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The injection of fluid into the narrow, liquid-filled gap between a rigid plate and an elastic
membrane drives a displacement flow that is controlled by the competition between
elastic and viscous forces. We study such flows using the canonical setup of an elastic-
walled Hele-Shaw cell whose upper boundary is formed by an elastic sheet. We investigate
both single- and two-phase displacement flows in which the localised injection of fluid at
a constant flow rate is accommodated by the inflation of the sheet and the outward
propagation of an axisymmetric front beyond which the cell remains approximately
undeformed. We perform a direct comparison between quantitative experiments and
numerical simulations of two theoretical models. The models couple the Föppl–von
Kármán equations, which describe the deformation of the thin elastic membrane, to
the equations describing the flow, which we model by (i) the Navier–Stokes equations
or (ii) lubrication theory, respectively. We identify the dominant physical effects that
control the system’s behaviour and critically assess modelling assumptions that were
made in previous studies. The insight gained from these studies is then used in Part 2 of
this work where we formulate an improved lubrication model and develop an asymptotic
description of the key phenomena.

1. Introduction

The injection of fluid into the narrow, liquid-filled gap between a rigid plate and an
elastic membrane drives a displacement flow that is controlled by the competition between
elastic and viscous forces. If the membrane is very stiff, the fluid advances primarily into
the gap whose width remains approximately constant; if the membrane is very flexible,
the injected fluid is accommodated mainly by the inflation of the membrane in the vicinity
of the injection point. The problem involves a two-way interaction between fluid and solid
mechanics and may be affected by additional physical effects, such as gravity or (in the
case of the injection of a different, immiscible fluid) interfacial tension.

Elastohydrodynamic interactions of this type arise in applications ranging from geo-
physical phenomena such as the formation of laccoliths (Michaut 2011; Lister et al. 2013)
and gravity-driven surface lava flows under solidified crusts (Slim et al. 2009; Hewitt
et al. 2015) to physiological processes. For instance, the formation and growth of blisters
(Chopin et al. 2008) involves a competition between elastic and adhesive forces. The

† Email address for correspondence: draga.pihler-puzovic@manchester.ac.uk
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mechanics of pulmonary airway reopening is governed by an interaction between viscous,
capillary and elastic forces, within the more complex geometry of a network of collapsed
tubes (Heap & Juel 2008; Heil & Hazel 2011). Recent work on the injection of an air
bubble into an elastic-walled, liquid-filled Hele-Shaw cell showed that the well-known
fingering instability that occurs when a gas displaces a viscous fluid in a rigid Hele-Shaw
cell (Saffman & Taylor 1958; Paterson 1981; Homsy 1987; Chen 1989; Thomé et al. 1989;
Miranda & Widom 1998) can be delayed or even suppressed through changes in cell
geometry due to elastohydrodynamic interactions (Pihler-Puzović et al. 2012, 2013; Al-
Housseiny et al. 2013). Related fluid–structure interaction problems include the peeling
of lubricated flexible sheets from viscous substrates (McEwan & Taylor 1966; Hosoi &
Mahadevan 2004) and suppression of ribbing instabilities by the use of elastomer-coated
rolls; see, e.g., Carvalho & Scriven (1997, 1999).

In the present paper we study the canonical problem, shown schematically in figure 1,
which has received much attention in recent years (Jensen et al. 2002; Grotberg & Jensen
2004; Michaut 2011; Pihler-Puzović et al. 2012, 2013; Al-Housseiny et al. 2013; Lister
et al. 2013; Hewitt et al. 2015). A thin, uniform layer of viscous fluid is contained between
a rigid plate and an elastic membrane which forms the upper boundary of the cell. Viscous
fluid or gas is then injected at a constant flow rate through a central hole in the bottom
plate. The injected fluid spreads radially while inflating the sheet. Experiments show
that this process occurs via the outward propagation of an approximately axisymmetric
front beyond which the sheet remains approximately undeformed and the fluid is at rest.

Experimental and asymptotic studies of single-phase displacement flows in this system
indicate that the propagation speed of the front is controlled by the local dynamics in the
so-called “peeling region” – the region near the front where the thickness of the fluid layer
approaches its initial value (Lister et al. 2013; Hewitt et al. 2015). The radial velocity of
the front is determined by the interaction between viscous and elastic forces and therefore
depends on which of the elastic restoring forces acting in the membrane is dominant. If
the sheet’s deflection is small (relative to its thickness) its stiffness is dominated by
bending stresses, whereas for larger deflections, self-induced in-plane stresses become
dominant in the central blister. However, even in that case the peeling process can still
be predominantly driven locally ‘by bending’ if the sheet is thicker than the initial fluid
layer (Lister et al. 2013).

If the injected fluid is a gas, the position of the propagating front can be affected by the
position of the interface between the two fluids. Surface tension acting at this interface
contributes to the force balance at the peeling front and therefore potentially changes
the spreading dynamics. Furthermore, as mentioned above, the gas–liquid interface can
become unstable to non-axisymmetric fingering instabilities when the injection flow rate
exceeds a certain threshold. Pihler-Puzović et al. (2012) were the first to study this
two-phase flow problem experimentally. They measured the evolution of the position of
the gas–liquid interface and studied the onset of the non-axisymmetric instabilities. Al-
Housseiny et al. (2013) and Lister et al. (2013) subsequently developed theoretical models
of axisymmetric spreading for this experimental system. Both studies described the fluid
mechanics by lubrication theory and neglected the effects of gravity and capillary forces
at the air–liquid interface. The studies differed in their assumptions about the membrane
behaviour and about the role of the interface: Al-Housseiny et al. (2013) assumed that
the membrane stiffness is dominated by bending effects and that the presence of the
air–liquid interface affects the propagation dynamics; Lister et al. (2013) argued that the
elastic restoring forces in the membrane are dominated by self-induced tension and that
the interface only plays a minor role. Both studies found that their theoretical predictions
for the evolution of the bubble radius agreed very well with Pihler-Puzović et al.’s (2012)
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experimental measurements. Therefore, it is not clear from this comparison alone which
of the two models is based on the correct physical assumptions.

