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EXACT RESULTS FOR SOME
NON-INTEGRABLE MODELS OF
INTERACTING SPINS AND BOSONS

R. F. Bishop and C. Emary

Department of Physics, UMIST
(University of Manchester Institute of Science and Technology)
P. O. Box 88, Manchester M60 1QD, UK

1. INTRODUCTION

There exists a large number of models of common interest in the fields of quan-
tum optics, quantum electronics, solid-state optoelectronics and allied areas that are
generically of the form of a system of fermions or quantum spins interacting with
bosonic degrees of freedom such as photons or phonons. Even though many simple
models in this class are non-integrable in general, the possibility does nevertheless
exist of being able to find exact solutions at a set of isolated points, i.e., for certain
specific values of the coupling parameters. Such isolated points at which exact so-
lutions are available are nowadays denoted as Juddian points after Judd who first
obtained them in the case of the Jahn-Teller model [1].

Previous work has obtained such Juddian solutions for a limited class of Hamil-
tonians, typically by the use of power series and Neumann series in the bosonic field
[2, 3]. Such approaches are generally not very intuitive, and the algebraic analysis
involved is usually rather complicated. These features also make the methods of so-
lution difficult to generalise to other model Hamiltonians. By contrast, we describe
here the use of a much simper, more intuitive and broader approach [4, 5]. It is based
upon a simple (Bogoliubov) canonical transformation of the bosonic field variables,
which is itself quite intimately connected with the underlying group-theoretical struc-
ture of the models. We demonstrate its use by specifically considering two simple,
non-integrable, non-adiabatic Hamiltonians of the above-mentioned kind. A great
attraction of our approach is that it is easy to generalise.

The two important models in quantum optics to which we apply our approach
both describe the interaction of light with matter, with the interaction being mediated
by the exchange of either one or two photons. For the one-photon exchange case,
the model is the well-known Rabi Hamiltonian [6]. Both models are generally non-



integrable for arbitrary coupling strengths, but become exactly soluble when the
common rotating-wave approximation (RWA) is made. Thus, for example, under the
RWA the Rabi Hamiltonian reduces to the familiar Jaynes-Cummings model [7].

In this contribution we describe in detail the energy spectra of both the non-
integrable one- and two-photon models, and make a full comparison between each of
these spectra and their corresponding counterparts when the RWA is made. We then
proceed to demonstrate the existence of a series of isolated, exact solutions for each
of the original models.

2. THE HAMILTONIANS

We consider a single-mode field of frequency w, described by the annihila-
tion and creation operators, b and bf, which obey the usual Bose commutation
relation, [b, bT] = 1. The spin (or two-level system) is described by the Pauli

matrices satisfying the SU(2) commutation relations, [ok,0;] = 2ickimom, where
k.l,m € {1=2,2=y,3 =z} and &gy, is the anti-symmetric Levi-Civita symbol.
We define the raising and lowering operators as o4 = o0, £ io, and the energy-

splitting of the two spin states is taken to be wy. We use the following Hamiltonian
to describe the two different interactions between the field and the spin which we
employ here to exemplify our approach,

1
Hy = §W00'z‘|‘WbTb+g<ka+bk> (0++U—); k=12, (1)

where ¢ is the coupling strength of the atom to the field. With k = 1, the interaction
is of the dipole type and H; becomes the Rabi Hamiltonian (RH). With k = 2 the
interaction describes two-photon processes, and Hs is referred to as the two-photon
Rabi Hamiltonian (TPRH) [8]. Both Hamiltonians Hy, are, in general, non-integrable.
For the systems to be on-resonance we have the condition wg = kw. There is a
conserved quantity associated with Hy, given by

I}, = exp [z% <bTb + g (0 + 1))] , (2)

such that [IIg, Hx] = 0. The existence of this operator splits the Hilbert space of
Hj, into 2k sub-sectors. Thus II; has the eigenvalues m; = 41, while II; has the
eigenvalues m9 = +1 and w9 = +1.

