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EXACT RESULTS FOR SOMENON-INTEGRABLE MODELS OFINTERACTING SPINS AND BOSONSR. F. Bishop and C. EmaryDepartment of Physis, UMIST(University of Manhester Institute of Siene and Tehnology)P. O. Box 88, Manhester M60 1QD, UK
1. INTRODUCTIONThere exists a large number of models of ommon interest in the �elds of quan-tum optis, quantum eletronis, solid-state optoeletronis and allied areas that aregenerially of the form of a system of fermions or quantum spins interating withbosoni degrees of freedom suh as photons or phonons. Even though many simplemodels in this lass are non-integrable in general, the possibility does neverthelessexist of being able to �nd exat solutions at a set of isolated points, i.e., for ertainspei� values of the oupling parameters. Suh isolated points at whih exat so-lutions are available are nowadays denoted as Juddian points after Judd who �rstobtained them in the ase of the Jahn-Teller model [1℄.Previous work has obtained suh Juddian solutions for a limited lass of Hamil-tonians, typially by the use of power series and Neumann series in the bosoni �eld[2, 3℄. Suh approahes are generally not very intuitive, and the algebrai analysisinvolved is usually rather ompliated. These features also make the methods of so-lution diÆult to generalise to other model Hamiltonians. By ontrast, we desribehere the use of a muh simper, more intuitive and broader approah [4, 5℄. It is basedupon a simple (Bogoliubov) anonial transformation of the bosoni �eld variables,whih is itself quite intimately onneted with the underlying group-theoretial stru-ture of the models. We demonstrate its use by spei�ally onsidering two simple,non-integrable, non-adiabati Hamiltonians of the above-mentioned kind. A greatattration of our approah is that it is easy to generalise.The two important models in quantum optis to whih we apply our approahboth desribe the interation of light with matter, with the interation being mediatedby the exhange of either one or two photons. For the one-photon exhange ase,the model is the well-known Rabi Hamiltonian [6℄. Both models are generally non-



integrable for arbitrary oupling strengths, but beome exatly soluble when theommon rotating-wave approximation (RWA) is made. Thus, for example, under theRWA the Rabi Hamiltonian redues to the familiar Jaynes-Cummings model [7℄.In this ontribution we desribe in detail the energy spetra of both the non-integrable one- and two-photon models, and make a full omparison between eah ofthese spetra and their orresponding ounterparts when the RWA is made. We thenproeed to demonstrate the existene of a series of isolated, exat solutions for eahof the original models. 2. THE HAMILTONIANSWe onsider a single-mode �eld of frequeny !, desribed by the annihila-tion and reation operators, b and by, whih obey the usual Bose ommutationrelation, �b; by� = 1. The spin (or two-level system) is desribed by the Paulimatries satisfying the SU(2) ommutation relations, [�k; �l℄ = 2i"klm�m, wherek; l;m 2 f1 � x; 2 � y; 3 � zg and "klm is the anti-symmetri Levi-Civita symbol.We de�ne the raising and lowering operators as �� � �x � i�y and the energy-splitting of the two spin states is taken to be !0. We use the following Hamiltonianto desribe the two di�erent interations between the �eld and the spin whih weemploy here to exemplify our approah,Hk = 12!0�z + !byb+ g �byk + bk� (�+ + ��) ; k = 1; 2; (1)where g is the oupling strength of the atom to the �eld. With k = 1, the interationis of the dipole type and H1 beomes the Rabi Hamiltonian (RH). With k = 2 theinteration desribes two-photon proesses, and H2 is referred to as the two-photonRabi Hamiltonian (TPRH) [8℄. Both HamiltoniansHk are, in general, non-integrable.For the systems to be on-resonane we have the ondition !0 = k!. There is aonserved quantity assoiated with Hk, given by�k � exp �i�k �byb+ k2 (�z + 1)�� ; (2)suh that [�k; Hk℄ = 0. The existene of this operator splits the Hilbert spae ofHk into 2k sub-setors. Thus �1 has the eigenvalues �1 = �1, while �2 has theeigenvalues �2 = �1 and �2 = �i.Whereas H1 is valid for arbitrary values of g, H2 is physial, in the sense ofpossessing normalisable eigenfuntions, only if the ondition j4g! j < 1 is satis�ed.This is a onsequene of the intimate relation between H2 and the squeezed states,as will be demonstrated in Se. 3.Rotating-Wave Approximation In quantum optis, and indeed elsewhere, modelssuh as Hk are often treated in the rotating-wave approximation (RWA). Althoughuseful at low oupling, there are many problems assoiated with the RWA, and itsrange of validity is often muh less than is generally assumed [9, 10℄. In the RWA,



