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1. INTRODUCTION

It is an unfortunate fact of life that for virtually any physically
interesting problem in quantum many-body theory, our present state of know-
ledge is such that the convergence properties of any of the existing forms
of many-body perturbation theory are far from clear. It is also the case
that apart from the purely variational techniques or the various 'exact'
numerical calculations that are largely based on Monte Carlo or other
stochastic simulation techniques, most of the available fundamental or
microscopic many-body methods are still ultimately rooted in perturbation
theory. This is true even for such methods as the coupled cluster methodl-3
and the extended coupled cluster method~-6 that have seemingly left their
humble perturbative origins far behind. Many of the variational techniques
(e.g., the hypernetted chain method) are themselves also built upon some
(diagrammatic) cluster decomposition, only some elements of which are includ-
ed at any given level of approximation. In a~l such cases we are therefore
faced with a formal series expansion, for which the precise definition of the
expansion parameter is often far from clear, let alone its smallness.

Information about the convergence properties of such typical series
solutions as that for the ground-state energy of a many-body system, for
example, is important for a number of reasons. Most obviously, if the series
is divergent, we would like to know how many terms in the series are worth
keeping (i.e., beyond which the series approximation deteriorates) for a given
value of the expansion parameter or relevant coupling constant. Secondly in
most problems of physical interest (e.g., Coulomb fluid, hard sphere systems),
a partial resummation of the original series is vital to avoid infinities.
If the original series is not convergent, such rearrangements of the series
are dangerous and must, in principle, be handled with great care. In practi ce
however, little attention is usuall~ paid to such matters. This point has
been particularly stressed by Baker in the context of the necessary re-
summation of the original series in powers of the two-body potential to one
in terms of the 'ladder-summed' T-matrix, in the case of·hard-core potentials.
Thirdly, and perhaps most importantly, we are interested nowadays less in
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the local properties of many-body systems than in such global properties as
their phase transitions. In this case, we may envisage the Hamiltonian of
the system as depending on some parameter or set of parameters which may,
for example, determine the strengths of either some externally applied
fields or the internal interparticle forces. Typically we are then interest-
ed in considering the whole family of Hamiltonians (and the corresponding
energy eigenvalues) as a function of these parameters. Phase transitions
might then be expected to show up as suitable instabilities or singularities
in the relevant parameter space. Perturbation theory is a very convenient
method of handling such families of Hamiltonians, but it is clear that the
convergence properties of the resulting series expansions play a very
crucial role.

It is well known that even for relatively simple model problems, the
usual forms of perturbation theory can easily diverge for all values of the
relevant coupling constants. Indeed it is not necessary to deal with many-
body systems to make this manifest. Since the full many-body problem is
clearly much more difficult than the quantum-mechanical one-body problem,
which however itself already displays many of the same difficulties in this
respect, we may for present purposes restrict the ensuing discussion to the
one-body problem.

An archetypal system in this respect 1S the quartic anharmonic oscill-
ator in one dimension with Hamiltonian,

for which it has been shown8,9 that Rayleigh-Schrodinger perturbation theory
(RSPT) for the ground-state energy diverges for all values of A, if the un-
perturbed Hamiltonian is taken to be that of the corresponding harmonic
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oscillator (with A = 0). The most that we can therefore expect is that
successive terms in the perturbation series decrease in magnitude out to some
specific order before they start to increase. This behaviour is illustrated
in Fig. 1. Whereas RSPT can still give very accurate results for very small
values of A, the optimal accuracy decreases rapidly as A is increased. Thus
for A = 0·01 the series apparently converges out to 34th order, at which point
the optimal accuracy is reached with a relative error of about 10-12%, before
successive terms start to worsen the accuracy. On the other hand for A = 0·5
the magnitude of the correction increases at each order. The optimal asymp-
totic approximation is then obtained already at first order and the minimum
relative error is then about 26%. Even for values as small as A = 0·1, we
see from Fig. 1 that fourth-order perturbation theory gives worse results
than second order, and the relative error may not be reduced below a few per-
cent simply by taking more terms in the series.

It is worth pointing out that several techniques for rearranging this
perturbation series have been considered (see, e.g., Ref. [10] and further
references cited therein). One such technique of particular interest for
many-body theory applications is the coupled cluster method (CCM). 1-3 The
CCM has been applied by several authors to the quartic anharmonic oscillat-
or. 11-14 In the ~revious volume in this series, the CCM results were summ-
arised by Klimmel. 3 The errors for the ground-state energy are smaller than
0·1% for O<A<lOOO at a relatively low level of truncation, namely SuB (6).
However, the relevant correlation amplitudes Sn behave rather irregularly
for larger n and larger truncation levels. In particular the quality of the
energy starts to deteriorate, and the relevant series still seems to be
asymptotic, although it is clearly much more accurate at the optimal trunc-
ation than ordinary RSPT.

