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Impact of Hash Value Truncation on ID Anonymity in
Wireless Sensor Networks

Ahmed Al-Riyami∗, Ning Zhang, John Keane

School of Computer Science, The University of Manchester

Manchester, UK

Abstract

Hash functions have been used to address security requirements such as integrity,

message authentication and non-repudiation. In WSNs, these functions are also

used to preserve sensor nodes’ identity (ID) anonymity, i.e., they are used to

generate and verify dynamic pseudonyms that are used to identify sensor nodes

in a communication session. In this latter application, there is an open issue as

to how long the output of a hash function (i.e. hash value) we should use in

pseudonym generation. The longer the hash value, the longer is the pseudonym,

thus the harder it is to guess a pseudonym that is generated by using a hash

function. On the other hand, the use of a longer hash value also means that the

bandwidth and energy costs in transmitting the pseudonym will be higher. As

sensor nodes typically have limited resources and are battery powered, the bal-

ance between the protection level of ID anonymity and performance and energy

costs incurred in providing such a protection is an open issue. This paper inves-

tigates the use of hash value truncation in preserving ID anonymity in WSNs

and the impact of hash value truncation on four criteria attributes (security

against brute force attacks, probability of pseudonym collisions, energy trade-

off and end-to-end packet delivery delay). It reports the possible impacts of

other factors including the type and usage of hash functions, sensor node capa-
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bilities, adversary capabilities, ability to resolve pseudonym collisions, network

density and data collection rate. The results show that the impacts of these

factors may be contradictory. Therefore, the determination of an optimal level

of hash value truncation should consider all trade-offs brought by these factors.

Keywords: hash value truncation, ID anonymity, Wireless Sensor Network

1. Introduction

Hash functions are computationally cheap to compute and hard to reverse, so

they have been used to construct cryptographic algorithms or methods providing

security services such as data integrity, origin authentication, entity authentica-

tion, anti-reply and non-repudiation. They are widely used in application areas

such as virtual private networks (VPNs), secure electronic transaction, secure

email, digital signatures, digital cash, electronic commerce, electronic voting and

digital right management. As hash functions are computationally more efficient

than other cryptographic primitives such as symmetric and asymmetric ciphers,

they are also commonly used in security provisioning in resource-constrained

networks such as Wireless Sensor Networks (WSNs). For example, one of the

basic security services in WSNs where hash functions have also been applied is

preserving the ID anonymity of sensor nodes.

Preserving node ID anonymity is a key element in providing security and

privacy in WSNs due to its importance in encumbering the node capture attacks.

Unlike the case in other wireless networks, sensor nodes in WSNs are prone to

node capture attacks due to their unattended nature of deployment. Node

capture attacks may result in data privacy compromise or further harm to the

network operations. However, Becher et al. [1] have proved that such attacks

are not as easy as they are assumed in literature. Adversaries need to invest

time and effort to capture a node, obtain the stored data or modify the code

within the node’s memory, redeploy the captured node back to the network

and start to mount further security and privacy attacks through the redeployed

node. Therefore, adversaries often try to capture and compromise nodes that
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play a greater role in facilitating the network operations such as cluster heads

or parent nodes located closer to the base station. Adversaries usually try to

identify these nodes by analysing the communication relationship among the

nodes through the study of the nodes’ IDs carried in the exchanged packets.

Preserving node ID anonymity is to try to hide such identifying information

from adversaries. One way of achieving this is through assigning dynamically

changing identifiers (i.e. dynamic pseudonyms) to the communicating nodes in

each transmitted packet.

A number of node ID anonymity schemes have been proposed in literature

[2, 3, 4, 5, 6]. In these schemes, a communication node is assigned to, and

identified by, one or more dynamic pseudonyms when it communicates with

other nodes. Dynamic pseudonyms are usually generated using a hash function

on a per message basis, i.e. the hash value produced from a hash function is

used to construct such a pseudonym. Therefore, there is an issue as to how

long a hash value we should use when generating a pseudonym. The longer

the hash value, the longer the pseudonym, thus the stronger the protection the

pseudonym may offer. However, the use of a longer hash value also means that

the energy cost in transmitting the pseudonym will be higher. According to

[7], the most energy-consuming task performed by a communication node is

data transmission. Therefore, it is important to investigate the implications of

using different hash value lengths for node ID anonymity preservation and on

performance and energy costs, and what are the other factors that may influence

the selection of hash value lengths in the context of ID anonymity preservation

in WSNs.

This paper reports an investigation on the use of hash value truncation to

preserve ID anonymity in WSNs and the impact of hash value truncation on the

security and the performance and energy costs of the approach. The investiga-

tion is based on two existing ID anonymity schemes, the Efficient Anonymous

Communication (EAC) scheme [5] and the Cryptographic Anonymous Scheme

(CAS) [2]. The paper also reports the impacts on the trade-off of other factors

including the type and usage of hash functions, sensor node capabilities, adver-
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sary capabilities, ability to resolve pseudonym collisions, network density and

data collection rate. Although hash truncation has been proposed to reduce

data transmissions in general [8, 9, 10, 11, 12, 13], the analysis of its impact on

ID anonymity and the costs incurred is lacking in the literature. The results

from this study may be useful where pseudonym schemes are used to preserve

ID anonymity in any resource-constrained network environment such as WSNs.

The framework in this study may also be used to assess which level of trunca-

tion should be applied for a given level of ID anonymity protection, what the

performance and energy costs are like for a given level of truncation, and what

are the other factors that should be considered when deciding on the level of

truncation to use in pseudonym generations.

The rest of the paper is organised as follows: Section 2 overviews crypto-

graphic hash functions along with potential attacks that may be mounted on

the functions; Section 3 describes two existing ID anonymity schemes, EAC and

CAS, that are based on hash functions; Section 4 describes the system model

and assumptions used in our study; Section 5 discusses the study methodol-

ogy; Section 6 analyses the impact of hash truncation on the security of the ID

anonymity schemes and Section 7 analyses its impact on the collision resistance

property; Sections 8 and 9 investigate the impact on the energy consumption

and the end-to-end packet delivery delays, respectively; Section 10 discusses

lessons derived from the study; and finally, Section 11 concludes the paper.

2. Cryptographic Hash Functions

This section overviews cryptographic hash functions. It covers the types

and properties of cryptographic hash functions, and security attacks that may

be mounted on the hash functions. It also explains hash value truncation.

2.1. Types and Properties

A hash function maps an input of an arbitrary finite bit-length to an out-

put of a fixed bit-length using a noninvertible compression process [14]. The
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term noninvertible here means that it is computationally hard to reverse. The

resulting output is called a hash value, a hash tag or a digest. Hash functions

can be classified into two groups [14]: unkeyed and keyed (see Figure 2.1). An

Unkeyed Hash Function (UHF) uses an algorithm that accepts only one input

(data) in the process of generating a hash value. A Keyed Hash Function (KHF)

accepts a cryptographic key in addition to the data to be hashed as input. KHFs

are often used for achieving message authentication where the values generated

are termed Message Authentication Codes (MACs). The following subsections

provide more details about each hash function type along with their properties.

Figure 2.1: Classification of hash functions.

2.1.1. Unkeyed Hash Functions (UHFs)

An n-bit UHF is denoted as: {0, 1}∗ → {0, 1}n . The function processes

an arbitrary finite length input message ∈ {0, 1}∗ and returns a hash value

∈ {0, 1}n, where n ≥ 1. For a data input x ∈ {0, 1}∗, H(x) = y represents the

computation of the hash function H on the data input x and returns the hash

value y ∈ {0, 1}n. UHFs have the following five properties [14]:

1. Compression: Maps a message of an arbitrary length to an n-bit output,

i.e., H : {0, 1}∗ → {0, 1}n.
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2. Ease of computation: For any x ∈ {0, 1}∗, it is easy to compute H(x).

3. Preimage resistance (also known as one-wayness): Given a hash value y ∈

{0, 1}n (for which no preimage is known), it is computationally infeasible

to find an input x such that H(x) = y.

4. 2nd preimage resistance (also known as weak collision resistance): Given

an input x, it is computationally infeasible to find a second input x
′

such

that H(x
′
) = H(x).

5. Collision resistance (also known as strong collision resistance): It is com-

putationally infeasible to find two different inputs, x and x
′

, such that

H(x) = H(x
′
).

If the UHF satisfies the first four properties, it is called a One-Way Hash

Function (OWHF) and if it additionally satisfies the collision resistance property

then it is called a Collision Resistance Hash Function (CRHF) [15]. If the input

space of a CRHF is larger than that of the output, then the function is a many-

to-one map function, which means that hash collisions are unavoidable (i.e.,

multiple inputs may result in the same hash value). However, finding collisions

in CRHFs is computationally difficult.

2.1.2. Keyed Hash Functions (KHF)

A KHF is a function that compresses an input of arbitrary length into a fixed

length hash value using a secondary input which is the secret key. More formally,

a KHF is a function HK : K ×M → R, where the key space K = {0, 1}k, the

message space M = {0, 1}∗ and the range R = {0, 1}n for some k, n ≥ 1. An

instance computation of a KHF is represented as HK(x) = y where the key

K ∈ {0, 1}k, x ∈ {0, 1}∗ and y ∈ {0, 1}n. KHFs have the following properties

[14]:

1. Compression: HK maps an input of arbitrary finite length to an output

of fixed length (n bits), i.e., HK : {0, 1}k × {0, 1}∗ → {0, 1}n.

2. Ease of computation: Given a secret key K, computing HK(x) for all

x ∈ {0, 1}∗ is easy.
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3. Key non-recovery: It is computationally infeasible to recover the secret

key K, given one or more input-hash pairs (xi, HK(xi)) for that K.

4. Computation resistance: Given zero or more input-hash pairs (xi, HK(xi)),

it is computationally infeasible to find an input-hash pair (x,HK(x)) for

any new input x 6= xi without knowing K.

2.2. Security Attacks on Hash Functions

There are two types of attacks on cryptographic hash functions: brute force

and cryptanalysis [16]. Brute force attacks can be mounted on all hash functions

regardless of their internal structure. The effectiveness of the brute force attack

is dependent on the size of the hash value, and, in the case of KHFs, it is also

dependent on the size of the cryptographic key used. Cryptanalysis attacks, on

the other hand, target the internal structure of a hash function; more details

on such attacks can be found in [17]. In the following analysis, we omit the

cryptanalysis attacks, and focus only on brute force attacks. This is because

cryptanalysis attacks concern the internal structure of a hash function, i.e. the

design of a hash function. By selecting a more secure hash function, we can

mitigate the risk imposed by this class of attacks. In addition, as our focus in

this paper is on the impact of hash value truncation, we focus on attacks that

are dependent on the length of a hash value.

2.2.1. Brute force attacks on UHFs

There are three means of launching brute force attacks targeting the main

properties of UHFs:

1. Preimage attack (i.e., attacking the one wayness property): The target of

this attack is to find a preimage value x that hashes to a given hash value

H(x). Given a hash function that produces a hash value of length n, it

takes about 2n evaluations of the hash function to find a preimage value

[14].

2. 2nd preimage attack (i.e., attacking the weak collision resistance property):

The target of this attack is to find a 2nd preimage value x
′
that will result in
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the same hash value H(x) where x
′ 6= x provided that the adversary have

access to the pair (x,H(x)). Given a pair (x,H(x)) and a hash function

that produces hash values of length n, it takes about 2n evaluations of the

hash function to find a 2nd preimage value [14].

3. Birthday attack (i.e., attacking the strong collision resistance property):

The target of this attack is to find collisions for a given hash function. It

is much easier to find collisions than finding 2nd preimages. This is due

to the birthday paradox [18] which states that in a group of 23 people,

the probability that there are at least two people with the same birthday

is 50%. Based on the birthday paradox, for a given hash function that

produces hash values of length n, it takes about 2n/2 evaluations of the

hash function to find a collision [14].