Hk beomes HRWAk = 12!0�z + !byb+ g �byk�� + bk�+� ; k = 1; 2: (3)For k = 1, this is just the well-known Jaynes-Cummings (JC) model, and k = 2orresponds to the two-photon Jaynes-Cummings (TPJC) model. Although we shallonly onsider k = 1; 2 here, it should be noted that HRWAk does exist for all k, inontrast with Hk from whih it is derived - a stark example of the e�et that makingthe RWA an have. The HamiltonianHRWAk is exatly soluble for arbitrary parametervalues, sine here the exitation number,N̂k � byb+ k2 (�z + 1) ; (4)is onserved, hN̂k; HRWAk i = 0. This divides the full Hilbert spae into k deoupledmanifolds plus a denumerably in�nite number of two-dimensional sub-spaes, in eahof whih the system an be simply diagonalised. The energy eigenvalues for the k = 1Jaynes-Cummings model are given byE(0)JC = �12!0;E(n;�)JC = �n� 12�! � 12q(!0 � !)2 + 16g2n; n � 1: (5)On saled resonane, ! = !0 = 1, the eigenvalues and eigenstates assume partiularlysimple forms:E(0)JC = �12 ; eigenstate j0; #i;E(n;�)JC = �n� 12�� 2gpn; n � 1; eigenstates 1p2 (jn; #i � jn� 1; "i) : (6)Similarly, the eigenenergies of the k = 2 two-photon Jaynes-Cummings model aregiven byE(0)TPJC = �12!0; E(1)TPJC = ! � 12!0;E(n;�)TPJC = (n� 1)!� 12q(!0 � 2!)2 + 16g2n (n� 1) n � 2: (7)Again, on saled resonane, 2! = !0 = 1, the eigenvalues and eigenstates beomeE(0)TPJC = �12 ; eigenstate j0; #iE(1)TPJC = 0; eigenstate j1; #i (8)
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Figure 1. Spetra of the Rabi Hamiltonian H1 and its RWA-ounterpart HRWA1 onsaled resonane ! = !0 = 1.E(n;�)TPJC = 12 (n� 1)� 2gnr1� 1n ; n � 2; eigenstates 1p2 (jn; #i � jn� 2; "i) :Spetra Whereas the spetra for the RWA Hamiltonians may be determined ana-lytially, we must use numerial tehniques to study the systems without the RWA.Numerial diagonalisation is adequate for this task and in Figs. (1) and (2) we plottypial spetra obtained in this way for both the one- and two- photon Hamiltoni-ans. These are to be ompared and ontrasted with the orresponding RWA spetraplotted alongside.Considering the k = 1 results we see that, whereas the RWA spetrum is hara-terised by the large number of level-rossings harateristi of integrable systems, thespetrum of the full Hamiltonian has a redued number of level-rossings and showsa series of marked avoided rossings, whih produe a \braid-like" struture withpairs of eigenvalues intertwining with eah other as the oupling is inreased. FromFig. 2. we observe a similar situation with respet to the formation of braids by levelrepulsion, but in addition we see that both the full and RWA spetra undergo a dra-mati hange at a ritial value of oupling. For the full Hamiltonian, the ollapse ofthe spetrum is beause the eigenfuntions beome un-normalisable above g = 0:125(on resonane). This feature was referred to earlier, and will be explained more fullybelow. On the other hand, in the RWA we see that for a oupling of g � 0:25 allthe E(n;�)TPJC eigenvalues onverge, with the result that at this point the ground-stateenergy abruptly hanges from having a value of � 12 to being unbounded from be-low. Whilst the eigenfuntions still remain normalisable throughout this hange, thissituation is learly nonphysial and the validity of the TPJC Hamiltonian is also re-strited, in this ase to the range j2g! j < 1. So although the ranges of validity of bothH2 and HRWA2 are onstrained, the reason is ompletely di�erent in the two ases.3. ISOLATED EXACT SOLUTIONSWe now demonstrate the existene of isolated exat solutions for the Hamilto-nians Hk, k = 1; 2. These will be seen to our at the level rossings in the spetra.