The purpose of the present paper is to provide a much more detailed study of axisym-
metric single- and two-phase flows in elastic-walled Hele-Shaw cells, using a combination
of experiments and computations. We develop a complete theoretical model that is
based on the coupled solution of the axisymmetric free-surface Navier–Stokes equations
(including the effect of interfacial tension and gravity), and the Föppl–von Kármán
equations – a system of equations that is capable of describing the deformation of thin
elastic membranes in the bending- and tension-dominated regimes. We perform detailed
direct comparisons between the computational results and experimental measurements,
and then use the computations to identify the dominant mechanisms involved in the
interaction between fluid and solid mechanics. We also contrast our results for single-
and two-phase spreading with predictions from a simple lubrication-theory-based fluid
model that formed the basis of most previous theoretical studies.

In Part 2 of this work (Peng et al. 2015) we focus more specifically on the role
of interfacial tension and the capillary meniscus in the two-phase spreading problem.
Using insight gained from the experiments and computations in the present paper, the
simple lubrication model is developed to include wetting behaviour, and the corrected
predictions give excellent agreement with experiments and computations. The model is
then used as the basis for the development of detailed asymptotic analyses of the coupling
between the meniscus, the fluid wedge ahead of the meniscus and the dynamics of the
peeling region.

This paper is organised as follows. We start by describing the experimental setup in §2
and then introduce the theoretical/computational models in §3. Results are presented in
§4 where we start by demonstrating in §4.1 that the Föppl–von Kármán equations provide
an excellent description of the membrane’s deformation over the range of deflections
encountered in the fluid–structure interaction experiments. In §4.2 we provide a detailed
analysis of the flow fields and membrane deformations in the two-phase fluid–structure
interaction problem and demonstrate excellent agreement between the numerical and
experimental results. In §4.2.2 we analyse the system’s temporal evolution in terms of
the membrane’s deflection and the radius of the propagating front, and relate these to
the scaling laws predicted by previous theoretical models. We also highlight important
differences between the single- and two-phase flows and show that, for the parameter
regime considered in our experiments, gravity plays an important role in the former
problem.

2. Experiments

A schematic diagram of the experimental setup is shown in figure 1 (a). A 15 mm thick
float-glass plate, which was accurately levelled to within 0.1◦, formed the rigid bottom
boundary of the cell. A brass cylinder with a diameter of 19 mm, which appears as the
central black circle in figure 1 (b), was drilled with an inlet hole of radius Rinlet = 1.14 mm
and mounted flush at the centre of the float-glass plate to enable the injection of fluids.
Elastic sheets of size 400×400 mm2, made from different materials, were used to form the
upper boundary of the cell. We used latex sheets (Supatex) of thickness d = 0.34± 0.01
mm and Poisson’s ratio ν = 0.5, and polypropylene films (Film Products Ltd) of thickness
d = 0.030 ± 0.001 mm, for which a Poisson’s ratio of ν = 0.44 was measured using
extensometry. The Young’s modulus, E, of the materials was determined by matching
experiments and numerical simulations for the inflation of the elastic sheet by spatially
uniform pressure; see §4.1 for details. The top and bottom boundaries of the cell were
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Figure 1. (a) Schematic diagram of the experimental apparatus. (b) Top view of the
instantaneous interfacial pattern in the elastic-walled Hele-Shaw cell with a latex membrane in
which an air bubble, injected at V̇ = 50 ml.min−1, displaces silicone oil. (c) The corresponding
shape of the air–liquid interface determined by our image analysis procedure.

separated by a spacer of thickness h0 = 0.56± 0.01 mm with a circular cutout of radius
Rcell = 18 cm.

All experiments were performed in a temperature-controlled laboratory at 20± 1 ◦C.
Prior to each experiment, viscous fluid was injected into the cell until the fluid occupied
a circular region of radius Router < Rcell, thus leaving an air gap between the fluid and
the outer edge of the cell. During the experiments the air in that gap was able to escape
freely through the unsealed sidewalls of the cell. While filling the cell, a heavy glass
plate was placed on top of the elastic sheet to suppress any vertical displacement of the
membrane. This ensured that the experiments were started from a configuration in which
the cell had a uniform depth, h0, set by the thickness of the spacer separating the top
and bottom boundaries. We confirmed that changes to the initial outer radius of the
viscous fluid layer, Router, between 15 and 17 cm had no effect on the results.

The experiments with latex sheets were performed with silicone oil (Basildon Chemicals
Ltd; viscosity µ = 0.9624 kg.m−1s−1, density ρ = 961 kg.m−3 and surface tension γ =
0.021 N.m−1) which wets both glass and latex surfaces. When performing experiments
with polypropylene sheets significant electrostatic forces developed and resulted in the
distortion of the membrane when silicone oil was used as the working fluid. We therefore
performed these experiments with a mixture of glycerol and water whose conductive
properties prevented the build-up of electric charges. A mixture containing 10% purified
water by volume (resulting in a fluid with viscosity µ = 0.305 kg.m−1s−1, density ρ =
1235.1 kg.m−3 and surface tension γ = 0.065 N.m−1) was used. While this mixture only
partially wets the polypropylene sheet (we measured a static contact angle of θ = 78±5◦),
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Figure 2. (a) Superposition of two raw experimental images during sheet deflection
measurements in the elastic-walled Hele-Shaw cell with a latex sheet, showing a side view of
the membrane prior to the start of the experiment at t = 0 s, and the inflated membrane at
t = 10 s for V̇ = 150 ml.min−1. Only the region of large sheet deflection is shown. (b) An
example of fitting the Gaussian profile [a exp(−(pixels−b)2/c2)] to the intensity of the deflected
and reference lines at the 650th pixel along the image length, indicated by the vertical white
line in (a).

the expanding bubble deposited a continuous film of viscous fluid on the cell boundaries
and dewetting was only observed on timescales longer than that of a typical experiment.

For single-phase experiments, which were performed with the latex membrane only,
silicone oil was injected with a KD Scientific syringe pump (KDS120) at constant
volumetric flow rates in the range V̇ = 0.5 − 10 ml.min−1. The peak flow rate was
set by the maximum power of the syringe pump.