2.2.2. Brute force attacks on KHFs

Attacking KHFs is more complicated than attacking UHFs, as a crypto-

graphic key is used when generating a hash value from a KHF and an attacker

may need to know input-hash value pairs (i.e. the pairs of input text, xi, and

its hash value, HK(xi)) to mount successful attacks. The following highlights

the possible means of mounting brute force attacks against KHFs:

1. Preimage attack: In this attack, the adversary tries to find a preimage x

for a given hash value HK(x) without prior knowledge of the key. The

adversary tries to guess a value x and verifies if the resulting hash value of

this input x equals to the given hash value. A successful guess is computa-

tionally very difficult without knowledge of the key. To verify the guesses

without knowing the key, the adversary would need to interact with a

party that can provide a hash value for a given input. In other words,

the adversary would need to perform online verifications for each guessed

value. Thus, the difficulty in successfully mounting such an attack is very

much dependent on the nature of the applications. For example, some

applications impose a limit on the number of hash operations an entity

is allowed to perform, and in such a case the probability of successfully
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mounting an attack is very low. In the worst case where an application

allows an unlimited number of hash operations (online verifications) one

entity may perform, the complexity of this attack is 2n [19], where n is

the hash value size.

2. 2nd preimage attack: In this attack, the adversary knows the pair (x1,

HK(x1)) and tries to find another input x2 such that HK(x2) = HK(x1).

Again the attack needs to be verified online and its complexity is 2n [20].

3. Exhaustive key search attack: The aim of this attack is to deduce the KHF

cryptographic key that is used in the computation of the hash values. An

adversary may guess the key using exhaustive search. However, for this

attack to succeed, the adversary requires one or more known input-hash

pairs. Let the size of the key be k bits and the length of the resulting

hash value be n bits, then the adversary tries to compute the KHF using

all possible 2k keys one by one and to validate the result against a given

input-hash pair (offline validation). When k > n, there could be a chance

that more than one key may result in the same hash value. For a KHF

algorithm that approximates a random function, the expected number of

matching keys equals 2k−n. To further reduce the uncertainty, the adver-

sary needs to do another round using another input-hash pair, but in this

case only the matching keys from the previous round are checked. If there

remains more than one matching key from the second round (the number

of matching keys expected after the second round is 2k−2n), then the ad-

versary needs to check a third input-hash pair, and so on. This process

repeats until the adversary finds a single matching key. The number of

required input-hash pairs is k/n and the complexity of the attack is 2k

[19].

4. Random forgery attack: The aim of this attack is to guess the hash value

for an arbitrary message. For a KHF function with n bits output and k

bits key, there are two methods to perform this attack. The first is to

randomly guess the hash value; the success probability of this method is

2−n. The other method is to guess the key and then compute the hash
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value based on this key; the success probability of this method is 2−k. The

attack can only be verified online and its complexity is 2min(n,k) [21].

2.3. Hash Value Truncation

Hash value truncation has been used in the design of several standard hash

functions. For example, SHA-224 is a truncated version of SHA-256, and SHA-

384, SHA-512/224 and SHA-512/256 are truncated versions of SHA-512. Rules

for hash value truncation have been defined in several hash and MAC-related

standardisation documents, such as FIPS-180-4 [8], FIPS-198 [9], ISO/IEC

9797-1 [10], ISO/IEC 9797-2 [11], RFC 2104 [12] and NIST 800-38B [13]. The

rules can generally be summarised as follows [22].

Let λ be the desired length in bits after truncation of an n-bit hash value.

The truncated hash value may be used if the following requirements are met:

1. λ should be smaller than the full-length hash value, n (i.e., λ < n).

2. The λ left-most bits of the full-length hash value should be selected after

truncation and the remaining rightmost bits are discarded.

3. If the collision resistance property is required, λ should be at least twice

the required collision resistance strength c (in bits) for the truncated hash

value (i.e., λ ≥ 2c).

In the rest of this paper, we use λ to denote the length (i.e., number of bits)

of a truncated hash value.

3. Use of Hash Functions for Node ID Anonymity in WSNs

One way to preserve node ID anonymity in WSNs is to use dynamic pseudonyms

to identify nodes when they communicate. There are several methods proposed

to generate and verify the dynamic pseudonyms, such as pseudonym sub-ranges

[2], hash functions [2, 3, 4, 5, 6], onion routing and label switching [23], Phantom

ID [24], Bloom Filters [25] and orthogonal code [26]. The most popular method

is the use of hash functions owing to their attractive properties such as low
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computational costs. To understand the impact of hash truncation on the secu-

rity and performance of ID anonymity schemes, we have selected two existing

schemes that use hash functions to preserve node ID anonymity, the Efficient

Anonymous Communication (EAC) scheme [5] and Cryptographic Anonymity

Scheme (CAS) [2]. The reasons for selecting these two schemes are three-fold:

1. Both schemes provide a higher level of ID anonymity protection than

other schemes as they anonymise node IDs in both unicast and broadcast

communication modes.

2. Both schemes are described comprehensively in terms of the sizes and

structures of the pseudonyms and the use of these pseudonyms in different

exchanged messages. This allows for a more thorough analysis of the

implications of hash truncation on the security and performance of the

schemes.

3. EAC is based on UHF whereas CAS is based on KHF, allowing us to

analyse the truncation of hash values generated using UHF and KHF in

this problem context. The analysis results based on these two schemes

would be generic and can be applied to any other ID anonymity schemes

that are either based on UHFs or on KHFs.

The following subsections describe these two schemes.

3.1. Efficient Anonymous Communication (EAC)

The pseudonyms in EAC are generated using a UHF on a per message ba-

sis. Prior to mutual communication between any two nodes, both the sender

and the receiver generate a pseudonym for the next message to be transmitted

(Next Message Pseudonym) independently and store it in a pseudonym table

in their memory, making it ready for future communication. The pseudonym is

computed as: Next Message Pseudonym = H(Current Pseudonym ⊕α), where

α is a secret known only by the sender and the receiver and ⊕ is the exclusive-or

operator.

EAC works as follows. Before deploying the nodes, each node, i, is preloaded

with a unique ID (IDi), a pairwise key shared with the base station (ki), a
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broadcast key (kib), two random numbers (αi and βi) and two UHFs, H1 and

H2. After the node deployment, EAC operations are carried out in two phases,

a network setup phase and an operational phase.

3.1.1. Network Setup Phase

In the network setup phase, each node uses the hash function H1 to generate

two anonymous identities; one serves as the node’s global anonymous identity

AIi (to be used for anonymous unicast communication with the base station)

and the other as its anonymous broadcast identity BAIi (to be used for anony-

mous local broadcasts to the node’s neighbours). These identities are generated

using Equation (3.1).

AIi = H1(IDi ⊕ αi)

BAIi = H1(IDi ⊕ βi)
(3.1)

Then, the node exchanges some parameter values with each of its neigh-

bouring nodes using a one-hop broadcast message. The parameters include

IDi, ki, k
i
b, αi, βi and Hopi,BS , where Hopi,BS is the smallest hop count be-

tween node i and the base station. Upon receiving the broadcast messages from

all its neighbours, node i uses the received parameter values to compute the

following items for each of its neighbouring nodes, j:

1. A new random number αi↔j = H1(IDi ⊕ IDj).

2. A pairwise key ki↔j = H2(ki + kj + αi + αj).

3. A one hop anonymous identity OHAIi↔j = H1(αi ⊕ αj).

4. An anonymous acknowledgment identity AAIi = H1(IDi).

5. An anonymous broadcast identity for the neighbourBAIj = H1(IDj⊕βj).

Each node then uses the computed values to update its neighbour informa-

tion table Ti as shown in Table 3.1. After updating the table, the node deletes

its real ID and the one-hop broadcast messages received from other neighbours.

3.1.2. Operational Phase

When a node i is to send data D to the base station multi-hop away (say

through node j), it composes a message as follows:
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Table 3.1: The neighbour information table Ti at node i in EAC [5].

Anonymous broadcast identity BAIj ...

One hop anonymous identity OHAIi↔j ...

Anonymous acknowledgement identity AAIj ...

Shared random number αi↔j ...

Shared broadcast random number βj ...

Shared broadcast key kib ...

Shared one-hop key ki↔j ...

Link direction linkdiri→j ...

Mi→j = OHAIi↔j ||Eki↔j
(
AIi||Eki(D)||H

(
AIi||Eki(D)

))
, where || is a con-

catenation operator. After sending the message to node j, node i updates its

global identity and the one hop anonymous identity using Equation (3.2).

AIi = H1(AIi ⊕ αi)

OHAIi↔j = H1(OHAIi↔j ⊕ αi↔j)
(3.2)

When node j receives the message, it checks its table Tj for a matching

OHAIi↔j . If no match is found, node j drops the message. Otherwise, node

j fetches the pairwise key ki↔j from Tj and uses the key to decrypt the re-

ceived message and check the integrity by computing a digest of the payload,

AIi||Eki(D) , and comparing it with the received digest, H(AIi||Eki(D)). Then,

node j checks its routing table for the next hop in the route to the base station,

say node r, and constructs a new message to node r as follows:

Mj→r = OHAIj↔r||Ekj↔r
(
AIi||Eki(D)||H

(
AIi||Eki(D)

))
Node j also updates its pairwise identities with node i and r using Equation

(3.3):

OHAIi↔j = H1(OHAIi↔j ⊕ αi↔j)

OHAIj↔r = H1(OHAIj↔r ⊕ αj↔r)
(3.3)

Upon the receipt of the message Mj→r, node r follows the similar procedure

as the one performed by node j described above to forward the message to the

base station. If node r is the base station, it decrypts the payload using kj→r
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and checks the integrity of the message by computing a digest of the payload

and comparing it to the received digest. If the integrity check is positive, the

base station obtains AIi and searches its Tr table for a match to identify the

original sender of the data. It then uses the corresponding key, ki, shared with

node i to decrypt Eki(D) and obtain D. The base station then updates the one

hop anonymous identity shared with node j as well as the global anonymous

identity AIi shared with the original sender i using Equation (3.4).

OHAIj↔r = H1(OHAIj↔r ⊕ αj↔r)

AIi = H1(AIi ⊕ αi)
(3.4)

In EAC, the sender and receiver are required to update their shared anony-

mous identities after each successful message transmission. However, due to

channel impairments or transmission errors, message loss may occur causing

the sender and receiver to be out of synchronization, thus hindering future mes-

sage transmissions between the two nodes. To address this problem, EAC uses

anonymous acknowledgements as follows: when a node i sends a message to an-

other node j it appends its own acknowledgment identity AAIi to the message

as follows:

Mi→j = Drand||OHAIi↔j ||Eki↔j
(
AAIi||AIi||Eki(D)||H

(
AAIi||AIi||Eki(D)

))
Here Drand is a random string padded to the message to make each sent

message equal in size. Upon receiving Mi→j , node j decrypts the message,

obtains AAIi and adds it as part of the message to be forwarded to the next

node in the route, say node r, as follows:

Mj→r = AAIi||OHAIj↔r||Ekj↔r
(
AAIj ||AIi||Eki(D)||H

(
AAIj ||AIi||Eki(D)

))
When node i overhears the message Mj→r containing the same AAIi, it

knows that the message is received successfully and both the sender and receiver

update their one-hop anonymous identity OHAIi↔j . If node i does not overhear

the message Mj→r containing the same AAIi after a time out period, it assumes

that the message is lost and retransmits Mi→j to node j. The final destination

is required to send an explicit acknowledgment message back to its one-hop

neighbour.
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3.2. Cryptographic Anonymity Scheme (CAS)

The CAS scheme is designed to protect node ID anonymity in clustered

WSNs. In CAS, the pseudonyms are generated using a KHF. Unlike EAC, the

pseudonyms in CAS are not stored locally in each node’s memory; rather they

are computed by the sender before sending a message and verified by the receiver

upon receiving the message. A pseudonym in the CAS scheme is computed as:

Pseaudonym = Ind||HK(a⊕ seq),

where Ind is an index value, K is a hash key, a is a random seed, both K

and a are shared between a pair of communicating nodes and seq is a message

sequence number carried in each message. There are also two phases in CAS:

setup and operational as described below.