Faced with such divergent or seemingly divergent series, one possibility
is to develop various "resummation techniques" to try to extract physics
from the available terms in the series. Typically in this case, one rigor-
ously needs methods for studying the behaviour of the large order terms in
the series. Two such techniques which have been quite widely applied are
Borel summation 15 and Fade approximants.1G In the case of the anharmonic
oscillator, Bender and Wu 8,17 first calculated the asymptotic expansion of
the ground-state energy as a function of A using the WKB method. In the
context of many-body theory applications, comparable techniques for finding
the asymptotic behaviour of the series have involved functional integrals. 18
The interested reader is referred to Ref. [19] for a succinct resume of the
Borel and Pade techniques as applied specifiCallb to the quartic anharmonic
oscillator. For this case, it has been proved 2 that the diagonal [N,N]
Pade approximants converge to the exact ground-state energy as N+oo, and even
relatively low values of N can give quite accurate approximations, for all
values of A. On the other hand there are few rigorous such results for
similar applications to realistic many-body problems.

An alternative approach to the divergence of the RSPT (and similar)
series is to abandon the original formulation or, more precisely, to try to
generalise it by relaxing some of its implicit constraints that we might
suspect of causing the divergent behaviour in the first place. It is from
this philosophical viewpoint that we propose the modified Rayleigh- Schrod-
inger perturbation theory (MRSPT) that we now describe. In keeping with the
above discussion we limit the description here to the one-body problem, al-
though we hope ultimately to apply it ~ realistic many-body systems also.
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2. THE BASIC IDEA

Suppose that we wish to solve for the lowest t bound-state eigenvectors
I~i> = l~i(A» and eigenvalues Ei (A) of some general Hamiltonian R(A) which
contains a coupling parameter, or some set of such parameters, denoted by A,

i = 0,1, ..•, (t-l). (2)

In all perturbative approaches the Hamiltonlan H is decomposed as,

H(A) = HO + pW(A),

where the parameter p is introduced simply to keep track of the order of the
ensuing expansions in powers of the perturbation W. We then have to decide
how to choose both (i) the unperturbed Hamiltonian HO, and (ii) the single-
particle basis In> in which to evaluate the resulting formal expansion for
the eigenfunctions I~i>' for example. As is well known, and as we describe
more fully below, the formal perturbation expansion may be most easily
expressed in terms of the resolvent, R(z) = (z-HO)-1. The choice of HO is
then usually dictated by requiring R to be easily able to be constructed.

In the standard RSPT these two choices above are coupled together, and
both are essentially decided by requiring HO to be simple enough so that it
is diagonal in the chosen basis. That is, we are required to be able to
solve explicitly the unperturbed problem

for the basis In>. It is clear that these two restrictions imposed simult-
aneously so severely restrict the choice of HO that the p+O limit of Eq. (3)
may be so singular as to cause the subsequent divergence of the perturbation
series.

. ;

By contrast, the key element of the MRSPT scheme that we now propose, is
to decouple the two previous requirements by giving up the diagonality of
HO, but in such a way that the unperturbed eigenvalue problem is satisfied
identically. This is achieved within the framework of an exact projection
of the original Schrodinger equation (2) into a (finite) t-dimensional model
space, by the usual introduction of P and Q projection operators into and
out of the model space, in the usual Feshbach spirit, 21 and as described
below. The Hamiltonian HO is then written as,

t-lHO + I
i,j=O

z , ·1</>.><</>.1,
lJ 1 J

in terms of a set of t2 parameters z .., and where our model space is spanned
by some suitable set of orthonormali§~d vectors 1</>·>.All that we then

1 -require is that some well-defined resolvent associated with HO out of the
model space be calculable by any suitable means. In particular HO can
otherwise be arbitarily chosen to share some or all of the essential proper-
ties of H itself. In this way the remaining perturbation term W can be made
"really small" so that the poas i.bLg quite large off-diagonal components of
H can be shifted into the energy denominator terms arising from the usual
resolvent expansion, and the convergence properties of the perturbation
series may thereby be improved. Furthermore, the parameters zi· can be
chosen, as we see below, so as to make the zeroth-order eigenvalue equation
trivially satisfied, and the corresponding zeroth-order eigenvalue itself
becomes a truly free parameter in the MRSPT scheme.
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3. FORMAL DETAILS