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Figure 2. Spetra of the two-photon Rabi HamiltonianH2 and its RWA-ounterpartHRWA2 on saled resonane 2! = !0 = 1.We begin by resaling the Hamiltonians as Hk = ! ~Hk, where~Hk = ~!�z + byb+ ��byk + bk��x; k = 1; 2; (9)and where ~! � !02! and � � 2g! . Note that for k = 2, H2 remains physial providedthat j�j < 1=2. We begin by expressing the Pauli matries in a representation inwhih �x is diagonal. We hoose �x = � 1 00 �1�, �y = � 0 i�i 0�, and �z = �0 11 0�. In termsof the two-omponent wavefuntion, j	i = �j	1ij	2i�, the time-independent Shr�odingerequation for the system, ~Hkj	i = ~Ej	i, then reads~!j	2i+ �byb+ ��byk + bk�� ~E� j	1i = 0;~!j	1i+ �byb� ��byk + bk�� ~E� j	2i = 0: (10)We next perform a Bogoliubov transformation of the �eld mode from the opera-tors b and by to a desription in terms of new bosoni operators, a and ay, whih obeythe same ommutation relation as before, namely �a; ay� = 1 [11℄. The most generallinear Bogoliubov transformation may be viewed as a rotation plus translation of theoriginal osillator Hilbert spae to the new osillator spae,a = e�i� �1� j�j2��1=2 �b� �by � z� ;ay = ei� �1� j�j2��1=2 �by � ��b� z�� ; (11)where � and z are omplex numbers desribing the amplitudes of the rotation andtranslation respetively. The parameter � is a simple, and usually rather unimpor-tant, phase fator. From the outset it is important to note the restrition j�j < 1 inorder to preserve the unitarity of the transformation.If we set � = � = 0, the resulting transformation is of the type that maybe used to diagonalise the Hamiltonian of the displaed harmoni osillator, theeigenstates of whih are know to be the (Glauber) oherent states. With z = 0, the



Bogoliubov transformation beomes that used in diagonalising the squeezed harmoniosillator, the eigenstates of whih are the squeezed states. The onstraint j�j < 1then orresponds to the requirement that the oeÆients of both x2 and p2x in thesqueezed osillator are positive. It is simple to see how this ondition is translatedinto the urrent two-photon model. If one onsiders Eq. (10) for k = 2 with ~! = 0,one obtains the Shr�odinger equations for two deoupled squeezed osillators, andthe ondition on the squeezing parameter � translates to a onstraint of the ouplingj�j < 1=2.In the following we shall use both of these two spei� forms, the displaementand the squeezing transformations, to �nd isolated, exat solutions for the one- andtwo- photon RH respetively.One Photon For the RH, k = 1, we set � = � = 0 in Eq. (11), giving us theBogoliubov transformation of oherent states,by = ay + �; b = a+ �: (12)The vauum state of the a-type bosons, aj0; �i = 0, in the original b representationis the oherent state j�i, bj�i = �j�i, with amplitude given by the saled oupling �.With this transformation Eqs. (10) beome~!j	2i+ naya+ 2� �ay + a�+ 3�2 � ~Eo j	1i = 0;~!j	1i+ naya� �2 � ~Eo j	2i = 0; (13)where the kets j	1;2i are now in the transformed representation. For these kets wehoose the Ans�atzej	1i = N�1Xn=0 pnjn;�i = N�1Xn=0 pn �ay�npn! j0;�i = PN�1 �ay� j0;�i; (14)j	2i = NXn=0 qnjn;�i = NXn=0 qn �ay�npn! j0;�i = QN �ay� j0;�i; (15)where jn;�i are number states of the displaed bosons, ayajn;�i = njn;�i, and wehave introdued the polynomials PN�1 and QN of order N � 1 and N respetively.Making these substitutions we have~! NXn=0 qnjn;�i+ N�1Xn=0 pn �n+ 3�2 � ~E� jn;�i+2�N�1Xn=0 pnpn+ 1jn+ 1;�i+ 2�N�1Xn=1 pnpnjn� 1;�i = 0;~! N�1Xn=0 pnjn;�i+ NXn=0 qn �n� �2 � ~E� jn;�i = 0: (16)