3.2.1. Network Setup Phase

During the setup phase, nodes exchange parameter values with their neigh-

bours. The parameter values include keys, random seeds and message sequence

numbers. Each node uses the parameter values to update a pseudonym table

that contains an entry for each of its neighbouring nodes. In the operational

phase, the stored parameter values are used to compute and verify pseudonyms

for pairwise and broadcast communications. Table 3.2 shows an example of a

pseudonym table.

Table 3.2: Pseudonym table for node u in CAS [2].

Index
Mutual

exchange

Neighbour’s clus-

tere exchange

Neighbour’s

clustere key

Neighbour’s

hash key

Shared

key

Shared

hash key

Neighbour’s

index

a Seq a b Seq

. . . . . . . . . . .

. . . . . . . . . . .

Indu auv sequv acv bcv seqcv k
′
cv Kcv k

′
uv Kuv Indv

. . . . . . . . . . .

. . . . . . . . . . .
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3.2.2. Operational Phase

The anonymous communications in the operational phase of the CAS scheme

are carried out as follows. A message from node u to node v with the base station

as the final destination is composed as: Muv = SID||RID||EncryptedPayload||

sequv , where SID is the end-to-end mutual pseudonym computed as SID =

Indv||HKBu(aBu ⊕ sequv) and RID is the next-hop mutual pseudonym com-

puted as RID = Indv||HKuv (auv ⊕ sequv), Indv is the index in node v’s

pseudonym table where parameters related to node u are stored, KBu and

aBu are the hash pairwise key and the random seed shared between node u

and the base station, respectively, Kuv and auv are the hash pairwise key and

the random seed shared between node u and node v, respectively and sequv is

the current message sequence number for the mutual communication between

nodes, u and v. When v receives the message Muv , it retrieves Indv from the

message and searches its pseudonym table for a match. If a match is found,

node v uses the corresponding values of Kuv and auv from the table to com-

pute HKuv (auv ⊕ sequv). If the computed value equals the received value, then

node v is assured that it is the intended receiver of the message. Otherwise

it discards the message. When node v forwards the message to the base sta-

tion, it includes the received sequence number sequv in the forwarded message.

When the message eventually reaches the base station, the base station com-

putes HKBu(aBu⊕ sequv) for every node in the network. Then, it compares the

computed hash value with the hash value received in the message to identify

the original source of the message.

4. System Model and Assumptions

This section explains the system model and assumptions used in our in-

vestigation. The WSN consists of a large number (>500) of similar low-cost,

resource-constrained static sensor nodes and a single resource-rich base station.

The data collection model is a continuous model in which the sensors are used

to periodically measure a physical phenomenon and send the collected measure-
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ments to the base station. The data is collected every minute. EAC uses a flat

network topology where the data is delivered from a source node to the base

station using probabilistic routing. CAS uses a hierarchical topology where the

sensor nodes are organised into clusters. Each cluster has an elected cluster

head. Data collected by sensor nodes are first sent to their respective cluster

heads and the cluster heads then forward the data to the base station through

other cluster heads. The network models of EAC and CAS are illustrated in

Figure 4.1.

Base station Base station 

Cluster 

Cluster head 

Sensor node 

CAS EAC 

Figure 4.1: Network models of EAC and CAS.

An important parameter in our investigation is the network density. We use

the size of a node’s neighbourhood (i.e., the number of single-hop neighbours

each node has) to control the value of this parameter. The size of the pseudonym

table used by each node is proportional to the size of the node’s neighbourhood.

We set the network density value to three bands, low, medium and high, as

defined below. The selections of these values are based on the connectivity

analysis presented in [27, 28]:

1. Low density (the network has fewer than 30 nodes).

2. Medium density (the network has between 30 and 70 nodes).

3. High density (the network has more than 70 nodes).

17



To further scope our investigation, the following assumptions have been used:

1. All the analyses are performed based on the capabilities of Crossbow

TelosB sensors [29]. The hardware specifications of TelosB are summarised

in Table 4.1.

2. EAC assumes the use of MD5 for the generation of the pseudonyms and

message digests, and AES (128 bits keys) for message encryption/decryption,

whereas CAS uses CBC-MAC with Skipjack (80 bits keys) as the under-

lying block cipher for the generation of pseudonyms and the same block

cipher (Skipjack) for message encryption/decryption. The security level

of these cryptographic primitives may have been sufficient at the time

when the papers were published. However, the collision resistance of MD5

was broken in 2013 [30] and Skipjack is no longer recommended by the

National Institute of Standards and Technology (NIST) as the skipjack

security limit was set to expire in 2010 [31]. Therefore, to make our anal-

ysis results up-to-date, we assume the use of SHA1 instead of MD5 in

EAC and HMAC-SHA1 instead of CBC-MAC in CAS for the generation

of pseudonyms. We also assume the use of AES (128 bits keys) for mes-

sage encryption/decryption in both schemes. It is worth mentioning that

these assumptions will not affect the length of the hash values suggested in

the original papers, i.e., 128 bits for EAC and 64 bits for CAS; they only

affect the execution times of the operations such as pseudonym generation

and verification, message integrity token generation and verification and

message encryption and decryption, etc. A benchmark on the execution

times of these cryptographic primitives on a TelosB mote is summarised

in Table 4.2.

3. Without loss of generality, it is assumed that the hash functions used are

ideal, i.e., they possess all the properties mentioned in Section 2.1 and

cannot be broken by an effort less than the brute force attacks. The hash

values approximate a uniform random variable (i.e., the probability of

producing a specific hash value = 2−n where n is the length of the hash
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value).

Table 4.1: Hardware specifications of TelosB mote.

HW components Specification

Microcontroller 8 MHz TI MSP430

Program flash memory 48KB

RAM 10KB

External EEPROM 1 MB

Radio transceiver Chipcon CC2420, 2.4 GHz , 250 kbps

Table 4.2: Execution time benchmarks for cryptographic algorithms in TelosB mote.

Cryptographic algorithms Operations Execution times (ms)

SHA1 Hash value generation (1 block) 4.64 [32]

HMAC-SHA1 MAC generation (1 block -128 bits key) 14.84 [32]

AES-CBC Key expansion (128 bits key) 3.58 [33]

Encryption (1 block) 3.77 [33]

Decryption (1 block) 43.20 [33]

An adversary is assumed to have the following capabilities:

- Eavesdrop on communication channels.

- Launch offline brute force computations using a machine that is more pow-

erful than a sensor node, e.g., a laptop. To benchmark the execution times

of SHA1 and HMAC-SHA1, we have implemented the codes for both cryp-

tographic algorithms using the cryptographic library, Crypto++ v.5.6.2,

running on a machine with intel i7, 3.4GHz processor and 8 GB RAM.

The codes were compiled using the 32-bit C/C++ Optimizing Compiler

version 16.00.40219.01. Each program was run for 100,000,000 hash evalu-

ations and the average time was calculated. The resulting execution times

are given in Table 4.3.

- Send messages to a WSN node to launch online brute force forgery attacks

utilizing the full channel capacity for this purpose. For a 250 kbps channel
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capacity, the adversary can at most send around 470 packets/s where the

average size of each packet is 68-bytes [34].

In this investigation, we have not considered the possibility that adversaries

may be able to physically compromise a node. This is because if an adversary

can compromise a node, then the adversary can gain access to all the secrets

stored in the memory of the node including cryptographic keys, thus identifying

the real ID of a sensor node. Breaking an anonymity scheme using such physical

attacks is independent of the length of a pseudonym, or the hash value length,

used. As our focus is on the implication of hash value lengths used, physical

attacks on sensor nodes are outside the scope of this investigation.

Table 4.3: Execution times of cryptographic algorithms as measured on a machine with intel

i7, 3.4GHz processor and 8 GB RAM.

Cryptographic algorithms Execution times (ns)

SHA1 245.50

HMAC-SHA1 938.20

5. Analysis Methodology

As mentioned earlier, hash truncation can lead to reductions in bandwidth

and energy costs when hash functions are used to generate pseudonyms to

achieve node ID anonymity in WSNs. It is also well-known that truncating

a hash value can have negative implications on security protection levels when

hash functions are used as part of the measures to protect message integrity,

origin authentication and non-repudiation [22]. For example, by truncating a

n-bit hash value to a λ-bit for a certain hash function, the expected effort to

find collisions is reduced from 2n/2 to 2λ/2. This means that it is easier to

forge a hash value by using a different input and the security protection level is

reduced.

However, the effects of hash value truncation on the ID anonymity protection

level and on the performance and energy costs in our problem context are more
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complex than in the case where hash functions are used to achieve other security

properties. Here we identify and discuss the factors to consider when selecting

a hash value length in an ID anonymity protection scheme such as EAC and

CAS.

As mentioned above, the shorter the hash value, the shorter the pseudonyms,

thus the shorter the messages transmitted in an ID anonymity protection scheme.

However, the shorter the hash value generated from a hash function, the weaker

is the one-wayness of the hash function. In other words, if we use hash value

truncation, it would be easier for an attacker to guess an input, x, given a hash

value generated by the hash function, H(x). For example, if x is a node’s real

ID and H(ID) is a pseudonym used by this node, then it would be easier for an

attacker to guess the real ID knowing the pseudonym. Therefore it is necessary

to impose a minimum length for a hash value to ensure sufficient protection

against the one-wayness attack and any other security attack that may be af-

fected by the length of the hash value. Let us use λSEC to denote the minimum

accepted truncated hash value length satisfying this security requirement.

In addition, the shorter the hash value used in pseudonym generations, the

higher the probability of having pseudonym collisions in a pseudonym table of

a receiving node. If there is a collision, the receiving node will need to resolve

the collision, or to work out the sender’s ID in the presence of the collision.

Otherwise, this will hinder the operations of the ID anonymity scheme. In other

words, we should also specify a minimum required truncated hash value length

to control the probability of having pseudonym collisions under an acceptable

threshold level. Let λCR denote this minimum required truncated hash value

length satisfying this collision resistance requirement.

Furthermore, if a receiving node has another method to identify the trans-

mitting node’s ID in the event of a pseudonym collision in its pseudonym table,

then the collision resistance property may not be an overriding requirement.

However, to identify the transmitting node’s ID in the presence of pseudonym

collisions, the receiving node will need to perform some additional computa-

tions such as verifying the MAC value in addition to the pseudonym verification
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for all the colliding pseudonyms. In other words, the shorter the hash value

we use in the pseudonym generations, the shorter the pseudonyms that will be

generated, and the less the transmission costs incurred to the sender, but, at

the same time, the higher the probability of receiving nodes having pseudonym

collisions. The more the collisions, the more computations a receiving node will

have to perform to identify the transmitting node. As both data transmissions

and computations consume energy, there is a trade-off, indicating that there

may be an optimal truncated hash value length that could lead to a minimum

energy consumption. It is worth noting that the trade-off between achieving low

transmission costs and achieving low pseudonym collision probability is actu-

ally the trade-off between the cost imposed on a transmitting node and the cost

imposed on a receiving node. Let λE denote the optimal truncated hash value

length which gives the lowest combined energy cost as caused by pseudonym

transmissions by the transmitting node and collision resolution by the receiving

node.

In addition to the energy cost in resolving collided pseudonyms, the receiv-

ing node will also need to spend more time to identify the real ID of the sender

that has sent the incoming packet containing a collided pseudonym. Consider-

ing the multi-hop nature of a WSN, the delay introduced at each intermediate

node due to collisions may affect the total end-to-end packet delivery delay. A

packet delivery from a source node to the base station is bounded by the data

collection period, i.e., the period between two successive data collections. The

additional delay caused by hash value truncation should not make the maximum

end-to-end packet delivery delay longer than the data collection period, caus-

ing interference between packets sent during two consecutive data collections.

In other words, the truncated hash value should have a sufficient length such

that the maximum end-to-end packet delivery delay stays within the data col-

lection period, and let λD denote the minimum length of truncated hash values

satisfying this requirement.

Figure 5.1 summarises the analysis methodology we use to investigate the

lengths of truncated hash values against the requirements stated above. Each of
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the four truncated hash value lengths (i.e., λSEC , λCR, λE and λD) is investi-

gated independently and then, based on the obtained results, the recommended

truncated hash value length, λREC will be selected as shown in Equation (5.1).