Whereas H; is valid for arbitrary values of g, Hy is physical, in the sense of
possessing normalisable eigenfunctions, only if the condition \%\ < 1 is satisfied.
This is a consequence of the intimate relation between Hs and the squeezed states,
as will be demonstrated in Sec. 3.

Rotating-Wave Approximation In quantum optics, and indeed elsewhere, models
such as Hj, are often treated in the rotating-wave approximation (RWA). Although
useful at low coupling, there are many problems associated with the RWA, and its
range of validity is often much less than is generally assumed [9, 10]. In the RWA,



Hj, becomes
1
HEWA — g@oos + wb'b+ g (kaU— + bk0+> pok=1.2 (3)

For k = 1, this is just the well-known Jaynes-Cummings (JC) model, and k& = 2
corresponds to the two-photon Jaynes-Cummings (TPJC) model. Although we shall
only consider k£ = 1,2 here, it should be noted that H,?WA does exist for all k, in
contrast with Hy, from which it is derived - a stark example of the effect that making
the RWA can have. The Hamiltonian H ,E{WA is exactly soluble for arbitrary parameter
values, since here the excitation number,

NkEbTb+§(az+1), (4)

is conserved, [Nk, H}}WA] = (0. This divides the full Hilbert space into k£ decoupled

manifolds plus a denumerably infinite number of two-dimensional sub-spaces, in each
of which the system can be simply diagonalised. The energy eigenvalues for the k£ = 1
Jaynes-Cummings model are given by

1
EE%) = —5(,00,

BT = <n - 5) W+ 5\/(wo —w)?+ 16g2n; n > 1. (5)

On scaled resonance, w = wg = 1, the eigenvalues and eigenstates assume particularly
simple forms:

1
Eg%):_ﬁ; eigenstate |0, ),

1 1
E%’i) = <n - 5) +2gv/n; n>1; eigenstates 7 (Jn, ) £n—1,1)). (6)

Similarly, the eigenenergies of the & = 2 two-photon Jaynes-Cummings model are
given by

0 1 1 1
Eé"F)’JC = T Yo E’(I‘I-)’JC =W 5wo,
(n,%£) 1\/ 2 9
ETPJc:(n—l)wi§ (wo —2w)" +16¢%°n(n—1) n>2. (7)

Again, on scaled resonance, 2w = wy = 1, the eigenvalues and eigenstates become
g0 Lo 0
TPic = 5  eigenstate 0,J)

Er(Flngc = 0; eigenstate |1,]) (8)
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Figure 1. Spectra of the Rabi Hamiltonian H; and its RWA-counterpart HFEWA on
scaled resonance w = wg = 1.

1 1 1
Er(&,‘;':c) =3 (n —1)%2gn4/1 — —ion > 2: eigenstates 7 (In,d) £]n—2,1)).

Spectra Whereas the spectra for the RWA Hamiltonians may be determined ana-
lytically, we must use numerical techniques to study the systems without the RWA.
Numerical diagonalisation is adequate for this task and in Figs. (1) and (2) we plot
typical spectra obtained in this way for both the one- and two- photon Hamiltoni-
ans. These are to be compared and contrasted with the corresponding RWA spectra
plotted alongside.

Considering the k& = 1 results we see that, whereas the RWA spectrum is charac-
terised by the large number of level-crossings characteristic of integrable systems, the
spectrum of the full Hamiltonian has a reduced number of level-crossings and shows
a series of marked avoided crossings, which produce a “braid-like” structure with
pairs of eigenvalues intertwining with each other as the coupling is increased. From
Fig. 2. we observe a similar situation with respect to the formation of braids by level
repulsion, but in addition we see that both the full and RWA spectra undergo a dra-
matic change at a critical value of coupling. For the full Hamiltonian, the collapse of
the spectrum is because the eigenfunctions become un-normalisable above g = 0.125
(on resonance). This feature was referred to earlier, and will be explained more fully
below. On the other hand, in the RWA we see that for a coupling of g &~ 0.25 all
the ESFT;J_C) eigenvalues converge, with the result that at this point the ground-state
energy abruptly changes from having a value of —% to being unbounded from be-
low. Whilst the eigenfunctions still remain normalisable throughout this change, this
situation is clearly nonphysical and the validity of the TPJC Hamiltonian is also re-
stricted, in this case to the range \%\ < 1. So although the ranges of validity of both
Hy and HFWA are constrained, the reason is completely different in the two cases.

