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ABSTRACT m 
We recently applied the coupled-cluster method (CCM) with considerable success to 
several novel quantum spin-lattice systems in the infinite bulk limit. In this article, we 
extend our CCM analysis to the electronic Hubbard models. In particular, based on a 
systematic approximation scheme within the CCM, we investigate the zero-temperature 
properties of Hubbard models at half-filling and with a single hole on a general 
bipartite lattice. Our aim was to provide the CCM framework for a systematic calculation 
of the properties of Hubbard models. 0 1995 John Wiley & Sons, Inc. 

Introduction 

he microscopic coupled-cluster method (CCM) T is widely recognized as providing one of the 
most powerful many-body techniques for deal- 
ing with electronic correlations in both condensed 
matter physics [l] and quantum chemistry [2]. Re- 
cently, we successfully applied the CCM to several 
novel quantum spin-lattice systems [3-51. Using a 
systematic approximation scheme developed by us, 
we carried out calculations involving high-order 
many-body correlations and obtained numerical 
results for such physical quantities as the ground- 
state energy with accuracy comparable to that of 
the best Monte Carlo calculations available today. 

For example, our best estimate for the ground- 
state energy per spin of the spin-1/2 Heisenberg 
model on the two-dimensional (2D) square lattice 
is -0.6691(3). Furthermore, not only is our CCM 
analysis far less computationally intensive than 
are competing methods, but it also enables us 
to study possible quantum phase transitions of 
the spin-lattice systems in an extremely systematic 
and unbiased fashion. In this latter respect, the 
CCM provides an almost unique tool among high- 
precision methods. 

In this article, we report on our progress in 
extending the above CCM analysis to the electronic 
Hubbard models on a bipartite lattice. It is well 
known that the Hubbard model at half-filling 
reduces in the strong-interaction limit to the 
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spin-1/2 Heisenberg model [6] .  The fact that, de- 
spite a great deal of effort, Hubbard models are still 
not well understood has forced many physicists to 
consider approaches that go beyond mean-field 
treatments. Examples include exact finite-size cal- 
culations, numerical simulations, and microscopic 
calculations based on quantum many-body theories 
[7]. The fundamental difficulty in tackling the 
Hubbard models by Monte Carlo simulations is 
the infamous fermion sign problem. This makes the 
application of well-tested many-body approaches 
particularly important. There have been a few 
applications of the CCM to the Hubbard models 
both at half-filling and with the further inclusion 
of one hole [8], based on the classical Nee1 model 
state. This approach guarantees the correct results 
in the large-U limit (where U is the on-site inter- 
action potential). However, in the small-U limit, 
the CCM results based on the Nee1 model state are 
not reliable. In this article, we propose a different 
approach within the CCM framework by employing 
a self-consistent mean-field wave function as a 
model state. The advantage of this approach lies in 
the fact that one is guaranteed the correct results 
in both the large-U and small-U limits. 

Our aim in this article is to provide a CCM 
framework for a systematic investigation of the 
Hubbard models both at precisely half-filling and 
with an additional single hole, based on our pre- 
vious experience for the spin-lattice systems [3-51. 
The outline of the rest of this article is as follows: In 
the second section, following [8], we take the Nee1 
state as the model state of the CCM and consider the 
full one-body correlations (singlet excitations) with 
arbitrary range. This one-body approximation is, in 
fact, closely related to the mean-field theory that is 
discussed in the third section. We also outline our 
CCM analysis using the mean-field wave function 
as the model state in the third section. We conclude 
this article in the final section with a discussion. 

A CCM Analysis with the 
Nkel Model State 

We consider in this article the following Hamil- 
tonian: 

where 1 runs over all N bipartite lattice site vectors, 
and p over all z nearest-neighbor site vectors; u 
denotes the electron spin (1 or 1); t is the nearest- 
neighbor hopping parameter; and U is the on-site 
interaction potential. The operators Cl,, and C& 
are, respectively, the Hermitian-conjugate electron 
destruction and creation operators, which obey the 
usual fermionic anticommutation relations. We con- 
sider mainly positive U in this article. The Hubbard 
model with negative U can also be similarly ana- 
lyzed and will be mentioned briefly at the end. At 
half-filling, the number of electrons, N,,  is equal to 
the number of sites, N .  