λREC =

max(λSEC , λCR) if collision resistance is required

max(λSEC , λE , λD) if collision resistance is not required

(5.1)

To distinguish the notation used for different ID anonymity schemes, λ is

superscripted by the respective scheme name, e.g., λEACSEC is used to refer to

λSEC used in the EAC scheme.

Figure 5.1: Analysis methodology.

6. Impact of Hash Truncation on Security

Brute force attacks on hash functions have been discussed in Section 2.2.

Table 6.1 summarises the features of these attacks. This section analyses the

implications of hash value truncation on the security of the EAC and CAS

schemes in the presence of these brute force attacks.

The impact of the attacks is investigated using the following approach.

Firstly, we identify attack methods or types, and for each attack type, we assess

attack outcome to see if there is any motivation for an attacker to launch such
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Table 6.1: Summary of brute force attacks against hash functions, where n is the length of a hash value, and k is the

length of the crypto key.

Types of hash

functions

Brute force attacks

Attacks Given
Success

probability

Attack

verification

UHF
OWHF

Preimage Hash value, H(x) 2−n Offline

2nd preimage Input and hash value pair, (x,H(x)) 2−n Offline

CRHF Birthday attack - 2−n/2 Offline

KHF

Preimage H(x) 2−n Online

2nd preimage (x,H(x)) 2−n Online

Exhaustive key search k/n× (x,H(x)) pairs 2−k Offline

Random forgery - 2max(−n,−k)† Online

† The max function indicates that the success probability is dependent on which guessing method (i.e., guessing the

input to the hash function or the crypto key) is computationally cheaper.

an attack. If the outcome of the attack is useful to the attacker, we will proceed

to analyse the attack feasibility and then address complexity. Otherwise, we

will exclude the attack from our further analysis. The aim is to find the mini-

mum length of hash values that could provide an acceptable level of protection

against brute force attacks. The most important concepts to be used in our

analysis are:

1. Attack motivation: The attack motivation refers to the case where the

outcome of an attack justifies the investments (time, resources and efforts)

made by an adversary in mounting the attack. Some of the brute force

attacks mounted on a hash function may not bring any benefit to the

adversary when the hash function is used by an application [35]. In such

cases, there is little motivation for an adversary to invest on mounting such

attacks that would not break or harm the application even though it is

feasible to mount the attack on the hash function used by that application.

2. Attack feasibility : We say an attack is feasible if it is theoretically possible

to successfully perform the attack. This assessment is based on the mini-

mum information required to perform such an attack and the information
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available to an adversary prior to mounting the attack.

3. Attack complexity : This is assessed in view of the resources and the time-

frame available to an adversary to mount an attack. The complexity is first

examined using full-length hash values and then using different truncated

hash values. An attack timeframe available to an adversary depends on

the nature of the attack. To scope our investigation, we specify an upper

bound for each of the three types of timeframes as follows:

a. The lifetime of a sensor node (TN ): The lifetime of a sensor node is

constrained by the energy available to the node. According to [36], the

lifetime of a typical battery-powered sensor node is bounded by the

battery shelf life which is usually 10 -15 years. However, if a node uses

an ambient energy source such as solar energy coupled with efficient

energy storage devices, then its lifetime can be extended to more than

40 years [37]. Therefore, we assume TN = 50 years as the maximum

lifetime of a sensor node.

b. The lifetime of a cryptographic key used in a KHF (TK): We assume

that a cryptographic key does not expire within the lifetime of the node

that uses the key. Therefore, TK = TN = 50 years.

c. The data collection period (TDC): In our network model, it is assumed

that TDC = 1 minute.

6.1. EAC

As indicated in Section 3.1, a pseudonym in EAC is constructed as H1(

OHAIi↔j ⊕ αi↔j), where OHAIi↔j is the previously used pseudonym and

αi↔j is a secret only known to nodes, i and j. Brute force attacks on UHF in-

clude preimage, 2nd preimage and birthday attacks. In addition, as part of the

input to the hash function is secret (i.e., αi↔j), an adversary may attempt to

forge the pseudonyms using a brute force method. Pseudonym forgery attacks

include replay attacks and random forgery. In the following, we examine these

attacks in detail.
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Preimage Attack:

A potential generic attack on UHF, as discussed in Section 2.2.1, is to attack

the one wayness property by trying to find a preimage for a given hash value (or

pseudonym). Such an attack is useful to the adversary as finding and knowing

the preimages may help the adversary to link different exchanged messages

and further discover communication relationships among different nodes. For

example, an adversary may get hold of one of the pseudonyms, e.g., OHAIi↔j ,

by listening to the channel. The adversary may be able to reverse the hash value

and check it against other intercepted pseudonyms and/or information learnt

from other pseudonym messages. In this way, more information, such as the

communication relationships among nodes, may be acquired by the adversary.

However, if the length of the hash value is large enough, then the risk of this

attack will be negligible. For example, given a hash value length of 128-bits,

an adversary would need to perform 2127 offline hash evaluations on average

for a success probability of 50%, and performing 2127 hash function evaluations

will take around 1.33× 1024 years based on the assumed SHA1 execution time

presented in Table 4.3.

If the hash value is truncated to λ, where λ < 128 bits, then finding a preim-

age will be easier, i.e. take less time. How much easier is dependent on the length

of λ. However, with the EAC scheme, the preimage value is (OHAIi↔j⊕αi↔j),

where αi↔j is a secret not known by the adversary. The length of αi↔j , as

suggested by the authors, is 128 bits, which makes it hard for the adversary to

discover the linkability between the exchanged messages. Additionally, as the

length of the input is larger than that of the output, collisions are unavoidable.

These collisions can actually make the attack more difficult to succeed, as col-

lisions increase ambiguity in finding the preimage, and resolving the ambiguity

requires more time, which may compensate for the reduction in the attack dif-

ficulty level caused by hash value truncation. Given λ, the number of expected

collisions per pseudonym is 128/λ.
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2nd Preimage Attack:

Finding a 2nd preimage is another attack that may be mounted on UHF.

However, in terms of compromising sensor node ID anonymity, this type of at-

tack does not present any attack motivation. This is because this attack will not

lead to the discovery of any useful information which may lead to the discovery

of a sensor node real ID. 2nd preimages are normally used to break message

integrity by trying to find another message that could hash to the same digest.

In addition, finding a 2nd preimage means having a hash value collision, which

increases ambiguity from the adversary point of view as the adversary’s true

intention is to find a distinct preimage to break the node ID anonymity. Hence,

we do not investigate this attack further.

Birthday Attack:

With the same arguments as the ones made for the 2nd preimage attack

above, the birthday attack does not present any attack motivation. Therefore,

we do not investigate this attack further.

Replay attack:

A replay attack is aimed to lure a receiver to accept a replayed message by

using a forged pseudonym. Here is a typical procedure of a replay attack: an

adversary overhears a message Mi→j = OHAIi↔j ||Eki↔j
(
AIi||Eki(D)||H

(
AIi||

Eki(D)
))

, then tries to construct a new message, M
′

i→j = OHAI
′

i↔j ||Eki↔j
(
AIi

||Eki(D)||H
(
AIi||Eki(D)

))
, where OHAI

′

i↔j is a forged pseudonym, and sends

this newly constructed message to the receiver. The receiver (i.e., node j) will

accept the replayed message if and only if OHAI
′

i↔j matches with node i’s

next-message pseudonym stored in the receiver’s pseudonym table. If a match

is found, the receiver will decipher the message using the corresponding key,

ki↔j , and the replay attack will be successful.

There are two methods to successfully forge the pseudonym. One is to

directly obtain the next-message pseudonym stored in the receiver’s pseudonym

table which means that the adversary will need to access the pseudonym table
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managed by the receiver. It is assumed that this pseudonym table is hidden

from the adversary, as, to get hold of this table, the adversary would need to

physically compromise this node, interrupting the data collection process. The

other method is to perform online guesses. Performing online guesses means that

the adversary will need to perform verifications of his/her pseudonym guesses

online and complete the verifications within a data collection period, TDC .

Online pseudonym guesses can be done by either guessing a value of αi↔j

and computing the pseudonym using the UHF, or by directly guessing the

pseudonym value. The probability of mounting this attack successfully is

2max(−lα,−n) , where lα is the length of αi↔j in bits and the max function indi-

cates that the success probability is dependent on which of the two pseudonym

guessing methods is computationally cheaper. As in this case lα = n = 128, the

success probability of the attack is 2−128. This means that the adversary will

need to perform around 2127 online trials on average before hitting a match.

This will take around 1.15 × 1028 years with the channel capacity of 250kbps.

Obviously, this far exceeds the specified TDC .

Reducing the pseudonym length will reduce the success probability to 2−λ as

λ < lα. Table 6.2 shows the average time required for the adversary to succeed

in this attack given different values of λ. It can be seen that a length of 16

bits provides an attack time that is in the range of the data collection period.

So, selecting one level higher, i.e., λ = 24 bits is sufficient to thwart the replay

attack in our context (see highlighted cell in the table).

Random forgery attack:

This attack aims at making one or more of the nodes in a bounded ge-

ographical area to accept an illegitimate message. In mounting this attack,

an adversary will construct a forged message with a forged pseudonym and a

forged payload. To forge a payload, the adversary may use a key of his/her

choice to encrypt some arbitrary data and then broadcast the forged message

in a neighbourhood of b nodes hoping that one of the recipient nodes will find

a matching pseudonym in its pseudonym table and will, therefore, accept the
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Table 6.2: Time required by the adversary to succeed in the replay attack in EAC.

λ (bits) Time taken to succeed in the replay attack

120 4.48 × 1025 years

112 1.75 × 1023 years

104 6.84 × 1020 years

96 2.67 × 1018 years

88 1.04 × 1016 years

80 4.08 × 1013 years

72 1.59 × 1011 years

64 6.22 × 108 years

56 2.43 × 106 years

48 9.50 × 103 years

40 37.09 years

32 52.88 days

24 4.96 hours

16 1.16 minutes

8 0.27 seconds

message. According to this setting, each recipient node will have an average of

b entries in its pseudonym table as the size of the pseudonym is proportional

to the size of the neighbourhood. Therefore, the success probability of at least

one node accepting the forged pseudonym is (b2 × 2−n), where n is the length

of the pseudonym. Again this attack can only be verified online and it has to

be completed within the data collection period, TDC .

However, accepting a forged pseudonym does not mean that the attack is

successful as the recipient will still need to decipher the message and check

its integrity as shown in Figure 6.1. As the adversary uses a key of his/her

choice, the probability of the recipient accepting the message after accepting the

pseudonym is around 2max(−k,−m), where k is the length of the cryptographic

key in bits and m is the length of the message digest. As k is normally larger

than m, the probability of launching this attack successfully is (b2 × 2−(n+m)).

The use of a truncated hash value of λ bits length will increase the success

probability to (b2 × 2−(λ+m)). Based on this, selecting a larger value of m can
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offset the risk of this attack with a smaller value of λ. For example, when b = 100

(i.e., taking the highest network density under our assumption), m = 32 and

λ = 8 (i.e., the shortest pseudonym length), the adversary will need to perform

an average of 5.50 × 107 online trials to succeed in the attack. This will take

around 1.35 days, which is beyond TDC .
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Figure 6.1: Steps required by a receiving node to accept a message in EAC.

From the above, it can be concluded that λEACSEC = 24 bits is sufficient to

protect the scheme against brute force attacks. Further reduction in the length

of the hash value makes EAC susceptible to replay attacks.

6.2. CAS

CAS uses pseudonyms of the form Ind||HK(a ⊕ seq). The index length is

16 bits, the hash value length n = 64 bits and the key length k = 128 bits.

The specification of the CAS scheme does not include a message authentica-

tion code (MAC) to protect the message authenticity and integrity. However,

if message authenticity and integrity are not protected, an adversary can easily
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launch attacks targeting at these properties. So, in the analysis detailed in this

section, we assume that every message is also integrity-protected using a MAC

value. Brute force attacks on KHF are the preimage, 2nd preimage, exhaustive

key search and random forgery attacks. Similar to the case of EAC, the 2nd

preimage attack does not pass the motivation assessment, therefore we do not

analyse it further.