3. ISOLATED EXACT SOLUTIONS

We now demonstrate the existence of isolated exact solutions for the Hamilto-
nians Hy, k = 1,2. These will be seen to occur at the level crossings in the spectra.
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Figure 2. Spectra of the two-photon Rabi Hamiltonian Hs and its RWA-counterpart
HIWA on scaled resonance 2w = wy = 1.

We begin by rescaling the Hamiltonians as Hy, = wHj, where
Hy = o, + 610+ A (01" +85) 00; k=12, 9)

and where w = 3% and A = i)—g. Note that for £ = 2, Hs remains physical provided
that |A\| < 1/2. We begin by expressing the Pauli matrices in a representation in

which o, is diagonal. We choose o, = (01 _01), Oy = (EZ g), and 0, = ((1J (1)) In terms
|¥y)

of the two-component wavefunction, |¥) = (‘%)), the time-independent Schrodinger
equation for the system, Hy|¥) = E|¥), then reads

o)+ (1o 4+ 2 (1" +6F) = B) [w3) = 0,

D10, + (bTb—A(bT’“+bk) —E) Uy) = 0. (10)

We next perform a Bogoliubov transformation of the field mode from the opera-
tors b and b to a description in terms of new bosonic operators, a and af, which obey
the same commutation relation as before, namely [a,a’] =1 [11]. The most general
linear Bogoliubov transformation may be viewed as a rotation plus translation of the
original oscillator Hilbert space to the new oscillator space,

a=eB(1—102) 2 (b-obl - 2);

ot = (1-102) 2 (b = 0"b— 2*), (11)

where ¢ and z are complex numbers describing the amplitudes of the rotation and
translation respectively. The parameter 3 is a simple, and usually rather unimpor-
tant, phase factor. From the outset it is important to note the restriction |o| < 1 in
order to preserve the unitarity of the transformation.

If we set 0 = B = 0, the resulting transformation is of the type that may
be used to diagonalise the Hamiltonian of the displaced harmonic oscillator, the
eigenstates of which are know to be the (Glauber) coherent states. With z = 0, the



Bogoliubov transformation becomes that used in diagonalising the squeezed harmonic
oscillator, the eigenstates of which are the squeezed states. The constraint |o| < 1
then corresponds to the requirement that the coefficients of both 22 and p2 in the
squeezed oscillator are positive. It is simple to see how this condition is translated
into the current two-photon model. If one considers Eq. (10) for k = 2 with @ = 0,
one obtains the Schrodinger equations for two decoupled squeezed oscillators, and
the condition on the squeezing parameter o translates to a constraint of the coupling
Al < 1/2.

In the following we shall use both of these two specific forms, the displacement
and the squeezing transformations, to find isolated, exact solutions for the one- and
two- photon RH respectively.

