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Abstract

 

We are developing biocompatible small-calibre vascular substitutes based on polymeric scaffolds that incorporate

cell-matrix signals to enhance vascular cell attachment and function. Our graft scaffold comprises an outer electro-

statically spun porous polyurethane layer seeded with smooth muscle cells, and a luminal polycaprolactone layer

for endothelial cell attachment. Vascular cell adhesion properties of three vascular elastic fibre molecules, tropoe-

lastin, fibrillin-1 and fibulin-5, have been defined, and adhesion fragments optimized. These fragments are being

used to coat the scaffolds to enhance luminal endothelial cell attachment, and to regulate smooth muscle cell

attachment and function. Tropoelastin-based cell seeding materials are also being developed. In this way, vascular

cell-matrix biology is enhancing graft design.
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Introduction

 

Vascular disease is the largest killer in Western society,

and bypass grafting is a common treatment. However,

there is a great need for tissue-engineered small-

diameter grafts as many patients do not have adequate

autologous vessels. The development of biocompatible

small-calibre vascular grafts for coronary and peripheral

arterial replacement is thus a major goal in vascular

tissue engineering (L’Heureux et al. 1998; Niklason

et al. 1999; Mitchell & Niklason, 2003; Daly et al.

2004; Borschel et al. 2005; Swartz et al. 2005; Kielty

et al. 2006). However, problems with tissue-engineered

grafts include thrombogenicity due to poor endothelial

cell (EC) attachment, inappropriate burst strengths, and

compliance mismatch between arteries and grafts which

contributes to anastomotic myointimal hyperplasia.

Most vascular tissue engineering approaches utilize

 

ex vivo

 

 approaches to generate living prostheses

(L’Heureux et al. 1998; Niklason et al. 1999; Daly et al.

2004; Borschel et al. 2005; Swartz et al. 2005; Kielty

et al. 2006). Constructs are often based on a synthetic

polymer ‘tunica media equivalent’ with elastic and

non-porous properties essential for immediate graft

patency, and controlled biodegradation characteristics

to allow long-term remodelling. Grafts are commonly

designed to be populated with smooth muscle cells

(SMCs) that, during graft preconditioning, are encour-

aged to deposit extracellular matrix (ECM) with native

architecture and the essential biomechanical proper-

ties of elastic recoil (elastic fibres) and tensile strength

(collagen fibres) to stabilize the synthetic scaffold.

Subsequently, SMCs may adopt a quiescent contractile

phenotype. A stable EC monolayer is essential to line

the luminal surface of grafts to provide physiological

vasoactive and anti-thrombotic properties. Such engi-

neered substitutes should mimic natural vessels and be

able to undergo remodelling within the patient.

In normal blood vessels, vascular cells and elastic fibres

have critical structure–function relationships. Vessels,

especially elastic arteries and the aorta, contain abun-

dant elastic fibres, which endow vessel walls with the

essential property of elastic recoil (Kielty et al. 2002;

Miao et al. 2005; Kielty, 2006). SMCs and ECs deposit

elastic fibre layers during development, and interact with
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elastic fibres throughout the vessel wall (Davis, 1995).

In the adult media, elastic laminae intercalate with

SMCs, whereas the internal and external elastic laminae

separate intima and media, and media and adventitia,

respectively. During development, ECs may contribute

to the deposition of the internal elastic lamina (Davis,

1993). Following vascular damage to the intima/media

‘barrier’, SMCs migrate into the neointima where they

revert to synthetic, migratory and proliferative pheno-

type and contribute to intimal hyperplasia.

 

Vascular graft model

 

Our vascular graft model is based on a composite polymer

scaffold comprising a luminal polycaprolactone (PCL)

layer and an outer porous, electrostatically spun, poly-

urethane (PU) ‘medial’ layer (‘composite PCL–PU scaf-

fold’, Fig. 1A–C) (Williamson et al. 2006). The PCL layer

supports EC attachment and full coverage of the lumen

surface (Fig. 1D,E). Sources of human allogeneic vascular

cells for seeding vascular scaffolds include saphenous

vein, umbilical artery and vein, and coronary artery and

aorta. Bone marrow-derived mesenchymal stem cells

(MSCs) represent an alternative (potentially autologous)

source of smooth muscle-like cells (see below) (Ball

et al. 2004, 2006). Our grafts are being modified by

incorporation of selected vascular matrix signals that

have the potential to regulate SMC and EC attachment,

survival and phenotypic state.