THE GROUND STATE 

Let us first consider the Hubbard models at 
half-filling (N ,  = N )  in the strong coupling limit 
(U  - m), where the classical Nee1 state is clearly 
a good approximation for the ground state of the 
Hamiltonian. The Nee1 state on a bipartite lattice 
consists of two alternating sublattices, denoted as 
A and B, respectively: 

where, for clarity, the vector indices {i} are used 
exclusively to label the position vectors of the N / 2  
sites of the (spin up) A-sublattice, and the vector 
indices { j } ,  exclusively to label the position vectors 
of the N / 2  sites of the (spin down) B-sublattice; the 
state 10) is the fermion vacuum state. For conve- 
nience, we make the following notational changes: 
C; - ail, Cit - a;, C +  - a;, Cil - ail for the A- 
sublattice and C i  - b,l, CJt - b,l, C; - b;T, CJl - 
b; for the B-sublattice. Hence, the Hamiltonian of 
Eq. (1) now becomes 

'I+ 

+ U 1 bibjlbjtb; . 
J  

We notice that 

(3) 
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The CCM ansatz for the exact ground ket state I?,) 
is 

N 

19~)  = eSI@iv), s = 2 s,, (5) 
,= 1 

where S is the so-called correlation operator. It is 
partitioned into one-body (single excitation), two- 
body (double excitation), . . . , up to N-body correla- 
tion operators, namely: 

+ S ~ ? ! J j ~ u ~ u ~ ~ b ~ b j ! ~  
( 3 )  + + + + + s;;', J J ' a ; l  u;JlbjtbjiT) > (7) 

etc. We notice that there are two sets of coefficients 
in SI and three sets in S2, depending on the spin 
configurations in each case. It is easy to prove that 
the correlation operators S, thus defined preserve 
the total electron number N, and the total electron 
spin along the z-axis. The ground-state Schrodinger 
equation can then be written as 

r-"HeSI@N) = E , ] @ ~ ) ,  (8) 

where E,y is the ground-state energy. 
The most common approximation scheme in the 

CCM is the so-called SUBn scheme in which one 
retains up to n-body correlation operators, namely, 
S - SSL.B,, = Sl + S2 + . . . + S,. To make a direct 
comparison with the mean-field model state to 
be discussed in the next section, we first restrict 
ourselves to the SUB1 (single excitation) scheme 
here, namely, where we replace S - S1 and set 
S,, = 0 tor n > 1. The ground-state energy E, and 
the correlation coefficients (e.g., {S; } )  are deter- 
mined from coupled sets of equations obtained by 
projection onto the Schrodinger Eq. (8). Thus, by 
taking the inner product of Eq. (8) with the model 
state itself, we obtain the energy equation 

E,  = (QN le-SHeSJQN) ; (9) 

and by taking the inner product of Eq. (8) with 
states b; I@N) and a i b ;  I@.N), respectively, we 
obtain two sets of one-body equations: 

(@Nlbjpi lepSHeSI@N) = 0 ,  (10) 
(QNlbjla,tepSHeS(@N) = 0 ,  (11) 

for the corresponding coefficients {S;} with CT = 

1 and t. In the above equations, the similarity- 
transformed Hamiltonian is given by the nested 

commutator series 
1 

e P S H e S  = H + [ H ,  S ]  + - [ [ H ,  s], S ]  + .. . , (12) 2! 
which actually now terminates at the second order 
in S because H contains terms of at most second 
order in the destruction operators a; ,  and bj,. 

Within the SUB1 scheme, it is quite straight- 
forward to show that Eq. (9) becomes 

ER - = zrbl N 
Equations (10) and (11) provide a solution with 
S. ' J  = -S$ = b, (with r = j - i )  and they both 
reduce in the same SUB1 approximation to 

T 

tE(arp - x b r / b r - r i + p )  + Ub, = 0 .  (14) 
P r' 

In Eqs. (13) and (14), z is the coordination number 
of the lattice ( z  = 2 for the 1 D  chain and z = 4 for 
the 2D square lattice), and we have also employed 
the translational and rotational invariance. 

As was done previously for the spin-lattice prob- 
lems [3] ,  one can further make a local subapproxi- 
mation, namely, the SUB1-2 scheme, in which one 
retains only the single nearest-neighbor coefficient 
bl and sets b, = 0 for Irl > 1. Equation (14) then 
reduces to 

t + Ubl - 3(z  - 1)rb; = 0 ,  (15) 
with the solution 

( 1  ? ,/l + 12(z - l)r2/U2).  (16) bi = 
6(2 - 1)t  

We substitute the physical solution (with the nega- 
tive sign of the square root) into Eq. (13) and obtain 
E, as a function of U in the SUBl-2 scheme: 

_ -  E, - 
N 6(z  - 1) 

zu ( 1  - J1 + 12(z - l ) r 2 / U 2 ) .  (17) 

This result agrees with that of previous CCM calcu- 
lations [8] performed at this level. 

