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Abstract—In order to identify the dynamic signature of power 

systems, it is important to monitor the generator rotor angles. 

The rotor angles can be obtained either by direct measurements 

of the rotor position or by indirect calculation of rotor angle 

from voltage and current measurements. Considering limited 

availability of direct measurements of rotor angles the indirect 

method is used in this paper taking into account the errors in 

calculated rotor angles. Decision tree based algorithm is used 

afterwards for online identification of power system dynamic 

signatures. Finally, the impact of the accuracy of measurement 

signals on the accuracy of the assessment of system dynamic 

signature is discussed.   

Index Terms—decision tree, phasor measurement units, power 

system dynamic signature, predictor importance, rotor angle 

measurement, transient stability.  

I. INTRODUCTION 

Recent market driven changes in the operation of power 
systems along with the introduction of new generation and 
load technologies are increasing the complexity of power 
systems. Coupled with increased complexities there is a strong 
drive to optimise the capital investment in the system.  This 
leads to power systems being pushed to operate closer to the 
stability margins. Therefore, the need for fast and accurate 
assessment of the stability status of the system becomes even 
more important and new, advanced preventive and corrective 
control mechanisms need to be applied to ensure stable and 
secure system operation [1]-[3]. 

Considering transient and small signal stability, the rotor 
angles of the generators provide valuable information about 
the status of each generator and consequently of the system. 
The rotor angles can be used as input to several methods for 
fast and accurate transient stability assessment. Data mining 
techniques, including decision trees, have been successfully 
applied for both binary identification of whether the system is 
stable or not [1], as well as for multiclass identification of the 
resulting groupings of generators [4], [5]. 

There are two main ways to determine the rotor angles of 
generators. The first is to directly measure the rotor position 
[6] and the second is to indirectly calculate the rotor angle 
from voltage and current measurement data, known as 
electrical calculation method [7], [8]. Conventional Phasor 
Measurement Units (PMUs) provide direct measurements of 
voltages and currents only. The electrical calculation method 
needs to be used to calculate rotor angles from available 
measurement data when the actual rotor angle measurements 
are not available. In [8] the rotor angles are calculated using 
measurement data from PMUs, while in [9] PMU 
measurements are directly used to assess the stability of a 
power system using Decision Trees (DTs).  

In this paper the errors of PMU measurements are 
considered according to [7], as well as the errors introduced by 
the uncertainty in the reactance of the generators. The effect of 
these errors and uncertainties on the calculated rotor angles is 
investigated using a Monte Carlo approach to define the total 
error distribution. Following this, the calculated rotor angles 
are used  to determine the impact of the uncertainty/errors  in 
estimated rotor angles  on the performance of DT based 
algorithm for online identification of the power system 
dynamic signature. The importance of each measurement 
signal is also assessed using an appropriate sensitivity 
measure. The importance of each measured signal in 
combination with the error calculation, provide an estimation 
of the overall impact of the accuracy of measurement signals 
on the performance of DTs for on-line identification of the 
power system dynamic signature. 

II. METHODOLOGY 

The voltage and current signals directly available from 
PMU measurements are used to calculate the generator rotor 
angles and define typical error distributions for each generator. 
The error distributions are then added to rotor angle signals to 
determine their impact on online identification of dynamic 
signature using decision trees. 
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A. Calculation of Generator Angles 

Direct rotor angle measurements from the rotor position 
may not be available for each generator in a power system. 
For this reason, voltage and current measurement data from 
PMUs are used to calculate the angles of the generators. 

The equivalent circuit shown in Fig. 1 is used for this 
purpose assuming the PMU is installed at the generator 
terminal. The transient reactance of the generator Xd’ is used 
since the period under study is after the fault is cleared [8]. 
After obtaining the voltage 

2V  at the generator terminal and 

the current 
inI  from the PMU measurements, (1) can be used 

to calculate the internal generator voltage E . As mentioned in 
[7] there is a fixed difference between the angle of the internal 
voltage and the actual rotor angle, which is constant for a 
specific generator and therefore can be neglected for the 
purpose of this study. 