Preimage attack:

The preimage attack in CAS may reveal the secret, a, which should only be

known by the communicating node pair. Knowing a may expose any linkage

of pseudonyms used by different messages leading to the compromise of the

sender and receiver ID anonymity. To launch the attack, an adversary may try

to guess the input value to the hash function using online verifications. The

online verifications may continue until a guess proves successful, so the attack

timeframe is limited to the lifetime of the node, TN .

With this attack on a CAS pseudonym, the adversary has to increment the

sequence number for each such attempt to pass the anti-replay check by the

receiver. In addition, the receiver will also perform MAC verification before ac-

cepting the message. If the verification outcome is negative, the message will be

dropped (see Figure 6.2). If the length of the pseudonym hash value is 64 bits

(i.e. n = 64 bits) and the MAC value length (m) is 32 bits, then, the number of

online verifications is 295 to mount such an attack with a success probability of

50%. This will take 2.67 × 1018 years which is beyond the lifetime of a sensor

node. Truncating the hash values will reduce this effort. Table 6.3 shows the

time required to mount a successful attack given varying λ values. From the

table, it can be seen that, using λ = 16 bits should be sufficient to thwart the

risk of this attack.

Exhaustive key search attack:

The exhaustive key search attack requires known input-hash pairs and is

carried out offline as discussed in Section 2.2.2. The minimum number of re-
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Table 6.3: Hash value length vs. time taken to mount a successful preimage attack in CAS.

λ (bits) Time taken to mount a successful attack with probability of 50% (years)

56 1.04 × 1016

48 4.08 × 1013

40 1.59 × 1011

32 6.22 × 108

24 2.43 × 106

16 9.50 × 103

8 37.09

quired input-hash pairs is 2 based on the given sizes of n and k. To analyse

the feasibility of the exhaustive key search attack on CAS, we further assume

that a CAS pseudonym and the MAC value attached to each CAS message are

generated using the same KHF, but they may use the same key or different keys,

i.e.,

Case 1: The pseudonym and the MAC are generated using their respective

(unrelated) keys.

Case 2: The pseudonym and the MAC are generated using the same (or re-

lated) key.

For Case 1, the adversary requires 2 input-hash pairs before attempting

offline computation to recover the key. As the input text to the hash function is

unknown to the adversary, he/she will have to eavesdrop the channel to intercept

pseudonyms and try to find the input text by launching a preimage attack

on the intercepted pseudonyms. Launching the preimage attack using online

verification is very hard when using the full length of the hash value as discussed

earlier. Recovering the MAC key does not help the adversary either as the

pseudonym generation uses a different (unrelated) key.

For Case 2, as both pseudonyms and MAC values are generated using the

same key, if an adversary could recover the key from a MAC value, then the

attack is successful. To examine this case, we further discuss two scenarios, (2.a)
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the size of the MAC value, m, equals to that of the cryptographic key used, i.e.,

m = k, and (2.b) the size of the MAC value, m, is less than that of the key,

i.e., m < k. For (2.a), the adversary will only need one input-MAC pair to

perform this attack. Acquiring a single input-MAC pair through eavesdropping

the channel is not a difficult task. For scenario (2.b), the adversary requires more

than one input-MAC pairs to recover the key. To acquire more input-MAC pairs,

the adversary will need to intercept more exchanged messages. In addition, the

adversary would also need to identify the links among the intercepted messages

to discover if multiple MACs are actually computed using the same key. In

other words, among the intercepted messages, the adversary needs to identify

those that are exchanged between the same pair of communicating nodes. This

may be done by launching preimage attacks on the pseudonyms carried in the

intercepted messages.

From the above analysis, it can be seen that to launch the exhaustive key

search attack, the adversary needs to launch the preimage attack except in Case

2.a. For Case 2.a, if the adversary could get hold of an input-MAC pair, he/she

would still need to recover the key by offline computing an average of 2k−1

KHF computations with a success probability of 50%. To attempt 2127 number

of KHF computations, the adversary will be successful in 5.062×1024 years with

the given computing capability. It is worth noting that the attack timeframe

is bounded by the lifetime of the key which is assumed to be the same as the

lifetime of the node. The shorter the key, the easier the attack, and a successful

attack may lead to the compromise of the anonymity scheme.

It is also worth noting that if hash truncation is applied (say when λ = 8

bits), launching preimage attacks may become feasible, thus exhaustive key

search attacks detailed in Case 1 and 2.b also become feasible at this level of

truncation. However, the adversary will require more input-hash pairs to suc-

cessfully launch the key search offline and even if the adversary can succeed

in obtaining all the required input-hash pairs, the use of a large key size will

eliminate the risk of this attack. For key size recommendations, the reader is

referred to [38].
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Random forgery attack:

In this attack, an adversary forges a message and broadcasts it to a neigh-

bourhood of a number of nodes hoping that one of the nodes will accept the

message. Each CAS message contains a sequence number to protect it against

replay attacks. So to succeed in launching such a random forgery attack, the

adversary would have to (a) select the correct index value, (b) use a sequence

number that is larger than the current value (in order to pass the anti-replay

check by the receiving node), (c) guess the correct pseudonym (i.e., hash value),

(d) forge a payload and (e) forge a MAC that could pass the integrity check.

This attack is bounded by the sensor node lifetime, TN .

For (a), assuming that the indexes listed in the pseudonym table of a receiv-

ing node are unique and incremental, the adversary may select a small index

value to guarantee that all or most of the receiving nodes will find a match.

For (b), the adversary may choose a large message sequence number so that

the message can pass the anti-replay check. For (c), the adversary may blindly

guess a pseudonym value. For (d), the adversary may encrypt some arbitrary

data using a random key or just use a random payload, and for (e), there are

also two options, either computing the MAC value using a random key or using

a random MAC value.

For the receiver to accept the pseudonym carried in a message, the outcomes

of all the verifications have to be positive. Say the adversary broadcasts the

forged message in a neighbourhood of b nodes. Upon the receipt of this forged

message, we assume that all the receiving nodes have positively confirmed the

first two verifications, (a) and (b). Then, each receiving node performs verifi-

cation (c) by computing a hash value using the KHF and checking the result

against the received hash value. The probability of passing this verification is

2−n, where n is the length of the pseudonym hash value. After accepting the

pseudonym, the node will proceed to verify the MAC value and decrypt the pay-

load as shown in Figure 6.2. The probability of passing the MAC verification

depends on the length of the MAC value (m), and this probability is 2−m. So,
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based on the above analysis, the probability of successfully launching a random

forgery attack in CAS is at most b × 2−(n+m). If verifications (a) and (b) are

taken into account, this probability would be lower. Table 6.4 shows the random

forgery success probability for n = 64 bits, different MAC sizes and different

network densities. It is clear from the table that the probability of success is

extremely low even when the MAC value is small and the network density is

large.
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Figure 6.2: Steps required by a receiving node to accept a message in CAS.

Now, let us analyse the implications of hash truncation on the random

forgery attack. Using a λ-bit hash value for a CAS pseudonym increases the

success probability of the attack to b × 2−(λ+m). Figure 6.3 shows the success

probability of this attack against varying degrees of hash value truncations with

three sizes of the MAC value, i.e. m = 64-, 48- and 32-bits and three network

density levels, low, medium and high.

As can be seen in Figure 6.3, the probability for successful forgery attacks
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Figure 6.3: Random forgery attack success probability vs. different λ values and network

density levels in CAS.
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Table 6.4: Random forgery attack success probability in CAS for different MAC sizes.

MAC size

m (bits)

Success probability

Low density (b=10) Medium density (b=50) High Density (b=100)

64 2.94 × 10−38 1.47 × 10−37 2.94 × 10−37

56 7.52 × 10−36 3.76 × 10−35 7.52 × 10−35

48 1.93 × 10−33 9.63 × 10−33 1.93 × 10−32

40 4.93 × 10−31 2.47 × 10−30 4.93 × 10−30

32 1.26 × 10−28 6.31 × 10−28 1.26 × 10−27

is very low even with smaller λ values and high network density levels. For

example, taking the worst-case scenario (i.e., when high network density and

MAC value length m = 32 bits are used), the attack complexity, in terms

of the average time taken to succeed in an attack with a probability of 50%,

is summarised in Table 6.5. It can be concluded that even with the highest

truncation level (i.e., when λ = 8), the time of the attack exceeds the attack

timeframe.

Table 6.5: Time to succeed in the random forgery attack in CAS against varied level of hash

truncation.

λ (bits) Time to succeed in the attack with probability 50% (years)

56 1.04 × 1018

48 4.08 × 1015

40 1.59 × 1013

32 6.22 × 1010

24 2.43 × 108

16 9.50 × 105

8 3.71 × 103

Based on the above analysis, the weakest link in the security of the CAS

hash function is the preimage attack. However, selecting λCASSEC = 16 bits should

be sufficient to thwart the risk of this attack.
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7. Impact of Hash Value Truncation on Pseudonym Collisions

This section examines the effect of using various levels of hash value trunca-

tion on the probability of pseudonym collisions. The intention is to investigate

the minimum length of a hash value that will provide adequate pseudonym col-

lision resistance for each of the EAC and CAS schemes based on worst-case

scenarios. It is assumed here that there is not a feasible way of filtering out

incorrect senders in an event of a pseudonym collision. This assumption allows

us to investigate this issue under the worst-case scenario, as if there is another

way of getting around the collision issue, then a higher probability of pseudonym

collisions can be tolerated and hash value length could go even lower.

Now the question is how to quantify an adequate level of pseudonym collision

resistance, or in other words, what is the threshold (i.e., maximum) probabil-

ity of hash collisions that could give us zero collisions among the pseudonyms

during the lifetime of the nodes in the network. When a node sends a mes-

sage containing a pseudonym, the pseudonym is either checked against a set of

pseudonyms stored in the receiving nodes’ pseudonym tables as in the case of

EAC, or against a list of pseudonyms that are computed by the receiving nodes

upon receiving the pseudonym as in the case of CAS. In both cases, there is a set

of pseudonyms for which collisions should not occur when a message containing

a pseudonym is sent. A collision is said to occur when a pseudonym received

in a message matches with two or more entries in a set. These sets change in

each data collection period. So, we need to ensure that pseudonym collisions

are unlikely in all these sets during the lifetime of a node. To achieve this, we

first need to discover how many times these sets change during the lifetime of a

node; this can be computed as follows:

The number of pseudonym sets in which collisions should not occur =

TN/TDC , where TN is the lifetime of a sensor node and TDC is the data collection

period.

The threshold probability of hash collisions is then the reciprocal of the

resulting number of pseudonym sets, i.e., TDC/TN . In Section 6, we assumed
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values for TN as 50 years and TDC as 1 minute. Based on this, the threshold

probability of hash collisions = 1 minute / 50 years = 3.81× 10−8. In the rest

of this section, we explore the minimum level of hash value truncation that will

provide a probability of hash collision that is lower than the specified threshold

for EAC and CAS.

7.1. EAC

To investigate the impact of hash value truncation on pseudonym collisions in

EAC, we consider two example scenarios that have been illustrated in Figure 7.1

and are described below.

Scenario 1: Node A sends a message to node B. Node B has only one matching

record in its pseudonym table and can successfully receive the message.

However, another node, C, located in the neighbourhood can also overhear

the message and has a matching record in its pseudonym table. So node

C will receive the same message despite not being the intended recipient.

Scenario 2: Node A sends a message to node B. Node B has two matching

records in its pseudonym table. Node B cannot decide which node is the

correct sender of the message.

Assuming that each node has a neighbourhood of b nodes where each node

has b records in its pseudonym table, we want to find a minimum λ value,

for which there is no collision between a received pseudonym and any of the

pseudonyms maintained in the nodes’ pseudonym tables (i.e., within the b2

number of records). Based on the birthday paradox, the probability of collisions

can be estimated using Equation (7.1).