More interestingly, we can also solve the full 
SUB1 Eq. (14) by a sublattice Fourier transforma- 
tion technique similar to that used in the SUB2 
scheme for the spin-lattice systems [3] .  The phys- 
ical solution is easily obtained after the Fourier 
transformation as 

where we define 
273 1 k = -  Yq -xexp(iq p ) ,  (19) 

Z P  
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and where the summation zqEM is over the re- 
ciprocal lattice of the A- or B-sublattice (i.e., the 
magnetic zone 3d ), which, in the infinite bulk limit 
( N  - m), can be written as an integral, 

for a system defined on a d-dimensional bipartite 
lattice. In the above second equality, we used the 
symmetry of yq to write the integral over the entire 
Brillouin zone because all integrands in this article 
are functions of 7;. The ground-state energy in the 
full SUB1 scheme is then given by 

It is easy to see that the ground-state energy from 
both the SUB1-2 and full SUB1 schemes produces the 
correct large-U limit, namely: 

t 
- - 0 .  Z t 2  

N u '  u 
- Eg -* -_ 

We note that there are no terminating points for the 
Hubbard models in the solution of the full SUB1 
equation, whereas in the SUB2 approximation for 
the anisotropic Heisenberg spin-lattice systems [3] 
there was a terminating point in the solution. These 
terminating points were found to correspond to 
the quantum phase transition point between Ising- 
like and XY-like phases. We therefore conclude that 
there is no phase transition for the Hubbard model 
at half-filling within this SUB1 scheme. 

THE EXCITED STATES 

The Hubbard model at half-filling plus a single 
hole (i.e., N ,  = N - 1) can be conveniently con- 
sidered as the charge excitation state at half-filling. 
We can then use the usual CCM formalism for 
the excited states to study the single-hole problem 
for the Hubbard models in a systematic fashion. 
The CCM formalism for the excited states has been 
successfully applied to the spin-lattice systems to 
obtain the spin-wave spectra by us [3] .  In this 
formalism, first developed by Emrich within the 
context of applications to finite nuclei [9], the ex- 
cited state I*,) takes the form 

W e )  = XI*,> = XeSI@>, (23) 

where I@) is the model state, S is the ground-state 
correlation operator as determined above, and X, 
which appears linearly in Eq. (23), is the excita- 
tion correlation operator consisting only of creation 
operators. It is thus constructed in a similar fashion 
to the operator S. By combining the Schrodinger 
equations of the excited and ground states, one 
easily derives 

e-SIH,X]eSI@) = wl@),  o = E,  - E , ,  (24) 

where o is the difference between the energies of 
the excited and ground states. 

For the present case, the Nee1 state is again 
chosen as the model state, I@) = I @ N ) .  One of 
the charge excitation operators is then defined as 
X = z,,X,, with 

I 

(2) + + + 
X2 = 1 ( , y / l l ~ a $ n ~ ~ b ~  + ,yiijjait aij lbj t) ,  (26) 

etc. The other three charge excitation operators can 
be defined in a similar fashion. 

Again, as a demonstration, we consider only the 
simple so-called SUB(1,l)  approximation scheme 
here, wherein we retain only S1 in S and XI in X. 
The equation for the coefficient {xi}  is obtained by 
the projection of the Schrodinger Eq. (24) with the 
state u $ ~ @ N ) .  After the Fourier transformation, it 
is easy to obtain the excitation spectrum (or the 
single-hole spectrum) as a function of the lattice 
momentum q as follows: 

i, i', j 

wq = 2 qG-iq = Juz/4+, 
E q  = -z tyq,  (27) 

where the definition of k in Eq. (19) is used and eq 
is the free-particle spectrum. The spectrum wq has 
a minimum on the 2 D  square lattice for +qx + qy = 
T, namely, on the boundary of its magnetic zone 
3d. We shall compare this result below with the 
corresponding result from mean-field theory. 

The Mean-field CCM Analysis 

The above CCM analysis based on the Nee1 state 
produces the correct large-U limit even in the SUB1 
scheme. However, its results in the small-U limit 
are not reliable. Here, we explore the possibility of 
a CCM analysis that produces correct results in both 
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the large-U and small-U limits by employing the 
mean-field wave function as our new model state. 
We first discuss the mean-field theory and then we 
outline the CCM analysis using the mean-field wave 
function as the model state. 

THE MEAN-FIELD THEORY 

The mean-field theory for the Hubbard model 
at half-filling has been investigated by a number of 
authors [lo]. As is well known, a mean-field theory 
includes only one-body correlations. To make direct 
comparison with the CCM analysis discussed above, 
we discuss the mean-field theory that includes the 
one-body correlations with respect to the Nee1 state. 
We therefore write our mean-field wave function 
( @ ) M I . )  as 