The same procedure can be used for the case when the 
PMU is installed at the high voltage side of the unit 
transformer by including also the reactance of the transformer 
Xt in the calculation. 
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Figure 1.  Equivalent circuit for the calculation of generator rotor angle. 

B. Consideration of Errors 

 For the obtained voltage and current phasors from PMUs 
the Total Vector Error (TVE) defined in [7] and shown in (2) 
is considered. In Fig. 2, a visualization of the TVE for a value 
of 1% is given. This value is adopted in this paper in 
compliance with [7]. For each measurement provided by the 
PMU the point of the arrow of the phasor in Fig. 2 can be 
anywhere within the cycle. Therefore the maximum error in 
the magnitude is 1% while the maximum error in the angle is 
0.573˚. 
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X n  are the estimated, i.e. the measured 

values, and ( )
r

X n  and ( )
i

X n  are the theoretical values for each 

sample n. 

The voltages and currents at the terminals of each 
generator are calculated using detailed simulations and are 
considered as PMU measurement data. For each sample a 
random TVE within the circle shown in Fig. 2 is added to the 

theoretical values calculated by (1), using a Monte Carlo 
approach. 

 
Figure 2.  Visualization of TVE [7]. 

Apart from the TVE an error in the value of the generator 
transient reactance Xd’ is considered as well. This error is 
bounded within the range of ±5% of the rated value to account 
for the possible differences in the generator reactance due to 
aging, data unavailability, etc. 

By following a Monte Carlo approach, typical error 
distributions for each generator within a power system are 
defined. These error distributions are then added to simulated 
responses to further investigate their impact on the online 
identification of power system dynamic signature. 

C. The effect of the measurement error  

The measured rotor angle responses are used to identify 
very fast, within 1 sec, the dynamic behavior of the system. 
Two main approaches are used: binary classification, that 
determines if the system is stable or not, and multiclass 
classification that determines patterns of generator groupings, 
after a disturbance, i.e. the dynamic signature of the power 
system. 

In this paper, DTs are used for both binary and multiclass 
classification, as in [1], [4] and [5]. In order to obtain training 
and testing sets for the DTs, Monte Carlo simulations are 
carried out in a test network, taking into consideration 
different fault location and duration and different system 
loading. Two different DTs are used for these two 
classification problems.  

For binary classification the target is to identify whether 
the system is stable or not. The criterion used to detect the 
instability, is that the rotor angle between any two generators 
exceeds 360 degrees. Using this criterion a training set is 
obtained initially, to train the binary DT and its accuracy is 
evaluated using a different data set. 

For multiclass classification, only the unstable cases of the 
above training and testing sets are used. Hierarchical 
clustering is initially applied to the rotor angles to determine 
the grouping of generators. Euclidean distance is used as the 
measure of similarity between the measured samples. 
Afterwards, the resulting groups are used as the target to train 
a DT as a multiclass classifier. More information on the 
complete process can be found in [1], [4] and [5]. 

In this study, errors according to the procedure described 
in Section II B, are added to the simulated rotor angles for 
both the training and testing datasets. The performance of the 
resulting DTs is compared to respective DTs trained directly 
with the simulated rotor angle responses without error. The 
impact on the accuracy of DTs due to the addition of error is 
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investigated, using various algorithms such as Classification 
and Regression Tree (CART), C5, C5 boosting and Support 
Vector Machine (SVM) [4], [10].  

D. Calculation of generator importance 

For each specific created DT, the predictors used can be 
ranked according to their importance by computing a 
sensitivity measure Si, as defined in (3). The predictor 
importance VIi, can be then computed as the normalized 
sensitivity, as shown in (4). More information on the 
procedure is available in [11], [12].  
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where Xi is the predictor for which the sensitivity measure 
is calculated, V is the output variance considering all 
predictors, Vi is the variance without considering predictor Xi 
and k is the number of predictors used. 