P (2λ, b2) = 1− e−
(
b2×(b2−1)

2×2λ

)
(7.1)

Table 7.1 shows the probability of pseudonym collisions under different net-

work density and λ value settings. From the table, it can be seen that, the

collision probability is within the threshold limit when λ = 56 bits (with the
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Figure 7.1: Pseudonym collision scenarios in EAC.

network density level set to high), λ = 48 bits (with the network density level set

to medium) and λ = 40 bits (with the network density level set to low). There-

fore, we choose λEACCR = 56, 48 and 40 bits as a recommended collision resistance

truncation level for high, medium and low network density levels respectively.

7.2. CAS

In CAS, when a message arrives, a receiving node performs three veri-

fications, and, if and only if all three are positive, the receiver accepts the

pseudonym contained in the message. The first verification checks whether the

received index value matches with one contained in the receiver’s pseudonym

table; the second verification checks whether the received message sequence

number is larger than the one stored in the receiver’s pseudonym table; and the

third verification computes a hash value using the KHF and compares it with

the received hash value.

Let us use a scenario to illustrate the possible pseudonym collisions in CAS.

As illustrated in Figure 7.2, node A has a neighbourhood of three nodes, and

node A sends a message to node B. The two other nodes in the neighbourhood,

C and D, overhear the transmitted message. All three nodes, B, C and D, will
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Table 7.1: Probability of collisions vs. λ values and network density levels in EAC.

λ (bits)
Probability of collisions

Low density (b=10) Medium density (b=50) High Density (b=100)

120 3.72 × 10−33 2.35 × 10−30 3.76 × 10−29

112 9.53 × 10−31 6.02 × 10−28 9.63 × 10−27

104 2.44 × 10−28 1.54 × 10−25 2.47 × 10−24

96 6.25 × 10−26 3.94 × 10−23 6.31 × 10−22

88 1.60 × 10−23 1.01 × 10−20 1.62 × 10−19

80 4.10 × 10−21 2.58 × 10−18 4.14 × 10−17

72 1.05 × 10−18 6.62 × 10−16 1.06 × 10−14

64 2.68 × 10−16 1.70 × 10−13 2.71 × 10−12

56 6.87 × 10−14 4.34 × 10−11 6.94 × 10−10

48 1.76 × 10−11 1.11 × 10−8 1.78 × 10−7

40 4.50 × 10−9 2.84 × 10−6 4.55 × 10−5

32 1.13 × 10−6 7.27 × 10−4 1.20 × 10−2

24 2.95 × 10−4 1.70 × 10−1 9.49 × 10−1

16 7.30 × 10−2 1 1

8 1 1 1

verify the index and the sequence number contained in the message. Node B

will find a single record in its pseudonym table as it is the intended recipient.

Node C will be unable to find a matching index value in its pseudonym table

as it is not the intended recipient, so will discard the message. However, if

we assume node D could find a matching index in its pseudonym table, and if

the verification of the message sequence number is also positive, node D will

compute a hash value and compare it with the received hash value. A collision

occurs if this hash verification is also positive. In this scenario, only 66% of A’s

neighbourhood nodes actually evaluate (compute and compare) the hash value.

To generalize from this pseudonym collision scenario, let z be the percentage

of a neighbourhood of b nodes that have positively completed the first two

verifications, and also assume that each of the (z × b) nodes will only need to

evaluate the KHF for a single record in its pseudonym table. The probability of
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collisions given λ as the truncated hash value length is given in Equation (7.2).

P (2λ, (z × b)) = 1− e−
(

(z×b)×((z×b)−1)

2×2λ

)
(7.2)

For different λ sizes, Table 7.2 shows the probability of collisions under three

network density value settings and z = 10%, 50% and 100%, respectively.
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Figure 7.2: Pseudonym collision scenario in CAS.

From the table above, we can see that selecting λ = 40 bits provides collision

probabilities that are lower than the specified threshold value at the worst-case

scenario where z=100% and the network density is set to high and medium

levels, and when the network density level is set to low, the safe length of the

truncated hash value is λ = 32 . Therefore, we recommend λCASCR = 40 bits as

the collision resistance truncation level for high and medium density networks

and λCASCR = 32 for low density networks.

8. Impact of Hash Value Truncation on Energy Consumption

In this section, we assume that the ID anonymity scheme has a facility

to resolve pseudonym collisions, for example, this may be done by performing

additional evaluation of a received message such as evaluating the message digest
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Table 7.2: Probability of collisions vs. λ, z and network density values in CAS.

z
λ

(bits)

Probability of collisions

Low density (b=10) Medium density (b=50) High Density (b=100)

10% of

the nodes

evaluate

the KHF

56 0 1.00 × 10−16 7.00 × 10−16

48 0 3.55 × 10−14 1.60 × 10−13

40 0 9.10 × 10−12 4.09 × 10−11

32 0 2.33 × 10−9 1.05 × 10−8

24 0 5.96 × 10−7 2.68 × 10−6

16 0 1.53 × 10−4 6.86 × 10−4

8 0 3.80 × 10−2 1.61 × 10−1

50% of

the nodes

evaluate

the KHF

56 1.00 × 10−16 4.22 × 10−15 1.70 × 10−14

48 3.55 × 10−14 1.07 × 10−12 4.35 × 10−12

40 9.10 × 10−12 2.73 × 10−10 1.11 × 10−9

32 2.33 × 10−9 6.99 × 10−8 2.85 × 10−7

24 5.96 × 10−7 1.79 × 10−5 7.30 × 10−5

16 1.53 × 10−4 4.57 × 10−3 1.90 × 10−2

8 3.80 × 10−2 6.90 × 10−1 9.92 × 10−1

100% of

the nodes

evaluate

the KHF

56 7.00 × 10−16 1.70 × 10−14 6.87 × 10−14

48 1.60 × 10−13 4.35 × 10−12 1.76 × 10−11

40 4.09 × 10−11 1.11 × 10−9 4.50 × 10−9

32 1.05 × 10−8 2.85 × 10−7 1.15 × 10−6

24 2.68 × 10−6 7.30 × 10−5 2.95 × 10−4

16 6.86 × 10−4 1.90 × 10−2 7.30 × 10−2

8 1.61 × 10−1 9.92 × 10−1 1

or MAC by the receiving node. The additional evaluations will result in extra

computational cost imposed on the receiving node. In other words, if we use

hash value truncation, which means that shorter pseudonyms will be used, then

the energy cost on transmitting messages containing the pseudonyms by the

sending node will be reduced. However, as shorter pseudonyms will lead to

more pseudonym collisions, and more collisions means the receiving node would

do more computation to resolve the collided pseudonyms, hence the energy cost

on receiving the messages by the receiving node will be increased. This means
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that the energy cost at the receiving node may offset the energy saved by the

sending node. This section analyses the trade-off in energy consumption at the

sending and receiving nodes when hash value truncation is used. Our intention

in this section is to find an optimal truncated hash value to minimize the total

energy costs incurred by both the sender and the receiver.

The analysis is based on the energy model specified in [39] for the TelosB

sensor. Tables 8.1 gives the energy costs of the common operations of the sensor.

Table 8.1: Energy costs of common operations of the TelosB sensor running at 4MHz for a

measured data rate of 94 kbps (claimed rate is 250 kbps) [39].

Operation Energy cost

Compute for 1 clock cycle (EC) 1.20 nJ

Transmit 1 bit (ET ) 0.72 µJ

Receive 1 bit (ER) 0.81 µJ

Listen for 1 clock cycle (EL) 15.00 nJ

Sleep for 1 clock cycle (ES) 9.00 pJ

We first estimate the amount of energy gained by transmitting a shorter

message based on a single message forwarded by an intermediate node to its one

hop neighbours. This result, estimated based on a single message transmission

over a single hop, can then be applied to any number of message transmissions

and over any number of hops. Let γ be the number of bits that have been saved

from transmission in a single message over a single hop (i.e. this is the number

of bits that are not transmitted in a single message as the result of using hash

value truncation), b the number of one-hop neighbouring nodes of the sender,

and Eg the predicted energy gain due to the reduction of γ bits in a transmitted

message. Eg is calculated using Equation (8.1). For the sake of simplicity, the

costs for listening and sleeping have been neglected in Equation (8.1).

Eg = (ET + b× ER)× γ (8.1)

where ET and ER are the energy costs on transmitting and receiving a single

bit of data, respectively. The predicted energy loss (EL) on resolving pseudonym
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collisions is computed using Equation (8.2), which is based on the probability

of collisions (PC) in the total pseudonym space (PS) at a receiving node and

the energy consumed by the node in verifying each collided pseudonym in the

record (Ev).

EL = PC × PS × Ev (8.2)

In the following, we estimate these energy gains and losses for the EAC and

CAS schemes, respectively.

8.1. EAC

With EAC, let us consider a scenario in which a message generated by a

source node i is forwarded by node j to node r en-route to the base station.

The format of the message forwarded from node j to node r is:

Mj→r = AAIi||OHAIj↔r||Ekj↔r
(
AAIj ||AIi||Eki(D)||H

(
AAIj ||AIi||Eki(D)

))
Four pseudonyms (AAIi, OHAIj↔r, AAIj , AIi) are carried in this message,

and the length of each pseudonym is 16 bytes (128 bits). Let us assume that the

length of Eki(D) and H
(
AAIj ||AIi||Eki(D)

))
is also 16 bytes each. Therefore,

reducing one byte from each pseudonym in this message would save 32 bits

in total, i.e. γ = 32 bits. The neighbours of node j will receive the message

and may find colliding pseudonyms in their pseudonym tables. To identify the

right record using a colliding pseudonym, each receiving node would need to

do more computation, i.e. decrypt the payload, compute the message digest

and compare the computed digest with the received one. Assuming that the

cost involved in comparing the digest values is negligible, the energy required

to identify a single record using a colliding pseudonym can be estimated based

on the execution time benchmarks presented in Table 4.2, i.e.:

Ev(EAC) = (176.38 + 4.64)ms× 4MHz × 1.2nj = 868.90µJ

Using the collision probability values shown in Table 7.1, for a given length of

the hash value used (i.e. a pseudonym length) (λ) we have computed the number

of bits saved per EAC message as the result of using the chosen pseudonym

length (versus the default length of 128 bits) (γ), the energy gain as the result

of transmitting an EAC message containing the pseudonyms with the chosen
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length (Eg), the energy loss on resolving any pseudonym collisions (EL), and

the difference between the gain and the loss (Eg−EL), and the computed results

are presented in Table 8.2. In the last column (showing the (Eg −EL) values),

a positive value indicates that the energy gain is greater than the loss and a

negative value indicates the energy gain is less than the loss. Negative values

are written inside brackets. It can be seen that the maximum energy gain is

obtained when λ = 40 bits (with the network density level set to high and

medium) and λ = 24 bits (with the network density level set to low). Further

reduction of the λ value would result in lower energy gain, or even worse, energy

loss on resolving collisions would exceed energy gain through transmission of

shorter pseudonyms. Therefore, for the EAC scheme and on the consideration

of energy trade-off, we recommend a pseudonym length (i.e., λEACE ) of 40 bits

when the network density level is medium to high and 24 bits when the network

density level is low.

Table 8.2: Energy cost analysis against pseudonym lengths in EAC.