For the two-phase experiments a small circular air bubble of radius Rinit ≈ 5 mm
was injected into the viscous fluid layer through the inlet and allowed to relax before
starting the experiment by injecting nitrogen from a compressed gas cylinder. The flow
rate was regulated manually by a fine needle valve in the range V̇ = 50− 300 ml.min−1.
We monitored V̇ throughout the experiment using a mass airflow meter (Red-Y Smart
Meter PCU1000, Icenta Controls Ltd) and found it to remain constant to within 0.5%
of the set value. The maximum and minimum flow rate in these experiments was set
by the system’s susceptibility to non-axisymmetric instabilities. For V̇ > 300 ml.min−1

the system was found to be unstable to non-axisymmetric fingering instabilities studied
earlier by Pihler-Puzović et al. (2012, 2013); for V̇ < 50 ml.min−1, the air–liquid interface
remained circular but drifted slowly across the cell in a rigid-body mode (with unit
azimuthal wavenumber). This latter instability is due to the finite extent of the Hele-
Shaw cell, and is always present for rigid-walled cells, even when the flow rate is so small
that all other non-axisymmetric modes are suppressed (Pihler-Puzović et al. 2013). At
larger flow rates, the geometry of the elastic-walled cell is drastically different, and this
mode is no longer observed to be unstable.

The shape of the air–liquid interface was monitored by recording back-lit images of the
advancing interface with a CCD camera (JVC KY-F1030, 1360 x 1024 pixels) at a rate
of 7.5 frames per second. The recorded images were then processed using edge detection
routines in MatLab 2013a (see figures 1 (b, c)) in combination with the Canny filter to
extract the circumferentially averaged position of the interface, R(t), (measured relative
to the point of injection O) as a function of time t. All experiments were performed at
least six times for each set of control parameters.

In both the two-phase and the single-phase flow experiments we also recorded the
deformation of the elastic membrane. This was particularly important for the latter, as
there was no interface in the single-phase flow experiments. These measurements were
challenging because of the large aspect ratio of the cell (the initial ratio of the cell depth
h0 to the outer radius of the fluid layer Router was ≈ 0.004). The deformation of the
elastic membrane was measured by projecting a line onto the membrane using a video
projector (with all optical corrections turned off), positioned vertically above the cell.
Images of the deforming line were captured with a CMOS camera (Dalsa Genie TS-
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Figure 3. Radial cross-section of the elastic Hele-Shaw cell in (a) the Stokes model, and (b)
the lubrication model.

M3500, 3520 x 2200 pixels, 0.2 - 5 frames per second) oriented at an angle of θ = 31◦

to the horizontal. The sheet deflection was then determined by reference to the position
of the line on the undeformed membrane (as illustrated in figure 2 (a)), and rescaled
by a trigonometric factor of 1/ cos θ. The resolution of the raw images was 40 µm per
pixel, while the projected line was itself approximately 40± 5 pixels wide. This led to a
millimetric resolution of the sheet’s vertical deflection ζ, which was typically of the order
millimetres itself. In order to improve the spatial resolution, we fitted a Gaussian profile
to the light intensity (Lister et al. 2013) to locate the point of maximum intensity. This
resulted in an improvement in the resolution of ζ to a sub-pixel accuracy of ≈ 10 µm, as
illustrated in figure 2 (b). The accuracy of the displacement measurements was further
improved through averaging the results over six experiments for each set of parameter
values.

3. Theoretical models

The theoretical analysis of flow in the elastic Hele-Shaw cell requires the coupled
solution of equations that describe (i) the flow of the viscous fluid in the moving domain
ΩF that is bounded by the deforming membrane and, in the case of two-phase flow, the
air–liquid interface, and (ii) the deformation of the elastic membrane in response to the
traction that the fluid exerts onto it.

3.1. Fluid equations

3.1.1. Navier–Stokes equation

We describe the flow of the viscous fluid by the axisymmetric Navier–Stokes equations

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uz
∂ur
∂z

)
= −∂p

∂r
+ µ

(
1

r

∂

∂r

(
r
∂ur
∂r

)
− ur
r2

+
∂2ur
∂z2

)
, (3.1)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uz
∂uz
∂z

)
= −∂p

∂z
+ µ

(
1

r

∂

∂r

(
r
∂uz
∂r

)
+
∂2uz
∂z2

)
− ρg, (3.2)

1

r

∂

∂r
(rur) +

∂uz
∂z

= 0. (3.3)

where p = p(r, z, t) is the pressure, ur = ur(r, z, t) and uz = uz(r, z, t) are the radial and
vertical components of the velocity u, respectively, and g is the gravitational acceleration,
acting in the negative z direction. These equations have to be solved in the evolving fluid
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domain ΩF. The fluid is subject to a no-slip condition at the top and bottom boundaries.
Assuming that the membrane deformation is dominated by its vertical displacement ζ
(see the discussion of the membrane model in §3.2) this implies that

ur = 0 and uz =
∂ζ

∂t
at z = h0 + ζ(r, t), (3.4)

and

ur = uz = 0 at z = 0, r > Rinlet. (3.5)

For the single-phase problem we impose a quadratic (Poiseuille) velocity profile at the
inlet,

ur = 0 and uz =
2V̇

πR4
inlet

(R2
inlet − r2) at z = −Linlet, r 6 Rinlet, (3.6)

and impose no slip, ur = uz = 0, on the walls of the inlet pipe, r = Rinlet, z < 0.
For the two-phase problem, we describe the position of the air–liquid interface ∂ΩBF

by a vector Rin(s, t), parametrised by a surface coordinate s, as shown in figure 3 (a),
and assume that the air–liquid interface remains pinned to the inlet so that Rin(s =
0, t) = Rinleter. The kinematic boundary condition that links the fluid velocity to the
motion of the air–liquid interface is then given by

u · n =
∂Rin

∂t
· n on ∂ΩBF, (3.7)

where n is the unit vector normal to ∂ΩBF (directed out of the fluid). This condition is
augmented by the dynamic boundary condition(

−p+ µ
(
∇u + (∇u)T

))
n + γκn = −pbn on ∂ΩBF, (3.8)

where κ is the sum of the principal curvatures of ∂ΩBF and pb the pressure in the
expanding bubble. For simplicity we truncate the fluid domain at r = Router where
we impose purely radial outflow and apply a radial traction that is consistent with a
hydrostatic pressure distribution,

uz = 0 and − p+ 2µ
∂ur
∂r

= ρg(z − h) at r = Router, (3.9)

where the reference pressure has been chosen such that for zero flow and zero fluid
pressure, the membrane (which is subject to zero external pressure; see figure 3) is in
equilibrium. Finally, we use the integral volume conservation equation for the bubble
volume, VB(t), ∫

ΩB

dV = VB(t = 0) + V̇ t, (3.10)

as the equation that determines the spatially uniform, time-varying bubble pressure pb(t).