 

Endothelial cell attachment to composite 
PCL–PU scaffold

 

Human umbilical vein endothelial cells (HUVECs) bind

strongly to the PCL luminal surface of our composite

PCL–PU scaffold in static conditions, and form a stable

monolayer expressing EC markers such as PECAM-1

(Williamson et al. 2006) (Fig. 1D,E). The adherent ECs

retain vasoactive and immunoreactive characteristics,

expressing von Willebrand factor (vWf) and secreting it

upon stimulation with histamine, secreting nitric oxide

particularly in response to vascular growth factors, and

inducing ICAM-1 expression following lipopolysaccha-

ride stimulation. Another advantageous feature of the

Fig. 1 (A) Image of a PCL–PU composite scaffold. (B) Scanning electron micrograph of the lumen surface. (C) Scanning electron 
micrograph of the porous anti-lumen surface. (D) Image of endothelial cells (HUVECs) on the lumen surface of the PCL–PU 
composite stained for PECAM-1 (red) and nuclei (DAPI, blue) after 24 h. (E) Coverage of HUVECs on the lumen surface of the 
PCL–PU composite after 7 days stained for PECAM-1 (red) and nuclei (DAPI, blue).
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PCL–PU composite scaffold is its ability to release small

molecules such as growth factors in a controlled manner

during early graft preconditioning (Williamson et al.

2006). We are now investigating the stability of ECs on

PCL in flow, and how modification of the PCL surface with

vascular matrix molecules (see below) may enhance EC

attachment and function during graft preconditioning

 

.

 

Bone marrow-derived mesenchymal stem cells

 

We have shown that bone marrow-derived human

MSCs exhibit some SMC cytoskeletal characteristics

(Ball et al. 2004; S. G. Ball, C. A. Shuttleworth, C. M.

Kielty, unpublished data). They may thus be a suitable

source of cells for seeding graft scaffold walls. When

MSCs were directly, but not indirectly, co-cultured with

ECs, their smooth muscle (SM) 

 

α

 

-actin cytoskeleton was

markedly disrupted (Ball et al. 2004). Thus, our scaffolds

are designed to ensure that MSCs are physically

separated from the luminal EC monolayer, whilst

allowing diffusion of soluble factors. We have further

analysed how the MSC cytoskeleton is regulated, focus-

ing on SM 

 

α

 

-actin, and found that PDGF-AA signalling

through PDGF receptor-

 

α

 

 (PDGFR

 

α

 

) is essential for the

appearance of organized SM 

 

α

 

-actin filaments (S. G.

Ball, C. A. Shuttleworth, C. M. Kielty, unpublished data).

PDGFR

 

α

 

 stimulation leads to activation of RhoA and

ROCK, leading in turn to phosphorylation of cofilin,

which stabilizes the actin filaments. By contrast, PDG-

FR

 

β

 

 signalling inhibits SM 

 

α

 

-actin filament, mainly

through activation of RhoE, which blocks ROCK activity.

TGF

 

β

 

1 also regulates SM 

 

α

 

-actin filaments, but mainly

by stimulating the expression of SM 

 

α

 

-actin and the

PDGFR

 

α

 

 system. PDGF-AA also enhances filaments of

smoothelin-B, a specific SMC cytoskeletal marker

(Fig. 2). Knowledge of the importance of PDGF and

TGF

 

β

 

 growth factors is being incorporated into graft

design in the form of controlled growth factor delivery.