We now first describe more fully the general prescription for setting
up perturbation theory in a suitable model space, and then compare and
contrast the standard RSPr scheme with theMRSPr scheme. We first make the
standard decompositions,

+ '"

... , (6)
and insert them into Eq. (2). ~ equating powers of p we correspondingly
find the zeroth-order equation,

(7a)
and its Nth -order (N2!l)counterpart,

N
(HO-Ei(O»I~i(N» + wl~i(N-l» - ~ Ei(m)l~i(N-m»

m=l
O.

We may now project any of these equations into and out of the model
space defined by the projectors P and Q,

t-l
P == L I<Pa><<pal

a=O
Q - I-P , (8)

where the orthonormalised vectors I<pa>define and span the model space. For
example the zeroth-order equation (7a) may be exact Iy mapped onto its equiv-
alent for the P-projected wavefunction, pl~i~O»,

P[HO + HOQRiQHO]pl~i(O» = Ei(O)pl~i(O» ,
l~i(O» = (l+RiQHO)pl~i(O» ,

(9a)

(9b)
in terms of the resolvent operator Ri defined as,

(10)
Of course, Eq. (9a) is no easier to solve than Eq. (7a). However, we may
now contrast the usual RSPr scheme to proceed beyond this point with our
proposed new MRSPr scheme.

3.1. RSPr: The Standard Approach

Equation (9a) is now particularly tractable if HOp = PHO, and hence if
the states pl~i(O» are the eigenstates of HO. This is usually, but not nec-
cessarily, accomplished in the standard RSPr by choosing HO + H(A=O), the
'non-interacting' 8art of H, and by choosing the basis states l<Pi>tobe the
corresponding I~·( ». The energy corrections Ei(n) may then be regarded as
functionals of the lower-order wavefunctions I~i (m» with m < n, obtained
as usual by taking the overlaps of the general nth-order correction equation
(7b) with the state <~i(O)I, and then employing the zeroth-order equation
(7a). In this way all of the corrections I~i(n» and Ei(n) with n>O, may be
regarded as being reduced by the hierarchy of equations (7b) to functions of
l~i(O» and Ei(O). The RSPr scheme may thus be viewed as a systematic
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reduction of the full (perturbed) equation (2) to its simplified (unperturb-
ed) counterpart of Eq. (7a) or, equivalently, Eqs. (9a,b).

3.2. MRSPT: A Different Approach

As we have already sketched in Sect. 2, it seems natural at this point
to exploit the freedom of modifYing HO by terms separable in the model space.
Thus, in MRSPT we now write HO as already indicated in Eq. (5), or equival-
ently in the form,

where ~ is same (as yet, arb1trary) txt matrix, and we are still free to
choose HO. Inserting Eq. (11) into the zeroth-order Eq. (9a), we find,

(12)
Further progress is now simplified if we choose as a constraint (c.f., the
usual degenerate form of RSPT) ,

,\/ i = 0,1, ... , (e-r) (13)

namely, that the zeroth-order eigenvalues are all degenerate. In this case,
the zeroth-order MRSPT Eq. (12) may now be satisfied identically if we choose
1; as,

(14)
(15)

We note that the MRSPT scheme at this point contains E as a totally free
parameter, and that the choice of HO is still open. In particular BO may, as
necessary, be chosen so as to share as many of the properties of the fUll
H(A) as may be needed (for example, to try to improve the convergence proper-
ties). The price that we have paid for this freedom and for the essentially
total elimination of the unperturbed problem is that the explicit construct-
ion of R is now not so simple if HO is not diagonal. Once E has been chosen
however R has only to be calculated once. Clearly, if the formalism in
practice turns out to be very sensitive to the choice of E, most of its
possible practical advantages would be lost. We note that if the model space
projector P would be constructed as in the "RSPT scheme, and if E were then
also set equal to the exact degenerate unperturbed eigenvalue, then the mat-
rix ~ vanishes identically, and our new MRSPT scheme would reduce to the old
RSPT scheme. We shall need to investigate, for example, whether the actual
MRSPT convergence depends on E being very close to such unperturbed eigen-
values. We shall return in the later Sections to a critical discussion of
this important point, and indicate now only that for the applications that we
have made to date, the results are remarkably insensitive to the choice of E.

