40 2.30 7.77 0.069 

0.5 2.53 2.45 8.62 0.069 

0.55 2.65 2.56 9.28 0.068 

0.6 2.77 2.67 9.87 0.068 

0.65 2.89 2.83 10.72 0.068 

0.7 2.99 2.91 11.18 0.067 

0.75 3.10 2.95 11.36 0.065 

0.8 3.20 3.06 11.98 0.065 

0.85 3.30 3.28 13.13 0.066 

0.9 3.40 3.31 13.29 0.064 

0.95 3.49 3.41 13.81 0.064 

1 3.58 3.48 14.21 0.063 

1.05 3.67 3.63 14.97 0.063 

1.1 3.75 3.61 14.85 0.061 

1.15 3.84 3.75 15.59 0.061 

1.2 3.92 3.92 16.47 0.062 

1.25 4.00 3.85 16.10 0.060 

1.3 4.08 3.94 16.55 0.060 
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Figure 1. Mean overtopping volumes: SWAB model (•), Eurotop equations (o) and Overtopping 

Neural Network () compared with data from physical model tests. Figure originally appeared in 

McCabe et al. (2013). 
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Figure 2. Force imposed on a vertical breakwater: SWAB simulations compared with Goda’s 

formulae. 
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Figure 3. SWAB runs (dotted lines) of Hsiao et al. (2008) solitary wave tests (solid lines). Free 

surface level time series at (from left to right) 𝑥 = 130 m, 140 m, 156 m, 172 m and 182 m from 

wave input location. SWAB breaking coefficient, 𝐶𝑏 = 0.6 in Fig. 3(a) (top), and 𝐶𝑏 = 1.4 in Fig. 

3(b) (middle). Time is measured from when wave crest passes first wave gauge (𝑥 = 24 m). 
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Figure 4. Wave runup levels from Hsiao et al. (2008) solitary wave tests, showing SWAB 

simulated values for different breaking criteria. Note: a cross (x) within a circle (o) represent 

points where 𝐶𝑏 = 0.6 and 𝐶𝑏 = 1.4 give equal runup levels. 
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Figure 5. Linton et al. (2013) wave flume set-up. 
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a) 

 

b) 

 

Figure 6. Two SWAB runs (dotted lines) of Linton et al. (2013) solitary wave test L7 (solid lines), 

with breaking coefficient (equation 4) of 0.8 and 1.4 respectively. Free surface level time series 

at (from left to right) 𝑥 = 28.6 m, 40.6 m, 46.1 m and 50.4 m from wave input location / wave 

paddle. Time is measured from when wave crest passes first wave gauge (17.6 m from paddle). 
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Figure 7. SWAB simulations (dotted lines) of forces imposed on a vertical wall (solid lines) 

recorded by Linton et al. (2013) Time is measured from when wave crest passes first wave 

gauge (17.6 m from paddle). SWAB model breaking coefficient 𝐶𝑏 = 0.8 for all cases. 

 

 

 

Figure 8. SWAB-simulated time series of total force imposed on wall for run L3 (dashed line), 

showing contribution from reverse momentum term (solid line). 
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Figure 9. SWAB simulations of impulsive wave loading, compared with regular wave 

experiments of Kirkgoz (1990). 

 

 

Figure 10. Wave runup levels (log scale) for storm and solitary waves as a function of surf 

similarity parameter (log scale). 
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Figure 11. Time series of force on vertical wall from Linton et al. (2013) tests, showing maxima 

from SWAB runs of 200 random waves alongside experimental and numerical solitary wave 

data (time 𝑡 = 0 corresponds to time of maximum force). 

 