As explained above, the predictors are measurement 
samples of the rotor angles of all generators in the system. By 
determining the most important predictors, which are related 
to specific generator rotor angles, the most 
important/influential measured responses can be identified. By 
adding the predictor importance VIi of all predictors 
corresponding to a specific generator, which are actually 
different samples within the measurement time frame, the 
generators are ranked according to how important the 
measured rotor angle is for determining the system dynamic 
signature. Two separate importance lists are generated for 
binary and multiclass classification, respectively. Moreover, a 
combined importance list by adding the predictor importance 
factors of the binary and multiclass classification DTs for each 
generator, is defined. This is an overall measure of the 
importance of the measured rotor angle of each generator [9]. 

III. TEST NETWORK AND SIMULATIONS 

A. Test system 

The test system used in this study is the 16 machine, 68 
bus reduced order equivalent model of the New England Test 
System and the New York Power System (NETS – NYPS), 
shown in Fig.3 and adopted from [1]. The network is 
simulated using Matlab/Simulink to obtain the necessary rotor 
angle responses along with the voltage and current data 
assumed to be available as PMU measurement data. G13 is the 
reference machine and therefore its rotor angle is not used in 
the following studies, since it is considered constant. 

B. Monte Carlo Simulations to account for system 

uncertainties 

To obtain the datasets required for the training and testing 
of the DTs, Monte Carlo simulations are carried out by 
varying the fault location, the fault duration and the system 

loading. Three phase self clearing faults are simulated in all 
cases. The fault location is changing randomly along all lines 
in the network following a uniform distribution. The fault 
duration follows a normal distribution with mean value of 13 
cycles and standard deviation 0.667 cycles. The system load 
variation follows a normal distribution with mean value 1 pu 
based on [1] and standard deviation 0.033 pu and all the 
individual loads in the system are scaled accordingly. The 
simulations last 20 sec, i.e., 20 sec of rotor angle responses are 
captured for further analysis. For the training dataset, 5000 
cases are simulated, while for the test dataset the number of 
simulated cases was 2000. There were   438 and 167   unstable 
cases (system loses stability) in the training and test data sets, 
respectively. 
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Figure 3.  68 bus test network. 

IV. IMPACT OF MEASUREMENT ERROR ON ONLINE 

IDENTIFICATION OF DYNAMIC SIGNATURE 

A. Calculation of rotor angle signals from PMU 

measurements 

The calculated rotor angles, with the added error according 
to the method described in Section II, of all generators 
following 8-cycle self clearing three phase fault at Bus 1 are 
shown in Fig. 4. The absolute error ε for each sample and for 
each generator is calculated by (5). The maximum error   
observed is 1.5˚ for generator G12. 


e

     

where δe is the rotor angle value with the added error and δ is 
the theoretical value calculated by (1). 
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Figure 4.  Generator rotor angles with error. 
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To investigate further the effect of the calculated rotor 
angle error a Monte Carlo approach is applied. Random error 
values are added multiple times for each sample within the 1% 
TVE and 5% impedance limit, as described in Section II B. 
One thousand cases considering random, uniformly distributed 
phasor values and impedance errors are simulated for each 
measurement point. Initially, the mean value and standard 
deviation of the 1000 errors for each single measurement point 
is calculated. Afterwards, the mean value of the individually 
calculated mean values and standard deviations for all 
measurement points and for each generator are calculated. 
Typical rotor angle error distributions for each generator, 
shown in Table I, are identified in order to investigate   the 
impact of the added error during the calculation of rotor angles 
from voltage and current measurements. Identified normal 
distributions are all mean value 0 and standard deviation as 
shown in Table I. 