Fig. 2 PDGF-AA enhanced the expression of smoothelin filaments. MSCs were cultured for 24 h in serum-free medium, then 
either untreated (control) or exposed to 75 ng mL−1 PDGF-AA or PDGF-BB for 2 h or 24 h at 37 °C. Cells were immunostained for 
smoothelin (green), nuclei were stained with DAPI (blue), and F-actin counterstained with phalloidin (red). Cells were visualized 
using a ×10 objective. A representative of four independent experiments is shown.
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Exploiting vascular elastic fibre molecules in 
graft design

 

We have focused on exploiting elastic fibre molecules as

cell-matrix elements in our graft model, because elastic

fibres are major structural and cell adhesion elements

of the vasculature (Kielty et al. 2005, 2006) (Fig. 3). These

molecules, normally laid down by SMCs and ECs during

blood vessel development, endow vessels with elastic recoil

and they may profoundly influence vascular cell adhesion

and function. The major components of elastic fibres are

crosslinked elastin core surrounded by a mantle of fibrillin

microfibrils. During elastic fibre deposition, tropoelastin

(soluble secreted form of elastin) is deposited on a fibrillin

microfibril template (Mecham & Davis, 1994; Kielty et al.

2002; Czirok et al. 2005; Kozel et al. 2003, 2005). Fibulin-

5 co-localizes with elastic fibres and is essential for their

normal assembly (Nakamura et al. 2002; Yanagisawa

et al. 2002). We are utilizing tropoelastin, fibrillin-1 and

fibulin-5 in our graft design.

 

Vascular cell attachment to elastic 
fibre molecules

 

Fibrillin-1

 

Fibrillin-1 is the major structural element of elastin-

associated microfibrils (Kielty et al. 2005). It is a large

multidomain glycoprotein (350 kDa), with multiple

calcium-binding epidermal growth factor (cbEGF)-like

domains interspersed with eight-cysteine motifs (also

known as TB motifs). It contains a single arg–gly–asp

(RGD) cell attachment motif within TB4, which we and

others have shown to support cell attachment (Pfaff et al.

1996; Sakamoto et al. 1996; Bax et al. 2003; Lee et al.

2004). We showed that human dermal fibroblast cells

adhere to fibrillin-1 through integrin receptors 

 

α

 

5

 

β

 

1 and

 

α

 

v

 

β

 

3 (Fig. 4A,B) (Bax et al. 2003). We have found that

fibrillin-1 RGD-containing fragments starting at TB4 and

containing only downstream domains had poor cell

attachment activity compared with RGD fragments

containing more than one upstream cbEGF-like domain.

SMCs attach very strongly to the latter, and spread well

with well-organized focal adhesions and stress fibres.

In this way, we have optimized fibrillin-1 fragments for

use in graft scaffolds. Cell adhesion to fibrillin-1 can also

modify gene expression levels. We showed, at mRNA

and protein levels, that fibrillin-1 is auto-up-regulated

when cells adhere to fibrillin-1 (Bax et al. 2003). Enhanced

matrix metallo-proteinase (MMP) expression has also

been shown in cells on fibrillin-1 RGD peptides (Booms

et al. 2005). Fibrillin microfibrils are subendothelial

matrix elements (Davis, 1993). Our pilot data indicate

that HUVECs attach and spread well on fibrillin-1.

Fig. 3 Cartoon and transmission electron micrograph of elastic fibres within an artery wall.
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Fibulin-5

 

Fibulin-5 interacts with cells in an RGD-dependent manner

(Yanagisawa et al. 2002; A. Lomas, D. V. Bax, C. A.

Shuttleworth, C. M. Kielty, unpublished data). CHO cells

over-expressing certain integrins bound to fibulin-5

through 

 

α

 

v

 

β

 

3, 

 

α

 

v

 

β

 

5 and 

 

α

 

9

 

β

 

1 (Yanagisawa et al. 2002).

Knock-out mice studies showed that fibulin-5 is essen-

tial not only for normal elastic fibre deposition 

 

in vivo

 

(Nakamura et al. 2002; Yanagisawa et al. 2002; Chu &

Tsuda, 2004), but also to regulate SMC proliferation and

migration (Spencer et al. 2005). We have shown that

human SMCs and ECs bind recombinant human fibulin-5

in an integrin-dependent manner (A. Lomas, D. V. Bax,

C. A. Shuttleworth, C. M. Kielty, unpublished data).

On fibulin-5, both cell types exhibit a characteristic

morphology with no stress fibres or focal adhesions, in

contrast to well-spread cells on fibronectin (another

RGD-containing adhesive glycoprotein) (Fig. 4C,D). Mole-

cular signalling underlying these fibulin-5-mediated

effects, and possible applications in vascular tissue

engineering are under investigation.