One Photon For the RH, £ = 1, we set ¢ = f = 0 in Eq. (11), giving us the
Bogoliubov transformation of coherent states,

bi=al+ X b=a+ A\ (12)

The vacuum state of the a-type bosons, a|0,A) = 0, in the original b representation
is the coherent state |A), b|A) = A|A), with amplitude given by the scaled coupling A.
With this transformation Eqgs. (10) become

0|Us) + {aTa +2X (al +a) +3X% — E’} |Wy) =0,

@|\D1>+{aTa—)\2—E‘}|\Ilg> — 0, (13)

where the kets |¥y 5) are now in the transformed representation. For these kets we
choose the Ansatze

:Z_pn|n§)\ Z 1 A) = Py_1 (a) 0; M); (14)
W) =D qnlns A) = an |0A Qn (a’) |0; A); (15)

where |n; \) are number states of the displaced bosons, afaln;\) = n|n;\), and we
have introduced the polynomials Py_; and (Qn of order N — 1 and N respectively.
Making these substitutions we have

N N-1 )
G)anm;)\) + an (n—|—3)\2 —E) |n; A)
n=0 n=0
+2)\an\/n+ |n-|—1)\-|—2)\2pn nin—1;A) =0,

N-1 N
@anm;)\)-l—an <n—)\2—E‘) In; A) = 0. (16)
n=0

n=0



Considering the highest number state, |IN;A), in the second of these equations, we
see that for this equation to hold we require

(N a2 E) an = 0. (17)
Since gy # 0 by Ansatz, we obtain a determination of the energy
E=N-)\. (18)

This equation identifies the Juddian baseline energies, along which the Juddian solu-
tions lie. Comparing the coefficients of the remaining number states gives us 2N + 1
linear equations for the 2N + 1 coefficients (p,,0 < m < N—1) and (¢, 0 < k < N).
To obtain non-trivial solutions, we clearly require the determinant of this equation
set to be zero. This gives the compatibility condition, providing the locations of the
Juddian points. The first two conditions (/N = 1, 2) have the explicit forms

0 + 4N =1, N =1, (19)

! + (12X% = 5) @® + 32X* — 320% + 4 =0, N =2. (20)
Thus, for a given N, we have a polynomial of Nth order in A2 and @2. Note that
there is always an additional solution with w = 0 to the compatibility condition, since
this value decouples the equations (16). Each of these has N roots for A? in terms of

@2, which all turn out to be real, thus giving the location of N Juddian solutions.
These solutions may also be found independently by using the displaced bosons

bi=al =X, b=a— A\ (21)
and interchanging the roles of |¥y) and |¥y). This demonstrates the degeneracy of

the spectra at these Juddian points, and shows that they occur at the level crossings
in the spectra.

Two Photon For the TPRH case we shall utilise squeezed bosons to find isolated
exact solutions. We set z = =0 in Eq. (11), obtaining

b=(1-02) """ (ct+oct); bt =(1-02)""(0c+cl), (22)

where ¢ and ¢! are the squeezed bosonic operators. We now choose ¢ to be real and

given by
Q-1

Making this Bogoliubov transformation in Eq. (10) with Hs, we obtain

-1 Q

O|Wq) + % {—\/ 1-02 (cTz + 02> +(2-90%cle
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Figure 3. The first ten Juddian points of the Rabi Hamiltonian (diamonds). Also
plotted are the energy levels obtained by numerical diagonalisation (dark lines), and

3

the Juddian base-lines (light lines). The Hamiltonian is resonant; w = wy = 1.

+%Q—QM2+Q%—QE%Wﬁ=0- (24)

In a fashion similar to the k¥ = 1 case, we now choose simple Ansétze for |¥;) and
|Ws) in terms of the squeezed number states;

N N-2
(T1) =Y palnio),  [Ta) =Y gmlmio). (25)
n=0 m=0

We then proceed in direct analogy to the one-photon case, This determines the energy
baselines, along which the solutions lie, to be

E:—%+<N+%>Q (26)

We also obtain the compatibility conditions which provide the locations of the solu-
tions in A-@ space, which we shall not reproduce here. As in the k& = 1 case, further
solutions degenerate in energy with those above may be found by using a squeezed
representation with parameter —¢ rather than o.

4. RESULTS

In Figs. 3 and 4 we plot the location of the lowest Juddian points for each
of the two Hamiltonians, plotted against their respective energy schema and energy
baselines.