TABLE I.  TYPICAL ERROR DISTRIBUTION FOR EACH GENERATOR 

Generator 1 2 3 4 5 

St. Dev. (°) 0.315 0.482 0.539 0.435 0.464 

Generator 6 7 8 9 10 

St. Dev. (°) 0.426 0.416 0.489 0.597 0.717 

Generator 11 12 14 15 16 

St. Dev. (°) 0.441 0.619 0.298 0.290 0.451 

B. Decision tree performance with added error 

Calculated errors with normal distributions with mean 
value 0 and standard deviations as shown in Table I are added 
to the rotor angles obtained from the Monte Carlo simulations 
as described in Section II. Signals with added errors are then 
used for training as well as testing of the DTs. The IBM SPSS 
Modeler software is used for the purpose of training and 
testing DTs [13]. 

Considering multiclass classification, as mentioned in 
Section II C, hierarchical clustering is applied initially to 
determine the generator groupings. Only the last sample of the 
rotor angles at the end of the simulation, i.e. at 20 sec, is used 
in this study as in [5]. There is a total of 12 patterns observed 
in the training set and 9 in the test set. Seven are common 
between the training and test set, while two are only observed 
in the test set. All the occurring patterns are considered during 
the training and testing process. However, only the four most 
important patterns (>95% of the cases) observed in both the 
training and test datasets, are presented in Table II. The rest of 
the patterns are only appearing only one or two times in each 
dataset. 

In Table III, the accuracy of binary and multiclass DTs is 
shown for the case where the rotor angles from the simulation 
are directly used as well as for the case when error is added. 
The length of data sets of the rotor angles used, is considered 
to be either 10 or 60 cycles, in order to determine if this has 
also any effect on the performance. The performance of the 
DTs without adding error is shown in   brackets in Table III. 

It can be seen form Table III that the performance of the 
DTs is only slightly affected by added 

measurement/calculation errors. The influence of errors is 
more pronounced in case of mainly multiclass classification, 
but the effect is not significant. More specifically, for binary 
classification the accuracy with and without error remains 
practically unaffected. 

TABLE II.  MOST IMPORTANT GROUPING PATTERNS 

Pattern 

No 

No of 

cases 

Generator grouping No of 

groups 

1 92 (G1-G9,G12,G14-G16)/(G10)/ 

(G11) 

3 

2 40 (G1-G8,G10-G12,G14-G16)/(G9) 2 

3 9 (G1-G9)/(G10)/(G11)/(G12)/(G14-
G15)/(G16) 

6 

4 20 (G1-G9)/(G10)/(G11)/(G12)/(G14-

G16) 

5 

TABLE III.  ACCURACY OF DTS WITH ADDED ERROR TO THE SIGNALS 

DT 

algorithm 

Binary Multiclass 

 10 cycles 60 cycles 10 cycles 60 cycles 

CART 97.2 
(97.15) 

99.5 
(99.6) 

85.63 
(83.83) 

79.04 
(88.62) 

C5 98.15 

(98.45) 

99.45 

(99.75) 

86.23 

(83.23) 

90.42 

(90.42) 

C5 boosting 98.1 
(98.8) 

99.75 
(99.75) 

86.83 
(88.62) 

91.62 
(89.82) 

SVM 98.7 

(98.8) 

98.05 

(98.65) 

82.63 

(85.63) 

86.63 

(89.82) 

Considering multiclass classification, the largest drop in 
accuracy when error is added, around 9.5%, is observed for 
CART algorithm when 60 cycles are used. Small variations in 
the accuracy are noticed for all algorithms for both 10 and 60 
cycles. It should be noted that only a few misclassified cases 
can cause differences of around 2% for multiclass 
classification since the number of the testing group is not very 
large. This is also the reason for an increase in accuracy 
noticed in some cases when the error is added. Since different 
DTs are built for each   of the cases shown in Table III, it is 
possible that in some cases (CART and C5 for 10 cycles and 
C5 boosting for 60 cycles) the DT trained with measurement 
errors in the rotor angles is “more robust” and can identify 
correctly a few cases more. 