3.1.2. Lubrication theory model

Since the aspect ratio of the elastic-walled Hele-Shaw cells is small (h0/Router � 1),
most previous studies (e.g. Michaut (2011); Al-Housseiny et al. (2013); Lister et al. (2013);
Pihler-Puzović et al. (2013); Hewitt et al. (2015)) described the fluid flow by the Reynolds
lubrication equation (Reynolds 1886),

∂h

∂t
=

1

r

∂

∂r

(
rh3

12µ

∂

∂r
(p̄+ ρgh)

)
, (3.11)
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where h(r, t) = ζ(r, t) + h0 is the depth of the cell, and p̄(r, t) is the component of
the depth-averaged fluid pressure that excludes the contribution from the hydrostatic
pressure.

We initially assume that in the two-phase problem the fluid films that are deposited
on the upper and lower cell boundaries by the expanding bubble are sufficiently thin to
be neglected, as shown in figure 3 (b). This assumption will be re-examined in Part 2.
The evolution of the thickness-averaged radius of the air–liquid interface, R(t), is then
governed by the kinematic boundary condition

dR

dt
= ūr|r=R(t), (3.12)

where

ūr = − h2

12µ

∂

∂r
(p̄+ ρgh) (3.13)

is the depth-averaged radial fluid velocity. To evaluate the dynamic boundary condition
(3.8) we approximate the transverse component of the curvature as 2/h and neglect the
viscous normal stresses to obtain

p̄ = pb(t)− γ
(

1

R
+

2

h

)
at r = R(t). (3.14)

Within the framework of lubrication theory, the traction boundary condition at the outer
boundary (equation (3.9)) corresponds to

p̄ = 0 at r = Router, (3.15)

while the mass conservation equation (3.10) becomes

2π

∫ Router

0

h(r, t) r dr = πh0R
2
outer + V̇ t. (3.16)

3.2. Membrane equations

In the experiments, the vertical deflection of the membrane ζ in response to the fluid
pressure is much larger than its thickness d. This suggests that self-induced in-plane
stresses make an important contribution to the membrane’s elastic response. We therefore
used the Föppl–von Kármán equations (Landau & Lifshitz 1970)

Ed3

12(1− ν2)

1

r

∂

∂r

[
r
∂

∂r

[
1

r

∂

∂r

[
r
∂ζ

∂r

]]]
− d

r

∂

∂r

[
∂ζ

∂r

∂φ

∂r

]
= P, (3.17)

1

r

∂

∂r

[
r
∂

∂r

[
1

r

∂

∂r

[
r
∂φ

∂r

]]]
+
E

r

∂

∂r

[
1

2

(
∂ζ

∂r

)2
]

= 0 (3.18)

to describe the deformation of the membrane in response to the pressure P exerted
by the fluid. φ is an Airy stress function for the non-zero components of the in-plane

stress tensor such that σrr = 1
r
∂φ
∂r and σθθ = ∂2φ

∂r2 . In the experiments the sheet was not
subjected to any in-plane pre-stress, rested freely on the fluid layer, and remained flat
and undeformed at large distances from the injection point. This motivates the boundary
conditions

ζ =
∂ζ

∂r
= φ =

∂φ

∂r
= 0 at r = Router. (3.19)

The pressure P in equation (3.17) is the pressure acting on the membrane – either
the Navier–Stokes pressure, evaluated at the boundary, p(r, z = h(r, t)); the lubrication
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pressure p̄; or for the two-phase lubrication model

P =

{
pb if r < R(t),
p̄ if r > R(t).

(3.20)

3.3. Coupled solution

The governing equations for the Navier–Stokes- and lubrication-theory-based models
were solved numerically using a fully-coupled discretisation of the relevant fluid and
solid equations. The Navier–Stokes-based model was implemented in oomph-lib (Heil &
Hazel 2006) by discretising the weak form of the momentum and continuity equations
(3.1)–(3.3) in their arbitrary Lagrangian-Eulerian (ALE) form on an unstructured moving
mesh, using six-noded triangular Taylor–Hood finite elements (with continuous, piecewise
linear and quadratic basis functions for the pressure and velocity components, respec-
tively). The mesh was generated using Shewchuk’s (1996) unstructured mesh generator,
Triangle. The implicit, second-order accurate, adaptive BDF2 scheme was employed
to discretise all time-derivatives. The dynamic boundary condition (3.8) for the two-
phase flow problem was incorporated via the boundary integral that appears naturally
in the weak form of the Navier–Stokes equations. The mesh deformation in response
to the motion of the bounding membrane (and, in the two-phase flow problem, the
displacement of the air–liquid interface) was determined by treating the fluid mesh as
an elastic solid whose deformation is determined by the equations of large-displacement
elasticity. Lagrange multipliers were used to enforce the boundary displacements such
that the normal motion of the air–liquid interface satisfied the kinematic boundary
condition (3.7) and that nodes that are located on the elastic membrane were displaced
vertically to remain in contact with the membrane. The fluid domain was re-meshed after
every few timesteps to avoid the excessive distortion of elements. The size of the elements
in the new mesh was determined by the Z2 error estimator (Zienkiewicz & Zhu 1992) and
the solution was transferred to the new mesh by projection. In the interest of brevity
we omit details but refer to Hazel et al. (2012), where an equivalent discretisation of
the axisymmetric free-surface Navier–Stokes equations was used in a different problem.
While Triangle is able to generate high-quality meshes throughout the fluid domain, a
technical difficulty arises in the two-phase flow problem in the region near the inlet where
the free surface is pinned at (r, z) = (Rinlet, 0). At large times, the liquid film deposited
on the lower wall becomes very thin and almost parallel to the wall (see figure 5). As a
result the fluid domain terminates in a very shallow angle. Since such regions can only
be meshed with strongly distorted elements, we surrounded the inlet by a shallow groove
(which is just about visible in the inset in figure 5) whose presence had no effect on
the solution but allowed us to maintain the mesh quality throughout the fluid domain.
The Föppl–von Kármán equations were discretised by a mixed finite-element method
in which we approximated the vertical displacements, ζ, the Airy stress functions φ,
and their respective Laplacians by piecewise quadratic basis functions, defined on three-
noded, one-dimensional elements. Again, we omit details but refer to Pihler-Puzović
et al. (2013) for a more detailed discussion of the implementation. The fully-coupled,
implicit discretisation of the fluid and solid equations produces a large system of nonlinear
algebraic equations at each timestep. This system was solved by Newton’s method, using
SuperLU (Demmel et al. 1999) as the linear solver.