First-order MRSPT now proceeds just as in standard RSPT. Thus, the
overlap of th~ ~=l member of the hierarchy of equations (7b) is taken with
the state <~jtO)I. Using both the relation,

(HO-E)IWj(O» = ° , (16)
and Eq. (9b), to write the resulting equation entirely in the model space,
and writing the P-projected nth-order wavefunction in terms of the mode1-
space spanning functions,
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we find the (txt) - dimensional genepalised eigenvalue ppoblem,

t-lI <~81[(HoRQ+l)W(1+QRHO) - Ei(l)(l +HoRQRHo)JI~a>c~~)
a=O

O',

i, 8=0,1, ..., (e-r), (18)

for the first-order energy correction terms Ei(l) and the coefficients Cai(O)
of the P-projected zeroth-order energy eigenfunctions. We note that these
coefficients are defined only up to a multiplicative constant which can be
fixed by a normalisation condition.

Higher-order MRSPT proceeds very similarly. If the overlap of Eq. (Tb)
is taken with the state <~i(O)I, the resulting equations can be regarded as a
set of recurrence relations for the energy corrections {Ei(N)}. B~ employing
Eq. (17), these relations formally allow us to eliminate the {Ei(N)} in terms
of the coefficientt J~i(m) with m < N. The corresponding overlaps of Eq. (Tb)
with the ~t~te <~j ° I may then be fo~ally red~ced ~o a set of equ~tions for
the coerraca.ent.s {cai ~N)l)} to be ultlmately gaven an terms of t.he i r lowest-
order counterparts {cni O}. We note however that there still remains a
renormal-ieaeion ambiguity since Eq (Tb) is left unchanged by the transform-
ation I~i ~N» ->- I~i (Nl> + ai(N) I~i (0» with arbitrary constants ai (N), for all
N ""1. This ambiguity is n9I'1\lallyresolved in standard RSPI'by choosing the
normalisation condition <~i~O)I~i{N» = 0; N ""1. In MRSPT it is more natu-
ral to fix directly one of the t coefficients cai(N) for each fixed value of
i and N. An obvious (but not necess~) choice that we shall use in Sect. 4
in the numerical applications, is cii(N) = 0, which follows from the normal-
isation condition <~il~i(N» = O. We can make this renormalisation ambiguity
explicit by exhibiting the second-order MRSPT equation which results from the
above procedure. We find,

"where the operator qi' defined as,

(20 )

clearly renders the j=i member of the t equations (19)
The remaining (~~i) set of (t-l) equations may then be
efficients cai( with a~i.

a trivial identity.
solved for the co-

4. APPLICATIONS

In order to utilise the MRSPT approach in practice, we need a method to
construct the resolvent R of Eq. (15) given a particular (and generally non-
diagonal) choice for liD. The most straightforward way to construct R is
probably a brute-force numerical inversion in some appropriate complete
basis, suitably truncated at a given (M x M) level. The convergence of this
procedure as ~ has been examined by one of us 22 in the case of tridiagonal
matrix representations for HO, where continued-fraction techniques may be
employed for the inversion. This procedure has also been extended 23 by use
of matrix continued fractions for more general representations in which H£n
= 0 for Im-nl > s for some non-negative integer s > 1. An alternative
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approach to the construction of R has also been given 1n terms of an asymp-
totic fixed-point analysis. 24

While it is certainly interesting to speculate on which method for the
construction of R is likely to be the most suitable for large-scale applicat-
ions of the MRSPT, for present illustrative purposes we shall simply const-
ruct R by a straightforward numerical inversion of a suitably truncated (MxM)
representation. In this way we shall focus attention solely on the question
of the convergence properties of the MRSPT series representations.

Finally, we note that our choice of zeroth-order Hamiltonian liO is still
undefined. In the present work we shall choose liO+ H(Ao)' so that the
"unperturbed" problem is of the same form as the "perturbed" problem, but
with a different value of the coupling constant. We now wish to examine the
accuracy and convergence properties as functions of the free parameters E
and AO. We may also examine the method as a function of the model space (or
degeneracy) size t, and the perturbation order N.