 

Tropoelastin

 

Once deposited on the fibrillin microfibril template,

tropoelastin is crosslinked by lysyl oxidase to form the

insoluble core of mature elastic fibres. SMCs are juxta-

posed to elastic fibres in the medial layer of vascular

walls, and ECs to the internal elastic lamina (particularly

during blood vessel formation). Several groups have

shown that purified elastin and recombinant tropoe-

lastin expressed in bacterial systems can support cell

adhesion (Grosso et al. 1991; Jung et al. 1999; Broekel-

mann et al. 2005), and that elastin can profoundly

influence SMC morphology, proliferation and phenotype

(Karnik et al. 2004). The elastic binding protein (EBP, an

alternatively spliced form of 

 

β

 

-galactosidase; 67 kDa)

Fig. 4 (A) Human dermal fibroblasts on fibrillin-1 immunostained with DAPI nuclei (blue), actin (red), and MAB 16 α5β1 antibody 
(green). (B) Human dermal fibroblasts immunostained with DAPI nuclei (blue), actin (red) and LM 609 αvβ3 antibody (green). 
(C) Human aortic SMCs on fibulin-5 immunostained with DAPI nuclei (blue), actin (red) and α-paxillin antibody (green). 
(D) Human aortic SMCs on fibronectin immunostained with DAPI nuclei (blue), actin (red) and α-paxillin antibody (green).
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binds elastin through the VGVAPG motif (repeat hex-

apeptide in exon 24), and signalling through this

receptor influences SMC proliferation and differentia-

tion (Mochizuki et al. 2002; Karnik et al. 2004). Integrin

 

α

 

v

 

β

 

3 is reported to recognize an RKRK sequence close

to the C-terminus of elastin, in a saturable, divalent cation-

dependent, single-site binding manner (Rodgers & Weiss,

2005). Certain elastin proteolytic fragments are highly

chemotactic (Bisaccia et al. 1994; Uemura & Okamoto,

1997). We have expressed recombinant human tro-

poelastin in a mammalian system, as N- and C-terminal

regions. These large overlapping fragments, in their soluble

secreted form with charged lysines at physiological

pH, support adhesion of human SMCs (S. Stephan, C. A.

Shuttleworth, C. M. Kielty, unpublished data).

 

Coating scaffolds with elastic fibre molecules

 

Having characterized vascular cell adhesion properties

of fibrillin-1, fibulin-5 and tropoelastin, we have deve-

loped strategies to adsorb these recombinant elastic

fibre molecules onto PU and PCL–PU scaffolds. Efficient

coating of fibrillin-1, tropoelastin and fibulin-5 fragments

onto the scaffolds, and cell attachment to the coated

scaffolds has been demonstrated. Thus, we can begin

to exploit these molecules to regulate cell adhesion

and behaviour in our grafts.

 

Tropoelastin-based materials for vascular 
tissue engineering

 

Tropoelastin comprises alternating hydrophobic and

lysine-rich crosslinking domains. 

 

In vitro

 

, it undergoes

the well-characterized process of coacervation, in which

molecules become increasingly ordered at increased

temperature (Vrhovski et al. 1997; Bellingham et al. 2003;

Mithieux & Weiss, 2005; Tamburro et al. 2005). This pro-

cess, which is influenced by salt concentration and pH,

involves inter- and intra-molecular interactions between

hydrophobic and cross-linking domains (Miao et al. 2005).

Using our recombinant tropoelastin N- and C-terminal

regions, we have generated stable crosslinked sheets and

fibres (Fig. 5A–E). We are now developing elastin-based

composite materials incorporating other elastic fibre

molecules (e.g. fibrillin-1 RGD fragments) that may be

used to seed vascular cells within porous PU scaffolds.

Fig. 5 (A) Recombinant tropoelastin fragments expressed in our laboratory using a mammalian expression system. (B,C) 
Environmental scanning electron microscopy (ESEM) images of tropoelastin fragment 18–36. ESEM images of tropoelastin 
peptide 18–27. These fragments form sheets and ordered linear arrays.
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Concluding remarks

 

Cell-matrix biology applications in vascular tissue

engineering are enhancing our ability to regulate EC

and SMC proliferation and phenotype, and advancing

small-diameter graft design.
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