The lubrication-theory model was discretised by a second-order accurate finite-
difference scheme and implemented in MatLab; see Pihler-Puzović et al. (2013) for
details. The inflation of the membrane under constant pressure, discussed in §4.1 below,
was also solved using the same finite-difference discretisation in MatLab.
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Figure 4. (a) Vertical displacement of the latex sheet at the centre of the cell, ζ(r = 0), as a
function of the spatially uniform pressure P , obtained experimentally (circles), by solving the
Föppl–von Kármán equations (solid line) and by solving the linear bending equations (dashed
line). (b) The spatial variation of the sheet’s vertical displacement across the latex cell for two
different pressures P = 70 Pa and P = 230 Pa, obtained experimentally (circles) and by solving
the Föppl–von Kármán equations (solid lines).

4. Results

4.1. Membrane inflation

Before analysing the fully-coupled fluid–structure interaction problem, we wish to
assess how well the Föppl–von Kármán equations describe the elastic deformation of the
membrane. For this purpose we changed the experimental setup slightly and clamped the
elastic sheet to the bottom plate using a thick-walled metal ring of radius Rcell = 8 cm.
The sheet was then inflated slowly by injecting air. We monitored the difference P
between the pressure inside the cell and the atmospheric pressure with an ultralow pres-
sure sensor (pressure range ±625 Pa, Honeywell), calibrated with a U-tube manometer
filled with water over its entire range of operation. Figure 4 (a) illustrates the load–
displacement characteristics for the latex sheet by plotting the pressure P as a function
of the sheet’s vertical displacement at the centre, ζ(r = 0), while figure 4 (b) shows
the spatial variation of the sheet’s vertical displacement across the cell for two different
pressures. The symbols represent experimental measurements, with error bars indicating
the standard error of the mean value over five experiments. The solid lines show the
results obtained from the numerical solution of the Föppl–von Kármán equations for a
Young’s modulus of E = 2.1 MPa. They are in excellent agreement with the experimental
measurements over the whole range of displacements encountered in the fluid–structure
interaction experiments presented below. In the case of the polypropylene sheet, we
obtained a similar level of agreement for a Young’s modulus of E = 3.7 GPa. This gives
us confidence that the Föppl–von Kármán equations provide a good description of the
membrane’s elastic behaviour in the experiments reported in this paper.

To assess the importance of the self-induced in-plane stresses relative to the sheet’s
bending stiffness the thick dashed line in figure 4 (a) shows a plot of the load–displacement
curve corresponding to a linear bending model (obtained by setting φ = 0 in equations
(3.17) and (3.18)). The comparison between the two curves demonstrates that the
membrane’s elastic response is dominated by the self-induced in-plane stresses once the
sheet’s deflection in the centre exceeds a value of ≈ 1.5 mm, as expected when h � d.
We note that in the fluid–structure interaction experiments shown in the next section
(and also in the experiments reported in our earlier paper, Pihler-Puzović et al. (2012))
the membrane was subjected to much larger deformations, suggesting that self-induced
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tensions must be represented in any theoretical model. These measurements thus support
the membrane-modelling assumptions of Lister et al. (2013) over those of Al-Housseiny
et al. (2013).

4.2. Fluid–structure interaction

Next, we consider the fully coupled fluid–structure interaction problem in which the
gap under the membrane is initially filled with viscous fluid.

4.2.1. The two-phase flow

Figure 5 illustrates the evolution of the fluid domain following the start of the gas
injection at a constant rate of V̇ = 150 ml.min−1, using results from the Navier–Stokes
simulations.

Initially the bubble expands uniformly in all directions and causes only a modest,
localised inflation of the membrane near the centre of the cell. Once the size of the bubble
becomes comparable to the cell depth, the bubble begins to expand predominantly in
the radial direction while depositing a static film of viscous fluid on the upper and lower
cell boundaries. The membrane continues to inflate slowly while the bubble expands,
“peeling” apart the cell boundaries in a manner that is reminiscent of the behaviour
observed in 2D (and 3D) studies of pulmonary airway reopening (Gaver III et al. 1996;
Heil 2001; Jensen et al. 2002; Hazel & Heil 2003; Grotberg & Jensen 2004; Juel & Heap
2007; Heap & Juel 2008; Hazel & Heil 2008; Heil & Hazel 2011). Note in particular the
minimum in the fluid pressure ahead of the bubble tip which creates a local minimum
in the cell depth (sometimes referred to as a “neck” in the airway reopening literature),
in a manner similar to the behaviour observed in the peeling of an inextensible flexible
tape (McEwan & Taylor 1966) and in peeling of a thick sheet by bending stresses (Lister
et al. 2013). Careful inspection of the displacement field shows that this “neck” is in fact
the first minimum of a decaying oscillatory displacement pattern ahead of the bubble
tip which we will analyse in more detail below. The vertical lines in figure 5 indicate the
bubble radius predicted by the lubrication theory model discussed in §3.1.2. Since this
model ignores the presence of the fluid films that are deposited on the upper and lower
cell boundaries, it significantly under-estimates the bubble radius. We will return to this
issue in Part 2.