In general, considering binary classification, it can be 
concluded that the performance of DTs will not be 
significantly affected by adding realistic values of 
measurement errors. A difference of a few degrees in rotor 
angles due to adding the measurement error does not have 
significant impact as the rotor angles of unstable generators 
will attain large values anyway. For multiclass classification 
though, even a few degrees difference in rotor angle    samples 
that are important predictors for the DT can change the 
classification result. 

V. IDENTIFICATION OF IMPORTANT GENERATORS 

A. List of important generators 

In Table IV and V, the predictor importance of the most 
important predictors for binary and multiclass classification 
using the C5 and C5 boosting algorithm is shown. The results 
for two algorithms are presented to highlight that the 
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important predictors can vary according to the algorithm used 
to create the DTs. The case where 60 cycles of the rotor angles 
are used to train and test the DTs, is investigated for both 
algorithms. In a similar manner, for different duration of rotor 
angles, the importance list would be different. 

When the tree is created, the most important predictors are 
identified according to the methodology described in Section 
II. These important predictors are actually samples of rotor 
angles of specific generators during the 60 cycle period. For 
example, the last sample of the rotor angle of a generator for 
the 60th cycle can be an important predictor considering binary 
classification, as the case is for G10 in Table V. More than 
one sample corresponding to one generator might be included 
in the list. This happens for example for G3 in multiclass 
classification as shown in Table IV. 

The predictor importance values for each generator are 
added to calculate the importance of the specific generator. 
Moreover, the importance of both binary and multiclass 
classification methods can be further added to come up with 
an overall importance list of generators, as shown in Table VI. 
This combined importance list is used to provide an insight as 
to which signals are more important to be used in the online 
identification of the power systems dynamic signature. 

TABLE IV.  MOST IMPORTANT PREDICTORS FOR C5 ALGORITHM 

Binary Multiclass 

Generator Cycle Predictor 

Importance 

Generator Cycle Predictor 

Importance 

G11 42 0.5 G3 60 0.46 

G9 53 0.26 G9 18 0.35 

G10 59 0.23 G11 46 0.15 

G2 60 0.01 G5 58 0.02 

G3 25 0.01 G3 26 0.01 

- - - G6 1 0.01 

TABLE V.  MOST IMPORTANT PREDICTORS FOR C5 BOOSTING 

ALGORITHM 

Binary Multiclass 

Generator Cycle Predictor 

Importance 

Generator Cycle Predictor 

Importance 

G10 60 0.03 G9 18 0.19 

G10 33 0.03 G3 60 0.16 

G9 27 0.03 G5 58 0.12 

G3 9 0.03 G6 1 0.12 

G14 42 0.03 G9 52 0.1 

G8 16 0.03 G5 1 0.1 

G10 41 0.03 G3 26 0.1 

G3 60 0.03 G11 46 0.1 

G6 19 0.03 - - - 

G10 25 0.03 - - - 

B. Accuracy of DTs using important generator signals 

The accuracy of DTs using generators from the importance 
list is compared to that of the original trees using all generator 
data as well as to DTs built using signals from the rest of the 
generators that are not included in the importance list of Table 
VI. The procedure is applied to the importance list obtained 
from using the C5 boosting algorithm with 60 cycles duration 
of rotor angles. There are 8 generators in the combined 
importance list and 15 in total in the network, excluding G13 
which is the reference generator. Initially all the important 

generators are used to train a DT and test it using the dataset 
described previously. Afterwards, starting from the last 
generator of the combined importance list (G8), one generator 
at a time is removed until only the most important remains and 
DTs are trained and tested using the same dataset. 
Furthermore, the rotor angles of the 7 generators that are not 
included in the importance list (G1, G2, G4, G7, G12, G15, 
G16) are used to train and test DTs. Finally, rotor angle 
signals of the generators not included in the importance list are 
removed randomly until the rotor angle of one random 
generator remains. The results for binary and multiclass 
classification are shown in Fig. 5 and 6 respectively. 