Network density λ γ Eg (µJ) EL (µJ)
Energy gain/(loss)

Eg − EL (µJ)

Low

120 32 282.24 3.24 × 10−28 282.24

112 64 564.48 8.28 × 10−26 564.48

104 96 846.72 2.12 × 10−23 846.72

96 128 1128.96 5.43 × 10−21 1128.96

88 160 1411.20 1.39 × 10−18 1411.20

80 192 1693.44 3.56 × 10−16 1693.44

72 224 1975.68 9.11 × 10−14 1975.68

64 256 2257.92 2.33 × 10−11 2257.92

56 288 2540.16 5.97 × 10−09 2540.16

48 320 2822.40 1.53 × 10−06 2822.40

40 352 3104.64 3.91 × 10−04 3104.64

32 384 3386.88 9.84 × 10−02 3386.78

24 416 3669.12 25.63 3643.49

16 448 3951.36 6342.94 (2391.58)

8 480 4233.60 86889.60 (82656.00)

Medium

120 32 1319.04 5.10 × 10−24 1319.04
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112 64 2638.08 1.31 × 10−21 2638.08

104 96 3957.12 3.35 × 10−19 3957.12

96 128 5276.16 8.57 × 10−17 5276.16

88 160 6595.20 2.19 × 10−14 6595.20

80 192 7914.24 5.61 × 10−12 7914.24

72 224 9233.28 1.44 × 10−09 9233.28

64 256 10552.32 3.68 × 10−07 10552.32

56 288 11871.36 9.42 × 10−05 11871.36

48 320 13190.40 2.41 × 10−02 13190.38

40 352 14509.44 6.17 14503.27

32 384 15828.48 1579.22 14249.26

24 416 17147.52 369280.80 (352133.28)

16 448 18466.56 2172240.00 (2153773.44)

8 480 19785.60 2172240.00 (2152454.40)

High

120 32 2615.04 3.27 × 10−22 2615.04

112 64 5230.08 8.37 × 10−20 5230.08

104 96 7845.12 2.14 × 10−17 7845.12

96 128 10460.16 5.48 × 10−15 10460.16

88 160 13075.20 1.40 × 10−12 13075.20

80 192 15690.24 3.59 × 10−10 15690.24

72 224 18305.28 9.17 × 10−08 18305.28

64 256 20920.32 2.35 × 10−05 20920.32

56 288 23535.36 6.03 × 10−03 23535.35

48 320 26150.40 1.54 26148.86

40 352 28765.44 395.09 28370.35

32 384 31380.48 104267.52 (72887.04)

24 416 33995.52 8245823.04 (8211827.52)

16 448 36610.56 8688960.00 (8652349.44)

8 480 39225.60 8688960.00 (8649734.40)

8.2. CAS

Each CAS message, Muv = SID||RID||EncryptedPayload||sequv||

MAC(EncryptedPayload||sequv), carries 2 pseudonyms (SID,RID), so reduc-

ing one byte from each pseudonym gives γ = 16 bits. We assume the worst-case

scenario where a received pseudonym is further verified by all receiving nodes
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(i.e., z = 100%). To resolve each collision, a receiving node needs to compute

a MAC value and compare the computed MAC value with the received one.

Assuming a payload of 16 bytes and a sequence number of 8 bytes and based

on the HMAC-SHA1 execution time shown in Table 4.2, the energy required to

verify each collided pseudonym in CAS, Ev(CAS), is:

Ev(CAS) = (14.84)ms× 4MHz × 1.2nj = 71.23µJ

Using the collision probability values shown in Table 7.2 for a given length of

the pseudonym hash value used, we have estimated the energy gain (Eg), energy

loss (EL) and the difference between the gain and the loss (Eg−EL) in a similar

way as described for EAC (Section 8.1). The results are shown in Table 8.3. It

can be concluded, from the table, that the maximum energy gain is obtained

when λ = 16 bits (with the network density level set to high and medium) and

λ = 8 bits (with the network density level set to low). Therefore, we recommend

a pseudonym hash value length, λCASE = 16 bits when the network density level

is medium to high and λCASE = 8 bits when the network density level is low.

9. Impact of Hash Value Truncation on End-to-End Packet Delivery

Delays

As discussed earlier, pseudonym collisions at intermediate nodes connecting

a source node to the base station may increase the time in delivering a message

containing the pseudonyms (i.e. they increase the end-to-end packet delivery

delay). The maximum end-to-end (e2e) packet delivery delay should not exceed

the data collection period. In this section, we investigate the impact of using

hash value truncation in achieving ID anonymity on the e2e packet delivery

delay and, based on this investigation, we hope to identify an optimal truncated

hash value length for a given application setting, in terms of minimising e2e

packet delivery delays.

We use simulation to conduct this investigation. The simulation uses the

CASTALIA simulator [40] that is specially designed for WSNs and Body Area

Networks, based on the discrete event simulator OMNET++ [41]. The simu-
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Table 8.3: Energy trade-off analysis in CAS.

Network density λ γ Eg (µJ) EL (µJ)
Energy gain/(loss)

Eg − EL (µJ)

Low

56 16 141.12 4.99 × 10−13 141.12

48 32 282.24 1.14 × 10−10 282.24

40 48 423.36 2.92 × 10−08 423.36

32 64 564.48 7.47 × 10−06 564.48

24 80 705.60 1.91 × 10−03 705.60

16 96 846.72 0.49 846.23

8 112 987.84 114.68 873.16

Medium

56 16 659.52 6.05 × 10−11 659.52

48 32 1319.04 1.55 × 10−08 1319.04

40 48 1978.56 3.97 × 10−06 1978.56

32 64 2638.08 1.02 × 10−03 2638.08

24 80 3297.60 0.26 3297.34

16 96 3957.12 67.67 3889.45

8 112 4616.64 3533.11 1083.53

High

56 16 1307.52 4.90 × 10−10 1307.52

48 32 2615.04 1.25 × 10−07 2615.04

40 48 3922.56 3.21 × 10−05 3922.56

32 64 5230.08 8.21 × 10−03 5230.07

24 80 6537.60 2.10 6535.50

16 96 7845.12 519.99 7325.13

8 112 9152.64 7123.20 2029.44

lated network consists of a large number of nodes (> 500) placed in an area

of 200m× 200m. Other parameter value settings are summarised in Table 9.1.

Using the simulation we investigate the effects of different value settings for

the three parameters, i.e. the number of hops, network density and pseudonym

length, to study the effects of these parameter values on the e2e packet delivery

delays. Both EAC and CAS schemes were implemented at the application level.

The MAC and network layers were modified to ensure that all the received

packets are passed to the application layer.

Three different network density levels, i.e. low, medium and high, are simu-
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lated by adjusting nodes’ transmission power levels. The higher a node’s trans-

mission power level, the more neighbouring nodes with which this node could

connect, thus the higher the network density level. The network density level

reflects the size of a pseudonym table maintained at each node. The ”Con-

nectivity Map” application in the CASTALIA simulator was used to measure

the average pseudonym table size when a node’s transmission power is being

adjusted. The three network density levels, along with the neighbourhood size

and the corresponding power levels, are given below:

1. -10 dBm for low network density (b ≈ 11 nodes).

2. -3 dBm for medium network density (b ≈ 50 nodes).

3. 0 dBm for high network density (b ≈ 80 nodes).

At each network density level, nodes with different numbers of hops away

from the base station are assumed. Data collected by a source node are trans-

mitted to the base station in the following order: nodes that are up to 2 hops

away from the base station transmit their data first, nodes that are up to 3

hops away transmit their data next, and so on. For each set of transmissions,

the maximum e2e packet delivery delays are measured with varying lengths of

pseudonyms. The reason for measuring the maximum e2e packet delivery de-

lays, rather than the average e2e packet delivery delays, is that we want to

select a pseudonym length that could work efficiently under the worst-case sce-

nario that is bounded by a given data collection period. In other words, in the

worst-case scenario (i.e. when suffering the longest delay), data could still be

delivered to the base station. To make the results collected from the simulation

statistically significant, each simulation is repeated for 30 runs and an average

value is calculated from each set of the 30 runs. CASTALIA has several ran-

domised processes, e.g., wireless medium module and MAC module decisions.

Additionally, a random startup delay is added to each node (between 0 and 1s).

Cryptographic primitives were implemented by integrating the cryptographic

library (CRYPTO++ v.5.6.2) into CASTALIA. However, as CASTALIA does

not have a processor module, the execution times of the cryptographic algo-
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rithms are simulated by adding corresponding delays. The amount of time delay

for each algorithm running on TelosB mote is based on the benchmark shown

in Table 4.2. As in the case for some WSN operating systems such as TinyOs

[42], we also assume that the operating system does not support multitasking,

so if an intermediate node receives more than one packet, and/or has more than

one task to process at any given time, the node will suffer correspondingly more

delay.

Table 9.1: Simulation parameter values.

Parameter Value

Simulator version CASTALIA 3.3

OMNET++ 4.6

Number of nodes 576 sensor nodes and 1 base station

Field size 200m× 200m

Sensor nodes distribution 24 × 24 grid

Base station location Centre

Simulation time 1800 s

Data packet rate 1 packet/minute

Start-up delay Between 0 and 1 s

Number of repetitions (runs) 30

In the remaining part of this section, we report our simulation study of the

effects of hash value truncation on the maximum e2e packet delivery delays

based on the EAC and CAS schemes, respectively.

9.1. EAC

EAC works on a flat topology, so we have set the maximum number of hops

to 12. The simulation results are shown in Figure 9.1. It is worth mention-

ing that, when the higher length hash values are used, e.g., λ =120 to 40 bits,

no pseudonym collisions were recorded, and, in such cases, there are no addi-

tional delays imposed on intermediate nodes. Therefore, the simulation results

recorded for these cases are not reported in the figures below.

From the results shown in Figure 9.1, we can see that, for all the cases of

51



 0

 5

 10

 15

 20

128 . . 32 24 16 8

M
a
x

. 
e

2
e

 p
a

c
k
e

t 
d

e
li
v

e
ry

 d
e

la
y

 (
s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(a) 2 hops

 0

 5

 10

 15

 20

128 . . 32 24 16 8

M
a
x

. 
e

2
e

 p
a

c
k
e

t 
d

e
li
v

e
ry

 d
e

la
y

 (
s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(b) 3 hops

 0

 5

 10

 15

 20

128 . . 32 24 16 8

M
a
x

. 
e

2
e

 p
a

c
k
e

t 
d

e
li
v

e
ry

 d
e

la
y

 (
s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(c) 4 hops

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(d) 5 hops

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(e) 6 hops

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(f) 7 hops

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(g) 8 hops

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(h) 9 hops

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(i) 10 hops

 0

 100

 200

 300

 400

 500

 600

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(j) 11 hops

 0

 100

 200

 300

 400

 500

 600

128 . . 32 24 16 8

M
a

x
. 

e
2

e
 p

a
c

k
e

t 
d

e
li

v
e

ry
 d

e
la

y
 (

s
)

Length of truncated hash value λ (bits)

Low density

Medium demsity

High density

(k) 12 hops

Figure 9.1: EAC maximum e2e packet delivery delays vs. truncated hash values and hop

counts.
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hop counts, when the pseudonym length, λ, is reduced from 128 bits to 16 bits,

the e2e packet delivery delays have very little changes. In other words, when

the pseudonym length ≥ 16, the e2e packet delivery delays are not sensitive to

any pseudonym length changes, although the higher the hop counts, the higher

the e2e packet delivery delays. In addition, the results also show that, when the

pseudonym length ≥ 16, the delays are not sensitive to network density levels.

However, when the pseudonym length is further reduced to below 16-bits,

i.e., when λ is set to 8 bits, we can see a different set of results. Firstly, there is

a marked increase in the e2e packet delivery delays, and the higher the network

density level and the higher the hop count, the bigger the increase. These simu-

lation results have further proved our early analysis that, when the pseudonym

length is set too low, the number of pseudonym collisions will increase sharply.

The intermediate nodes, upon the receipt of the collided pseudonyms, will need

to do additional computations to identify the nodes referenced by the collided

pseudonyms. The additional computations will add more delays into the e2e

packet delivery delay, and, in addition, the additional computations will make

the nodes busier causing further delays (queuing delays) in processing incoming

messages. This increase in the e2e packet delivery delays will get worse when the

network density level gets higher and/or when the hop count gets bigger. This

is because when the density gets higher, the pseudonym space in pseudonym

tables will increase causing more collisions. When the hop counts gets bigger,

more of these effects will be added into the e2e packet delivery delay. It is also

worth noting that when the parameter values are set as: λ = 8, the number

of hops is 8 or higher and the network density level is medium or high, the

maximum e2e packet delivery delay is more than 1 minute, exceeding the data

collection period. When the delay increases beyond the data collection period,

the messages containing the data collected in the previous period are not pro-

cessed and delivered, before the messages containing the data collected in the

current period arrive at the intermediate nodes. This causes significant queu-

ing delays at these nodes, and as a result, the e2e packet delivery delays will

increase sharply. In other words, the pseudonym length should be chosen such
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that the resulting e2e packet delivery delays should not be adversely affected,

and based on the sole consideration of this single parameter, we can choose a λ

value of 16 bits for the EAC scheme, i.e. λEACD = 16 bits.