Figure 6 shows a direct comparison between the computational predictions and ex-
perimental measurements by plotting the shape of the membrane and the position of
the air–liquid interface 4 and 10 s after the start of the injection, respectively. The
vertical lines in figure 6 indicate the positions of the bubble radius, R(t), found in the
experiments and predicted by the lubrication model. The agreement between the different
sets of results is very good, with the computational predictions for the membrane position
obtained from the Navier–Stokes computations generally being close to (or even within)
the experimental error bars. The most significant discrepancy arises in the region just
ahead of the bubble tip where the membrane is bent less strongly in the experiments.
Possibly as a result, the amplitude of the wave pattern ahead of the bubble tip is much
smaller (and, in fact, barely visible) in the experimental data in figure 6. In figure 7 we
therefore show an enlargement of the wall displacement field in the vicinity of the bubble
tip to demonstrate that the wave pattern is, in fact, present in all data sets. Its key
characteristics, namely the wavelength (judged by a half-wavelength of approximately
7 mm between successive peaks) and its decay rate (estimated from the reduction in the
amplitude of the successive peaks to be ≈ 0.13 mm−1) are in excellent agreement.

A curious feature of figures 6 and 7 is that the membrane shapes predicted by the
lubrication and Navier–Stokes models agree extremely well, despite the fact that the
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Figure 5. Instantaneous cross-sectional profiles of the elastic-walled Hele-Shaw cell and the
corresponding pressure fields during the two-phase displacement flow under the latex sheet for
V̇ = 150 ml.min−1 at t equal to (a) 0 s, (b) 0.0001 s, (c) 0.005 s, (d) 0.1 s and (e) 1 s, computed
using the Navier–Stokes model. The inset enumerated as (ã)–(c̃) shows the details of the profiles
from (a)–(c) in the bubble region. The instantaneous positions of the interface computed using
the lubrication model are indicated with the dashed lines.
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Figure 6. Instantaneous cross-sectional profiles of the elastic-walled Hele-Shaw cell during the
two-phase displacement flow under the latex sheet for V̇ = 150 ml.min−1 at t equal to 4 s
(lower curves) and 10 s (upper curves), found experimentally (discrete data with error bars),
computed using the Navier–Stokes model (solid lines) and the lubrication model (dashed lines).
The experimental points were obtained by averaging the data from six different experimental
runs with the error bars indicating the standard error of the measured mean values.

models’ predictions for the radius of the air–liquid interface differ significantly; see figure 6
(and also figure 9, below). To investigate the reason for this agreement, figure 8 compares
the instantaneous fluid pressure distribution acting on the membrane at t = 10 s and
predicted by the two models. In both models the fluid is subject to the same boundary
condition at r = Router where the fluid pressure is set to zero. Lubrication theory can be
expected to provide a good description of the pressure distribution in the region ahead
of the bubble tip where the cell depth and its radial derivative are small; the agreement
between the two models is indeed very good in this region. A noticeable discrepancy arises
in the vicinity of the bubble tip. There the Navier–Stokes model predicts a continuous
increase in the fluid pressure which arises through a combination of capillary effects and
the viscous stresses at the air–liquid interface , as well as in the pressure gradient in the
bulk required to redirect the fluid into the thin static liquid films that are deposited on the
cell boundaries. Within these films the fluid pressure rapidly approaches a constant value,
close to the bubble pressure. Conversely, in the lubrication model, the pressure gradient
decreases as we approach the air–liquid interface because the increase in cell depth reduces
the flow resistance; see equation (3.13). At r = R the capillary pressure jump (from
equation (3.14)) then changes the fluid pressure discontinuously to the spatially constant
bubble pressure in the region r < R. Figure 8 shows that the good overall agreement
between the two models is at least partly due to a fortuitous cancellation of errors
– the capillary pressure jump alone, applied at the wrong (smaller) radius results in
approximately the same final bubble pressure as that predicted by the full Navier–Stokes
model. Figure 7 shows that the predicted locations of the peeling wave in the lubrication
and Navier–Stokes models are almost exactly the same even though the bubble radii
are different, which supports the argument of Lister et al. (2013) that spread is largely
controlled by the dynamics of peeling independent of the air–liquid interface.
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Figure 7. The scaled instantaneous profiles from the experiments (left column) and the
numerical simulations using the Navier–Stokes (solid lines, right column) and lubrication (dashed
lines, right column) models. The profiles correspond to the elastic-walled Hele-Shaw cell with
the latex sheet from figure 6 at 2 s, 4 s, 6 s, 8 s and 10 s (top to bottom) from the start of the air
injection. As in figure 6, the experimental points were obtained by averaging the data from six
different experimental runs with the error bars indicating the standard error of the measured
mean values.

Figure 9 shows the evolution of the bubble radius for the largest and smallest injection
flow rates imposed in the experiments, V̇ = 50 ml.min−1 and V̇ = 300 ml.min−1,
respectively. The agreement between the Navier–Stokes simulations and the experimental
measurements is excellent throughout, with a maximum discrepancy of 3% over the whole
range of experimental measurements which were terminated when the bubble reached a
radius of Rmax = 70 mm. As already noticed above, lubrication theory systematically un-
derestimates the bubble radius, with the discrepancy to the experimental measurements
increasing with an increase in the injection flow rate. This is because at larger flow rates
(larger capillary numbers) the thickness of the films deposited on the cell walls increases,
making the error in the mass conservation equation (3.16), which ignores the presence of
these films, increasingly significant.

4.2.2. Scaling laws and the relation between single- and two-phase flows

Figure 10 (a) shows a log–log plot of the interfacial position (using data from the
experiments with latex membranes and the corresponding Navier-Stokes simulations)
for a much wider range of injection flow rates. Figure 11 shows the same comparison
for the experiments with the much thinner but more rigid polypropylene sheets, whose
stretching-to-bending ratio 12(1− ν2)(h/d)2 is approximately 100 times larger than that
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theory models, respectively.

of the latex sheets. This implies that at comparable deformations the self-induced tension
in the polypropylene sheets is expected to make an even more significant contribution to
the membrane’s elastic forces than in the experiments with the latex sheets.