The Juddian points occur at the level crossings in the spectra. Thus we see that
they occur when two solutions of different values 7, become degenerate in energy,
and it is this degeneracy that is the key to the existence of the Juddian solutions. The
displaced and squeezed number states used in constructing the Ansétze above are not
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Figure 4. The first twelve Juddian points (diamonds) of the two-photon Rabi Hamil-
tonian determined by the method outlined in the text, plotted against the energy
spectrum determined numerically (solid lines). Also plotted are the energy baselines
(dotted lines). Each point is labeled with its order N. The Hamiltonian is resonant;
2w = wo = 1.

states of definite m, and it is precisely because we can construct wavefunctions of
mixed 7 that allows us to find such simple Ansatze at the Juddian points.

In the one-photon case, the solutions found by the above method cover each
and every level-crossing in the spectrum. For the TPRH, however, only a certain
subset of crossings are described by the above method. Considering the quantum
numbers w9 of the two intersecting lines at each crossing, we see that the above type
of solution can only describe the crossings of states having mo = +1 with ones having
w9 = —1, and of crossings of states having mo = +¢ with ones having 79 = —i. The
remaining four types of possible crossings are not described. This series of crossings
can be understood by considering the operator I13 = exp (iwab), which obviously
commutes with the Hamiltonian. From considering the eigenvalues of this operator
we see that the Juddian solutions we have described occur between levels which have
the same value of IT13. Thus although the Ansétze of the Juddian solutions above are
not eigenstates of Iy, they are eigenstates of the square of this operator.

The reason why the above Ansitze can describe these solutions and not the
others is as follows. The solutions that we have been able to find occur at cross-
ings between energy eigenfunctions that are both composed of either all even or
all odd number states. At the Juddian points these two eigenstates become degen-
erate in energy and thus, to find the energy at the level-crossing, we may form
a linear superposition of the two eigenstates, which will, in general, not be an
eigenstate of I12. Because the degenerate energy eigenstates are both “odd” or
both “even”, the formation of the superposition allows the individual terms in one
wavefunction to add to the terms in the other. If we form the superposition cor-
rectly, the resultant wavefunction may have a form much simpler than the con-
stituent wavefunctions, which is exactly the case in the Ansatz chosen above.

The solutions that we have been unable to find with the above method occur at
the level-crossings between eigenstates one of which is composed of only odd number



states, the other composed only of even number states. Consequently, no superposi-
tion of these states will lead to a reduction in the complexity of either wavefunction
and we have been unable to find simple Ansatze at these level-crossings.

5. CONCLUSIONS

We have demonstrated the utility of a rather general method employing Bogoli-
ubov transformations of the bosonic mode to find some exact solutions of some typical
non-integrable Hamiltonians which couple the bosonic field to quantum spin-half (or
two-level) systems via terms either linear or bilinear in the field mode. The method
is easy to generalise to other related models. Examples include models with more
that one type of boson or field mode and/or with couplings to spins of quantum
number s > 1/2 (or, equivalently, to n-level (atomic) systems with n > 2). Such
broad classes of models nowadays provide a unifying framework in which to describe
such important collective effects as superradiance in atomic asses and dissipation in
arrays of quantum dots. It is our hope that the approach outlined in the present
paper will be helpful for the analysis of such problems.

Finally, we note that while our approach does not appear to be immediately
extensible to describe the missing crossing points in the TPRH energy spectrum,
for example, it may still be possible that exact solutions can also be found at these
points. Although there is no a priori reason to expect that such solutions must exist,
we observe from the numerically generated results that the remaining level-crossings,
for the resonant case 2wy = w = 1, for example, appear very accurately to lie on
simple baselines given by

8 1
E=—7+NQ, N=23,..., (27)

where, as before, Q = /1 — 4)2. These baselines are so similar to the baselines for the
Juddian solutions found above in Eq. (26) as to strongly suggest that similar Juddian
solutions might also be obtainable at these remaining level-crossings. Further work
in this direction therefore seems well merited.
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