9.2. CAS

CAS is designed for a clustered network topology, so typically there is a

smaller number of hops between a pair of communication nodes in comparison

with EAC. The maximum number of hops for the grid node deployment assumed

for CAS in our investigation is set to 7 based on an average cluster size of 4

nodes per cluster. The simulation results are shown in Figure 9.2.
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Figure 9.2: CAS maximum e2e packet delivery delay vs. length of truncated hash values and

hop counts.

From Figure 9.2, we can make the following observations. Firstly, for all the

hop count cases, the CAS performs best when the network density level is the

lowest, and worst when the network density level is the highest. The differences
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in the e2e packet delivery delays when different network density levels are set are

more obvious in CAS compared to EAC. This is because the receiving nodes in

CAS need to always compute the hash value upon receiving a message causing

more delays when the number of messages increases in dense networks, whereas

in EAC the receiving nodes only need to find a matching pseudonym in their

pseudonym table and the computation of the next pseudonym (i.e., hash value)

is done after confirming that there is a pseudonym match.

Secondly, the bigger the hop count, the higher the maximum e2e packet

delivery delay. This result is intuitive, as more hops a message transits, more

hash value computations will be involved, thus the higher the delay.

Thirdly, for all the hop count cases, the maximum e2e packet delivery delays

are not sensitive to the pseudonym length (λ) changes. This is the case even

when the truncated hash value decreases to 8 bits. This result is different from

the observation made on the EAC scheme. There are three reasons for this.

Firstly, the probability of collisions in CAS is lower than that of EAC. This

is because for any received pseudonym in CAS, each node may only have one

matching index at most in its pseudonym table whereas in EAC each node may

have more than one matching pseudonym in its pseudonym table. The received

pseudonyms in CAS are filtered immediately by the index verification and only

if they pass the index verification, is the hash value verified. Secondly, if a

matching hash value is found in CAS, the next verification will be to compute

a MAC value and compare it with the received MAC value. In EAC, however,

the verification involves decrypting the message using AES, which is much more

costly compared to computing HMAC in CAS (refer to Table 4.2). Thirdly, CAS

uses a clustered topology, so packets traverse fewer hops before reaching the base

station. All of these factors help to reduce the likelihood of the maximum e2e

packet delivery delays exceeding the data collection period.

Based on these considerations, the safe level of truncation in terms of e2e

packet delivery delays in CAS is 8 bits, i.e. λCASD = 8 bits, for all network

density levels.
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10. Further Discussions

In this section, we summarize the results from our above analyses to deter-

mine the most appropriate truncated hash value lengths, λREC , for the two ID

anonymity schemes, EAC and CAS. The decisions are made based on the four

criteria attributes, i.e. security (in terms of resistance against brute force attacks

on hash functions), pseudonym collisions (in terms of reducing the probability

of pseudonym collisions), energy trade-off (in terms of balancing transmission

costs at the sending node and computational costs at the receiving nodes) and

e2e packet delivery delay (in terms of reducing the delay below the data col-

lection period). The results are summarised in Table 10.1 for each of the three

network density levels under the considered parameter settings. For a given

case, the recommended truncated hash value size. i.e. λREC , is the longest one

as determined by the involved four attributes depending on whether collision

resistance is required or not (refer to Equation (5.1)). From the table, it can be

seen that the pseudonym collisions attribute imposes the most constraints on

the reduction of the hash value lengths whereas the e2e packet delivery delay

imposes the least constraints. The analysis emphasizes the role of the following

factors in the determination of an appropriate truncated hash value length:

1. Type of hash function and how it is used in an ID anonymity scheme:

The type of hash function, i.e., UHF or KHF, determines the type of

brute force attacks an adversary may attempt. In addition, the length

and lifetime of the cryptographic key in KHF has an impact on the success

of the exhaustive key search attack and consequently on the selection of

the optimal hash value length based on security considerations. Further,

how these functions are used in an ID anonymity scheme also impacts the

hash value truncation level. For example, the CAS scheme uses a sequence

number to protect the IDs against the replay attack whereas EAC does

not, leaving EAC prone to the replay attack. The pseudonym in the

CAS scheme is also designed by combining an index value and a hash

value. Such design has an impact on reducing the pseudonym collision
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probability, thus enabling the CAS scheme to afford shorter hash values

compared to EAC.

2. Sensor node capabilities: The computational capability of the microcon-

troller and the sensor node energy supply also have an impact on determin-

ing the optimal length of the truncated hash value in all four attributes.

For example, the more time it takes for a sensor node to compute hash

values to address the pseudonym collision problem, the more energy the

node will consume and at the same time the higher the e2e packet deliv-

ery delay will be introduced. In addition, the energy supply of a sensor

node determines the lifetime of the node and consequently affects the time

available for an adversary to successfully launch an attack using some of

the brute force attack methods, e.g., the preimage attack in CAS. It also

impacts the pseudonym collision probability threshold. The shorter the

lifetime of a node, the higher the pseudonym collision probability thresh-

old we can use, and accordingly the shorter the hash value (i.e. the more

hash value truncation) we can afford to apply.

3. Adversary capabilities: The adversary capabilities determine the speed at

which an adversary can perform the offline and online brute force attacks.

For example, offline attacks are affected by the speed of computing hash

values using brute force. Online attacks are affected by the transmission

capabilities of the adversary (should the sensor nodes transceiver allow

reception at the same rate). Any changes made in these computational

and communication capabilities of the adversary will have an impact on

the recommended level of truncation imposed on the hash value based on

the security considerations.

4. Ability to resolve pseudonym collisions: If an ID anonymity scheme that

is designed based on a hash function do not have a built-in facility to iden-

tify a correct sender should a pseudonym collision occur, then the scheme

can only tolerate up to a certain threshold level of a pseudonym collision

probability. This imposes constraints on the level of hash value truncation

that could be applied. However, if the collision resistance is not an over-
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riding requirement, then the threshold level of the pseudonym collision

probability may be increased and therefore a shorter hash value may be

chosen provided the constraints imposed by the other two attributes, i.e.,

energy trade-off and e2e packet delivery delay, allow. For example, in the

case of using EAC in a low density network, the recommended truncated

hash value length is 40 bits when the collision resistance property becomes

a requirement. However, the hash value length can be reduced to 24 bits

if the collision resistance property is not required

5. Network density: The network density implies the size of a node neigh-

bourhood or the number of single-hop neighbours a node has. This number

also determines the number of records each node should maintain in its

pseudonym table. The network density plays a major role in deciding on

the hash value truncation level in all the four attributes. For example, in

terms of security considerations, the lower the network density level, the

lower the chance for an adversary to succeed using the random forgery

attack for both UHF and KHF. In terms of pseudonym collision con-

siderations, reducing the network density levels reduces the pseudonym

collision probability and consequently more truncation can be applied. In

terms of energy trade-off, the lower the network density level, the lower

the pseudonym collisions probability, and, as a result, less computations

will be required to resolve any collisions, thus the energy gains may be

maximized at a higher level of hash value truncation. Similarly, in terms

of e2e packet delivery delay, reducing the network density level reduces the

pseudonym collision probability which will result in less time being used

to address the collisions and consequently less e2e packet delivery delay.

6. Data collection rate: The data collection rate plays an important role

in the estimation of the optimal truncation level for the security and

pseudonym collision attributes. If the data collection rate is reduced, the

data collection period will increase and this will give an adversary more

time to launch a successful brute-force attack (e.g., the replay attack in

EAC). As a result, a lower level of hash value truncation (i.e., a longer
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hash value length) should be used. Similarly, if the data collection pe-

riod is increased, the threshold probability of hash collisions will increase,

which will allow for a greater hash value truncation (i.e., a shorter hash

value length). Obviously, the data collection rate affects the hash value

truncation level in two ways. One is affected by the security attribute,

the other is by the pseudonym collision attribute, and there is a trade-off

between the two.

Table 10.1: Summary of findings.

Criteria
Collision resistance

is required

Collision resistance

is not required

EAC CAS EAC CAS

Low density

Security λSEC 24 16 24 16

Pseudonym collisions λCR 40 32 - -

Energy trade-off λE - - 24 8

End-to-end packet delivery delay λD - - 16 8

Recommended λREC 40 32 24 16

Medium density

Security λSEC 24 16 24 16

Pseudonym collisions λCR 48 40 - -

Energy trade-off λE - - 40 16

End-to-end packet delivery delay λD - - 16 8

Recommended λREC 48 40 40 16

High density

Security λSEC 24 16 24 16

Pseudonym collisions λCR 56 40 - -

Energy trade-off λE - - 40 16

End-to-end packet delivery delay λD - - 16 8

Recommended λREC 56 40 40 16
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From the above analyses using the methodology we have proposed, one can

see that, based on the consideration of the four attributes, it is possible to

determine an optimal hash value truncation level. The analysis results show

that the hash value used in pseudonyms can be truncated significantly. This

reduction in the length of a hash value reduces message lengths, which, in turn,

will lead to reduced transmission load and bandwidth requirements imposed on

sensor nodes. For example, in EAC, each message transmitted from a source

node to the base station multi-hop away contains four pseudonyms: the global

anonymous identity, the one-hop anonymous identity and two anonymous ac-

knowledgement identities. Similarly, in CAS, when a message is sent from a

source node to the base station through other intermediate nodes, the source

node will need to construct two pseudonyms: an end-to-end pseudonym and a

next-hop pseudonym. Reducing the length of each pseudonym by 1 byte reduces

4 bytes off EAC packet and 2 bytes off CAS packet. The reduction in packet

size will lead to less transmission errors, lower frequency of retransmissions and

better utilization of the bandwidth [43]. The reduction in the transmission

load will also lead to the reduction of energy consumption as discussed in Sec-

tion 8. These reductions cannot only improve the efficiency of an ID anonymity

scheme constructed based on a hash function, but also help to prolong the life-

time of sensor nodes that are typically resource constrained. It should also be

emphasised that reducing the pseudonym length can also reduce the memory

requirement (i.e. memory overhead) of a sensor node. This is especially the

case for EAC where the pseudonyms are stored in the pseudonym table of each

node. Figure 10.1 shows the impact on the memory requirements under differ-

ent network density levels in EAC where the length of the pseudonym used is

40 bits. For a large network density (e.g., b = 100 nodes), the memory overhead

can be reduced by 29%.
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Figure 10.1: Memory requirements vs. pseudonym length and network density in EAC.

11. Conclusions

This paper has presented a comprehensive study of the impacts of hash

value truncation on the security and efficiency of ID anonymity schemes de-

signed by using hash functions. The study is carried out based on two existing

ID anonymity schemes, EAC and CAS, specifically designed for WSNs. The

results from our study have led to some interesting discoveries. Firstly, there

are multiple attributes that affect the choice of an optimal length of a truncated

hash value. In our analysis, we have identified four such attributes, and these are

security (in terms of resistance against brute force attacks on hash functions),

pseudonym collisions (in terms of reducing the probability of pseudonym colli-

sions), energy trade-off (in terms of balancing transmission costs at the sending

node and computational costs at the receiving nodes) and e2e packet delivery de-

lay (in terms of reducing this delay below the data collection period). Secondly,

we have identified six factors that affect the selection of the optimal hash value

truncation level based on the above four attributes. These are the type and

usage of hash functions, sensor node capabilities, adversary capabilities, abil-

ity to resolve pseudonym collisions, network density and data collection rate.

Thirdly, the effects of different factors may be contradictory, therefore there are

some trade-offs, which should be considered when determining the length of a

truncated hash value. The work presented in this paper has demonstrated the
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use of a systematic analysis methodology for analyzing the effects of hash value

lengths in terms of security and performance. Though the work is carried out

based on ID anonymity schemes designed for WSNs, the methodology can also

be applied to hash function based schemes designed for other problem contexts,

such as preserving patients’ identity privacy in an e-health cloud. Future work

will investigate the impact of sensor node compromise attack on the security of

ID anonymity in WSNs.
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