Figures 10 (a) and 11 show that in both sets of experiments which were performed with
fluids and membranes of vastly different properties, log–log plots of the bubble radius as a
function of time are approximately straight lines, suggesting a power-law behaviour of the
form R(t) ∼ tα. A curve fit to the experimental data shows that the power-law exponent
α varies slightly between the two sets of experiments (α = 0.368±0.005 and 0.387±0.004
for the latex and polypropylene sheets, respectively, where the error corresponds to the
standard deviation over six and four least-square power-law fits to the experimental
data in figures 10 (a) and 11, respectively; the difference between these two values is
significant when compared with the experimental and fitting errors). Motivated by this
observation we re-examined the computational data in figure 3 (c) of Pihler-Puzović et al.
(2013) that shows the evolution of the bubble radius as a function of time for various
values of the elastic modulus. When re-plotted on log–log axes this data also displays
a power-law behaviour, with the power-law exponent again depending on the properties
of the elastic membrane. Specifically, an increase in Young’s modulus (while keeping all
other parameters constant) is found to cause an increase in α. (We note that if Young’s
modulus is increased to such an extent that the membrane becomes effectively rigid, α
will approach 1/2, since for a constant injection flow rate the bubble radius must vary
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Figure 9. The time evolution of the interface in the two-phase displacement flow in the
elastic-walled Hele-Shaw cell with the latex sheet for V̇ = 50 ml/min (lower set of data) and

V̇ = 300 ml/min (higher set of data). The discrete points were obtained experimentally (the
means and error bars were determined as described in the caption to figure 6 and §2), while the
lines correspond to predictions of different models as indicated in the plot.

like R(t) ∼ t1/2 to conserve mass.) The variations in α in figures 10 (a) and 11 are small,
however, and show that the behaviour is close to R(t) ∼ t3/8 for both sets of experiments.
The evolution of the cell depth (which was only measured in the experiments with the
latex sheet; see §2) closely follows a power law of the form h(r = 0, t) ∼ t1/4; see figure
10 (b).

These power laws agree with those predicted by Lister et al.’s (2013) asymptotic
analyses of the tension-dominated “peeling-by-pulling” problem. Lister et al. (2013)
argued that the same spreading laws should arise in both the single- and two-phase
problems on the grounds that the rate of spread is controlled by the viscous fluid in the
peeling region so that the details of the flow in the central region are irrelevant. Given
the excellent agreement between experiment, computations and asymptotic predictions
in the two-phase problem, one might therefore expect Lister et al.’s (2013) predictions to
do equally well (or better) when applied to the simpler single-phase problem. However,
somewhat surprisingly, figure 12 indicates that this is not the case. The figure shows
experimental measurements of the depth of the viscous fluid layer at the centre of the
cell, h(r = 0, t), for the case when silicone oil is injected at a constant flow rate of V̇ = 1
ml.min−1 into a cell that is bounded by a latex sheet. The experimental measurements
are in excellent agreement with the computational predictions based on the full Navier–
Stokes model and lubrication theory, but neither data set follows the power-law behaviour
observed for the two-phase flow. Furthermore, the agreement between the experiments
and the theoretical calculations remains excellent over the whole range of injection rates
accessible experimentally (figure 13).

The main reason for this discrepancy is evident from the second set of computational
results shown in figure 12. The thinner lines show the results obtained from the Navier–
Stokes and lubrication models if gravity (which is not included in Lister et al.’s (2013)
analysis of tension-driven spreading) is neglected by setting g = 0 in (3.2), (3.9), (3.11)
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18 D. Pihler-Puzović, A. Juel, G. G. Peng, J. R. Lister and M. Heil

t(s)
10

1
10

2
10

3

h
(r

=
0)
(m

m
)

2

3

experiment

Navier-Stokes with gravity

Navier-Stokes without gravity

lubrication with gravity

lubrication without gravity

��
��

4

1
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displacement flow for V̇ = 1 ml.min−1 under the latex sheet, obtained experimentally (see §2 and
the caption to figure 6 for details) and using the Navier–Stokes- and lubrication-theory-based
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and (3.13). In this case we recover the power-law behaviour, h(r = 0, t) ∼ t1/4, predicted
by the theory. This suggests that gravitational slumping of the central bulge, driven by
the radial gradient of the hydrostatic pressure, plays a much more important role in the
single-phase system than in its two-phase counterpart. This is because in the single-phase
problem the hydrostatic pressure results from the entire depth of the continuous viscous
fluid layer, rather than from the two relatively thin viscous films that are deposited on the
upper and lower cell boundaries in the two-phase problem. The resulting gravity-driven
slumping flow augments the radial spreading driven by the elastic pressure and therefore
reduces the depth of the viscous layer relative to that of a flow without gravity. The
deviation from the behaviour for zero gravity increases with time because the tension
in the sheet decreases near the injection point and the hydrostatic pressure gradients
become dominant. We refer to Lister et al. (2013) for an asymptotic analysis of this
gravitational effect for the case when the stiffness of the sheet is dominated by bending,
and to Hewitt et al. (2015) for the case of tension-dominated spreading in two dimensions.

While gravity is the main reason for the non-power-law behaviour of h(0, t), it is not
the only significant difference between the single- and two-phase problems. The injection
rates used in our single-phase experiments (figure 13) are necessarily much smaller than
those used in the two-phase experiments (figures 10, 11) because the injection of viscous
fluid into the elastic-walled Hele-Shaw cell requires much larger pressures which rapidly
exceed those that can be generated by our volumetric pump; see the discussion in §2.
However, we can compare the problems computationally at the same injection rate.