4.1. Numerical Example: Anharmonic Oscillators

In order to illustrate the MRSPT techniques, we now apply it to the
well-studied quartic anharmonic oscillator of Eq. (1), which has already been
discussed in some detail in Sect. 1. In order to facilitate comparison with
other recent calculations 11-14 on this system, we present our numerical
results for this Hamiltonian in a Bogoliubov-transformed harmonic oscillator
basis, with the specific transformation parameter determined variationally
to minimise the expectation value of the Hamiltonian in the ground state of
the basis. This procedure, which is equivalent to using the Hartree (or
optimised Gaussian) approximation as the starting-point, has been fully des-
cribed elsewhere. 14 It has also been shown 14 that this simple starting-
point itself produces a variational estimate for the ground-state energy of
Eq. (1) which is accurate to better than about 2% for all values of A. We
perform all of the calculations discussed below in a truncated (MxM) repre-
sentation in which only the lowest M states are kept of the otherwise complete
basis of the (optimally Bogoliubov-transformed) harmonic oscillator. All of
our numerical results are shown for the case M = 19, for which the error in
the ground-state energy EO for A = 1, for example, is approximately 10-7%
due to the basis truncation. We note that while the transformed harmonic
oscillator basis will improve the numerical accuracy of our results over
those obtained using the original (A=O) basis, it does not change the fund-
amental nature of the problem. Thus the Hamiltonian in the new basis is
still 'singular' in the limit A+O.

In order to investigate the sensitivity of the results to the input
parameter E, we first restrict ourselves to a non-degenerate (t=l) 'ground-
state' calculation, and examine in Fig. 2 the accuracy of the ground-state
energy as a function of E, for the first few orders of the MRSPT scheme. We
observe that in each order the accuracy obtained is very insensitive to E
over a rather wide range of values around the exact eigenvalue. Comparable
'ground-state' (t=l) results are also shown in Table 1, but where the para-
meter E has in turn now been set equal to the lowest five eigenvalues Ei
(AO) of the (truncated) 'unperturbed' Hamiltonian liO= H(Ao). We see very
clearly that the so-called 'ground-state' (t=l) formalism can also very
accurately reproduce the excited-state energies for all levels which have
the same parity as the ground state.

The accuracy of the non-degenerate (t=l) version of MRSPT is also dis-
played at various orders in Fig. 3 as a function of coupling constant A,
where in each case the 'unperturbed' Hamiltonian liO = H(Ao) is chosen to have
A = O.99A. Results are shown for a range of values of the parameter E.
TRe data show that the accuracy is alnost independent of A over a very wide

tl 50



12

8

-

10

2

o
0.8

e:
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state energy of the quartic anharmonic oscillator with
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fig. 3· Accuracy (as defined in Fig.l) for the ground-state energy
of the quartic anharmonic oscillator as a function of A, in
the non-degenerate (t=l) version of MRSPT. In each case,
Ao=O.99A. The free parameter E has been set equal to
EO(AO) (solid line), O.9Eo(AO) (long dashes), and 1.1 EO(AO)
(short dashes). Results are displayed in each case for per-
turbation order N=l,2,3 as shown to the right of the curves.
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Table 1. Results for the energy of the A=l quartic anharmonic
oscillator in the non-degenerate (t=l) MRSPT scheme,
with Ao=O.99 and E set equal to one of the five lowest
eigenvalues Ei(Ao) of the 'unperturbed' Hamiltonian
liO=H(Ao). ResUlts are shown for various values of the
perturbation order N, with the first row showing the
value of E, and the last row showing the exact lowest
five eigenvalues, Ei(A).

~\i + 0 1 2 3 4

E 0.80194363 2.73095581 5.16512665 7.91985374 10.9317140
1 0.80377564 0.80487349 5.17933470 0.84745086 10.9637396
2 0.80377063 0.80309197 5.17929172 0.7343 10.9636393
3 0.80377066 0.80426375 5.17929199 1.0474 10.9636398
8 0.80377066 0.80362184 5.17929199 -6.3394 10.9636398
9 0.80377066 0.80388841 5.17929199 40.12 10.9636398

10 0.80377066 0.80367756 5.17929199 -25.15 10.9636398
E 0.80377066 2.73789236 5.17929199 7.94242934 10.9636398

range of va~ues, ~or a fixed ratio AO/A. Furthermore, the relative insensit-
ivity to E as agaan apparent.