I @ ~ ~ )  = A" exp tan ~ ~ ( a i b i , ,  - sib+,,) laN), 

(28) 
qEm 

where A0 is the normalization factor, E q G ~  is 
as given by Eq. (20), I@,,,) is the Nee1 state as 
defined in Eq. (2), and we have performed the 
usual sublattice Fourier transformations for the 
fermion operators by 

etc., with r, the position vector of the ith lattice 
site on the A-sublattice. In the mean-field wave 
function I @ M F ) ,  8, is the parameter that is now 
chosen to diagonalize the mean-field Hamiltonian 
Hub that contains only up to quadratic terms in 
the fermion operators. This H)MF is obtained by the 
usual decoupling approximation for the interaction 
terms, namely: 

~ ( T L J ~ T  ~ , j  - (a lp l ;>  (afia,i) 
f t  

+ (al;a,l)arTa,; + (a,ta;)a:a,l9 (30) 

etc., whwe the expectation value (. . .) is taken with 
respect to the mean-field wave function of Eq. (28). 
One therefore obtains a self-consistency equation 
for 0, a s  

(31) tan(28,) = -, 

with the same E ,  as in Eq. (27) and where the gap 
parameter A is defined in terms of the parameter 

% 
A 

{0q> v1a 

(32) 
1 
2 

h EE - U ( n ,  - n l ) ,  

with nT = ( a , p $ )  = (bJlb;) and nl = (a,ia,i) = 

The diagonalized mean-field Hamiltonian can 

H M F  = ~o + 2 xEq(aqf,aqg + p,',pqr), 

(b; bJd. 

then be written as 

,€M g 

(33) 

where E, and EO are, respectively, the excitation 
spectrum and the mean-field ground-state energy: 

and where the new fermion operators aqm and &, 
are related to the old fermion operators by the usual 
Bogoliubov transformation: 

a,T = cos 8,aqt + sin O,p-,j; 
b,l = -sin O,,a-,~ + cos 8,pSl, 

a,l = cos eqaql + sin o ~ ~ - ~ T  ; 

b,l = sin 8,a-,l - cos 8,p41, 

(35) 

(36) 

etc. The mean-field wave function I @ ) M F )  is the 
vacuum state for the quasi-particle operators aqg 
and &, namely: 

a q r I @ ) M F )  = P q r I @ ) M F )  = 0 .  (37) 

Using these quasi-particle operators, it is easy to 
derive 

Therefore, Eq. (31) can be written in a more familiar 
form as a self-consistency equation for the gap 
parameter A, using the definition of Eq. (32): 

2 2 - 7  1 
(39) 

It is easy to show that A has the following small- 
and large-U limiting behaviors for the 2 D  square 
lattice case: 

When these results are substituted into the ground- 
state energy Eo and the excitation energy E, of 
Eq. (34), we now obtain the correct limits in both 
the small-U and large4 cases. It is interesting to 
compare E, of Eq. (34) with w ,  of Eq. (27) where 
the gap parameter is simply given by U l 2 .  
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A CCM ANALYSIS WITH MEAN-FIELD 
MODEL STATE 
A CCM analysis using I a M p )  as the model state 

now becomes quite straightforward. As before, we 
write the ground-state function IWg) in the expo- 
nential form as 

N 

N ' g )  = e S I @ ~ ~ > ,  S = x S n  9 (41) 
n = l  

where S,  are the n-body correlation operators con- 
sisting of the quasi-particle creation operators 

S1 = 1 ~ s ; a ; v P : q - m ,  (42) 

s2 = x b , . q 2 r q 3 . q 4 s M  (~9lq2q3q4LYPltaqZlPq3LPq4f 

qEM v 
(1) + + + +  

+ Sqlq*qsq4"s:t"9:,Ps:lPqal (2) 

+ Ss*sza94"~1"9:IP~tPsat)  ' (43) (3) 

etc. In Eq. (43), the prime on the summation implies 
the restriction ql + 4 2  + q3 + q4 = 0 due to the 
translational invariance of the lattice systems. 

The charge excitation state (or the single-hole 
state) can be formulated in exactly the same fashion 
as before in Eqs. (23)-(26), but now using the quasi- 
particle operators instead of the original fermion 
operators. 

Conclusion 

In this short article, we outlined our formalism 
of the CCM for the Hubbard models on a bipar- 
tite lattice both at precisely half-filling and with a 
further single hole. Our aim has been to provide 
a CCM framework for a systematic investigation of 
the ground state and the single-hole state of half- 
filled Hubbard models, which is valid for a wide 
range of values of the interaction potential U .  

For the Hubbard models on a bipartite lattice 
with a negative on-site potential U ,  which can be 
derived after consideration of the couplings with 

the lattice phonons, a similar CCM analysis can 
also be made. In particular, an obvious starting 
point at half-filling with negative U is the so-called 
charge-density-wave state in which the A-sublattice 
is doubly occupied while the B-sublattice is empty. 
We intend to investigate these Hubbard models 
within the framework outlined in this article and 
intend to report our further results in the near 
future. 
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