Figure 14 shows that gravity has the same qualitative effect on the behaviour of h(0, t)
in two-phase flow at the larger flow rate of V̇ = 50 ml.min−1 as it did at the lower
experimental flow rate of V̇ = 1 ml.min−1 (cf. figure 12). It also shows that the central
cell height is distinctly larger for single-phase flow than for two-phase flow, except at late
times when the gravitational spreading becomes dominant. Figure 15 provides a detailed
comparison between the computed fluid pressure distributions that act on the membrane
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for the cases of single- and two-phase flows (solid and dashed lines) and when gravity is
included (thin lines) or neglected (thick lines). As expected, gravity has a stronger effect
on the pressure distribution (and therefore the membrane deformation) in the single-
phase than in the two-phase system. However, the most striking feature of figure 15 is
not the effect of gravity but the difference between the pressure distributions for the
single- and two-phase flows in the central part of the cell. As discussed above in §4.2.1,
in the two-phase flow this region is occupied by an inviscid gas bubble whose spatially
constant pressure is transmitted to the membrane through the static fluid layer that lines
the membrane. In the single-phase case there is a significant rise in fluid pressure towards
the injection point, because the injection of viscous fluid into the relatively narrow gap
between the upper and lower cell boundaries induces a large radial pressure gradient. A
further rise in pressure occurs near the injection point where the fluid has to be deflected
from its vertically upward motion into the radial direction. The viscous and gravitational
pressure gradients can clearly be seen in the pressure contour plots in figure 16.

It is quite remarkable that, despite the huge differences in radial pressure distribution
in the central part of the flow, the radial position of the frontal peeling wave is almost
exactly the same in the single- and two-phase cases. Figure 14 clearly shows that the large
central pressures in single-phase flow have a significant effect on the central height of the
membrane. In the two-phase system viscous pressure gradients in the central part of the
cell and vertical pressure gradients induced by gravity are almost absent. By contrast, an
accurate description of the single-phase flows in elastic-walled Hele-Shaw cells requires
these effects to be included – at least in the parameter regime considered here.

5. Conclusion

We have performed a detailed experimental and numerical study of single- and two-
phase displacement flows in elastic-walled Hele-Shaw cells in order to identify the dom-
inant mechanisms that control the system’s behaviour. We established that in the
parameter regime considered here (and in previous studies, such as Pihler-Puzović et al.
(2012)), the stiffness of the elastic membrane that forms the upper boundary of the
cell has significant contributions both from its self-induced in-plane tension and from
bending effects. The Föppl–von Kármán equations provide an excellent description of
the membrane’s deformation in this regime.

Computational results obtained from the coupled solution of the Föppl–von Kármán
equations and the free-surface Navier–Stokes equations were found to be in excellent
agreement with the experiments. This allowed a critical assessment of lubrication-theory-
based models that were used in most previous theoretical studies of this problem. We
showed that in the case of two-phase flow, when the injected fluid is an inviscid gas,
the lubrication-theory-based predictions for the evolution of the bubble radius R(t) is in
reasonable qualitative agreement with the Navier–Stokes-based results. The discrepancy
between the two models can be attributed primarily to the neglect in the lubrication
model of the thin layers of viscous fluid that are deposited on the upper and lower
boundaries of the Hele-Shaw cell and, to a lesser extent, to the rather simplistic model
for the visco-capillary flow in the vicinity of the gas–liquid interface. The difference in
the instantaneous bubble radius R(t) predicted by the two models increases continuously
and can become as large as 16% for the parameter range considered here. However, log–
log plots of the R(t) data from the experiments and the Navier–Stokes computations,
obtained for widely different membrane properties, are nevertheless close to the power-
law behaviour predicted by Lister et al.’s (2013) lubrication-theory-based asymptotic
model.
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and lubrication-theory-based (dashed lines) models.

In the case of single-phase flow, the absence of the gas–liquid interface implies that
lubrication theory (and hence any asymptotic models derived from it) might naively be
expected to perform much better. However, we found that for the range of parameters
considered here the gravitational pressure variation in the region where the membrane is
strongly inflated plays an important role and that the viscous pressure gradient remains
sufficiently large throughout the domain that it cannot be neglected anywhere. While
both of these effects are easily included into the lubrication theory model (see e.g. Hewitt
et al. (2015)), they are shown here to have a strong effect on the system’s behaviour,
causing it to deviate significantly from the power-law behaviour predicted by Lister et al.’s
(2013) asymptotic model.

In Part 2 of this paper we use the insight gained from the experimental and compu-
tational studies presented here to develop an improved lubrication-theory-based model
that uses results from Reinelt & Saffman (1985) to derive corrections to the kinematic
and dynamic boundary conditions (3.12) and (3.14) at the air–liquid interface. We show
that this model yields results that are in excellent agreement with those of the Navier–
Stokes-based model. The lubrication-theory model is then used to develop asymptotic
descriptions of the system’s behaviour in specific regions of parameter space. We antic-
ipate that it may also form a promising starting point for a theoretical analysis of the
non-axisymmetric fingering and wrinkling instabilities reported in Pihler-Puzović et al.
(2012), Pihler-Puzović et al. (2013) and Pihler-Puzović et al. (2014).
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Figure 14. The time evolution of the cell depth at r = 0 on a log–log scale in the single-phase
and two-phase displacement flows for V̇ = 50 ml.min−1 under the latex sheet, using the
Navier–Stokes- and lubrication-theory-based models, with and without the contribution from
gravity. If not stated otherwise, the results for the single-phase flow are shown.
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Figure 15. The instantaneous pressure P at t = 10 s in the single-phase (solid lines) and

two-phase (dashed lines) flows at V̇ = 50 ml.min−1 under the latex membrane, computed using
the Navier–Stokes-based model, with and without gravity.
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Figure 16. Contours of fluid pressure at t = 10 s obtained in the Navier–Stokes simulations
of the single-phase flow under the latex membrane at V̇ = 50 ml.min−1 (a) when gravity is
accounted for and (b) when gravity is neglected. The colour contours show the fluid pressure
using equally spaced increments over a limited range between 0 and 120 Pa. The pressure
variations are much greater near the inlet where we indicate the pressure distribution by pressure
isolines that are equally spaced between -1200 and 2000 Pa in increments of 200 Pa.
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