Comparable (t=l) MRSPT results are also shown in Fig. 4 as a function of
the imput parameter AO for the important case where A is fixed. In this case,
E is chosen to be the exact ground-state energy EO(AO) of the (truncated)
'unperturbed' Hamiltonian HO= H(Ao). The curves are seen to have an inflect-
ion point in the AO < 1 branch which is almost independent of perturbation
order. This feature is shown in more detail in Fig. 5 which displays both
these MRSPT inflection points and the comparabli crossing points which are
defined to be the values of AO above which the (N+1)th-order estimate for the
ground-state energy becomes more accurate than the Nth-order estimate. The
comparable crossing points for the RSPT curves of Fi~ 1 are also displayed
in Fig. 5, where these now indicate the value of A (rather than AO) below
which the (N+l)th-order estimate for the energy becomes more accurate than
the Nth-order estimate. In the latter case the limit A + 0 of this curve as
N + oo-rsknown, 8 and the curve indicates graphically the divergence of RSPT
for all values of A. By contrast, our numerical data using MRSPT seem to
indicate the convergence of this scheme for AO > AO crit where AO crit dep-
ends on A, and has the approximate value of 0.45 for the displayed case A = 1.
We conjecture that some AO crit(A) < A is a natural boundary of the converg-
ence domain.

Finally, we also present some results in Table 2 for the degenerate
(t>l) version of MRSPT with model spaces of dimension t up to five. For
these data, the parameter E has again been set equal to Eo(AO)' and it is
clear by inspection that it is the lowest eigenvalue EO(A) which is then
obtained to the highest accuracy in a given order. Similarly, when E takes
other values, one finds, roughly speaking, that the energy level calculated
most accurately is that closest to E. We note that we can obtain extremely
accurate results for all levels at even very low perturbation order; and that
the accuracy for a given level increases quite rapidly with the dimensional-
ity t of the model space.
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Fig. 4.
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energy of the }"=l quartic anharmonic oscillator, as a
function of AO' in the non~degenerate (t=l) version of
MRSPT. Perturbation orders shown are N=1.2;4,6,8 and
10, marked as in Fig.l.
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Crossing points (short dashes) and inflection points (solld
line), as defined in the text for ).=1 quartic anharmonic
oscillator via th~ t=l MRSPT scheme, as a. function of the
inverse of the perturbation order N. Thecompa:table RSPT
crossing points of Fig.l are also shown (mediumdashes J.
where the vertical axis now shows A, rather than Ao.
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Table 2. Results for the energy levels of the A=l quartic
anharmonic oscillator in the degenerate MRSPT scheme
for various dimensions t of the model space, with
Ao=O.99 and £ set equal to the lowest eigenvalue
EO(AO) of the 'unperturbed' Hamiltonian BO=H(Ao),
For each value of t the first and second lines show
respectively the results of first and second orders
(N=l,2). The last row, labelled E, indicates the
exact results.

t

1
0.8037'7564
0.8037'7063
0.8037'7564
0.8037'7063
0.8037'7105
0.8037'7066
0.8037'7105
0.8037'7066

2.74084383
2.73854346
2.74084383
2.73854346
2.73826672
2.73794788
2.73826672
2.73794788
2.73789236

5.22525036
5.19648606
5.22525036
5.19648606
5.18018018
5.17953076
5.17929194

8.17095716
8.04822012
8.17095716
8.04822012

11.6683164
11.3303428

2

3

4

5
0.80377072
0.80377066
0.8037'7066 7.94242934 10.9636397E

5. DISCUSSION AND SUMMARY

It is clear both from the data on the quartic anharmonic oscillator
presented here, and from comparable applications to various other one-body
systems, that the MRSPT seems capable of yielding very high precision in
situations where the standard RSPT does not work at all well or is difficult
to implement. Furthermore, the extra complexity of the MRSPT scheme causes
little practical difficulty and only a relatively modest increase in the
numerical computations. The convergence properties of the scheme look
particularly promising. Both the 'ground-state' or non-degenerate (closed
shell) and the 'excited-state' or degenerate (open-shell) versions have been
seen to be capable of giving very good quantitative results.

One of the key features of the method is the decoupling of the model
space (i.e., the unperturbed wavefunctions) from the unperturbed Hamiltonian.
We believe that the extra freedom which this opens up is ripe for future
exploitation. The free choice of the input parameter £ may also be utilised
to improve the rate of convergence, as may the freedom in choosing the
unperturbed Hamiltonian BO. An example of how these extra freedoms may be
put to practical advantage is the possibility of simultaneously imposing on
the formalism such other physical constraints as conservation laws or sum
rules or inequalities, that one may wish to preserve at any level of approx-
imation.

In conclusion, we believe that these preliminary tests on one-body
Hamiltonians are sufficiently encouraging to warrant the further development
and application of the method to many-body and field-theoretic systems.
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