TABLE VI.  COMBINED IMPORTANCE LIST 

 C5    C5 

boosting 

 

Order Generator Predictor 

Importance 

Order Generator Predictor 

Importance 

1 G11 0.65 1 G3 0.23 

2 G9 0.61 2 G9 0.23 

3 G3 0.48 3 G6 0.15 

4 G10 0.23 4 G5 0.13 

5 G2 0.01 5 G10 0.12 

6 G6 0.01 6 G11 0.1 

- - - 7 G14 0.03 

- - - 8 G8 0.03 
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Figure 5.  Accuracy of binary classification DTs with reduced number of 

used signals. 

For binary classification, the accuracy of the DTs for all 
cases is relatively high, above 96%. When using the rotor 
angles of at least two important generators the accuracy is 
very close to the case when all rotor angles are used (98.75% 
compared to 99.9%). The accuracy drops though (about 
96.25%) when only one generator is used, whether the most 
important one or any other generator in the system. This 
means, that the transient stability status of the system can be 
identified with relatively high accuracy even with rotor angle 
measurements of one generator, whether it is the most 
important one or any random generator in the system. 
However, at least two signals are recommended to be used to 
achieve the highest possible accuracy. 

Considering multiclass classification, a similar behavior is 
observed but in this case the accuracy of DTs is significantly 
higher when rotor angles of generators within the combined 
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importance list are used. Even the rotor angle of one generator 
(G3) from the list is enough to identify with relatively high 
accuracy the power system dynamic signature compared to the 
case when all rotor angles are used (88% compared to 91% 
when signals from eight generators are used and 96% when 
signals from all generators are used). However, when random 
rotor angles of a small number of generators outside the 
importance list are used, the accuracy drops significantly. This 
means that identifying important generators is essential     
when a small number of signals needs to be used. 
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Figure 6.  Accuracy of multiclass classification DTs with reduced number of 

used signals. 

To further explain the reason why the most important 
generator rotor angle (G3) is still sufficient for the online 
identification of the generator groupings, the rotor angle of G3 
for 50 of the 167 cases of the test dataset are presented in Fig. 
7. The most important predictors used when the DT is trained 
using only the rotor angle of G3 are also highlighted in Fig. 7. 
It is shown that by observing the responses of G3 that belong 
to the 3 most common patterns (1, 2, 4) of Table II, the DT 
can identify the grouping pattern of all the generators. This 
means that G3 has a specific response when it belongs to one 
of the most common patterns, that provides the ability to the 
DT to clearly identify the grouping pattern it belongs to. 
However, in the case when a larger number of patterns and 
more complex patterns appear in the power system dynamic 
signature, more rotor angle signals might be required. 
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Figure 7.  Rotor angle of G3 for 50 representative cases. 

VI. CONCLUSIONS 

The impact of measurement signals and procedures 
required to obtain rotor angle measurements on the 
performance of methods for online identification of the power 
system dynamic signature are investigated. 

Due to the fact that measurements of rotor angle may not 
be available for each generator an electrical calculation 
method is followed in this paper, using voltage and current 
measurements from PMUs. A Monte Carlo approach is used 
to define typical error distributions which are then used to 
study the impact of measurement errors on the performance of 
binary and multiclass DTs. The performance of DTs is not 
significantly affected, especially for binary classification. 

The importance of each measured rotor angle is also 
identified, using an appropriate sensitivity measure and a 
combined importance list is defined. DTs are created using 
only some of the generators rotor angles as predictors. While 
the performance can be affected when not all generator rotor 
angles are used, even a small number of the   signals from 
important generators can lead to high accuracy, in excess of 
88%, of prediction of system dynamic signature. 
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