Considering the highest number state, jN ;�i, in the seond of these equations, wesee that for this equation to hold we require�N � �2 � ~E� qN = 0: (17)Sine qN 6= 0 by Ansatz, we obtain a determination of the energy~E = N � �2: (18)This equation identi�es the Juddian baseline energies, along whih the Juddian solu-tions lie. Comparing the oeÆients of the remaining number states gives us 2N + 1linear equations for the 2N+1 oeÆients (pm; 0 � m � N�1) and (qk; 0 � k � N).To obtain non-trivial solutions, we learly require the determinant of this equationset to be zero. This gives the ompatibility ondition, providing the loations of theJuddian points. The �rst two onditions (N = 1; 2) have the expliit forms~!2 + 4�2 = 1; N = 1; (19)~!4 + �12�2 � 5� ~!2 + 32�4 � 32�2 + 4 = 0; N = 2: (20)Thus, for a given N , we have a polynomial of Nth order in �2 and ~!2. Note thatthere is always an additional solution with ~! = 0 to the ompatibility ondition, sinethis value deouples the equations (16). Eah of these has N roots for �2 in terms of~!2, whih all turn out to be real, thus giving the loation of N Juddian solutions.These solutions may also be found independently by using the displaed bosonsby = ay � �; b = a� �: (21)and interhanging the roles of j	1i and j	2i. This demonstrates the degeneray ofthe spetra at these Juddian points, and shows that they our at the level rossingsin the spetra.Two Photon For the TPRH ase we shall utilise squeezed bosons to �nd isolatedexat solutions. We set z = � = 0 in Eq. (11), obtainingb = �1� �2��1=2 �+ �y� ; by = �1� �2��1=2 ��+ y� ; (22)where  and y are the squeezed bosoni operators. We now hoose � to be real andgiven by � = 
� 12� ; 
 �p1� 4�2: (23)Making this Bogoliubov transformation in Eq. (10) with H2, we obtain~!j	2i+ �
y� � ~E + 12 � 
2 �� j	1i = 0;~!j	1i+ 1
 n�p1� 
2 �y2 + 2�+ �2� 
2� y
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Figure 3. The �rst ten Juddian points of the Rabi Hamiltonian (diamonds). Alsoplotted are the energy levels obtained by numerial diagonalisation (dark lines), andthe Juddian base-lines (light lines). The Hamiltonian is resonant; ! = !0 = 1.+12 (1� 
) (2 + 
)� 
 ~E� j	2i = 0: (24)In a fashion similar to the k = 1 ase, we now hoose simple Ans�atze for j	1i andj	2i in terms of the squeezed number states;j	1i = NXn=0 pnjn;�i; j	2i = N�2Xm=0 qmjm;�i: (25)We then proeed in diret analogy to the one-photon ase, This determines the energybaselines, along whih the solutions lie, to be~E = �12 + �N + 12�
: (26)We also obtain the ompatibility onditions whih provide the loations of the solu-tions in �{~! spae, whih we shall not reprodue here. As in the k = 1 ase, furthersolutions degenerate in energy with those above may be found by using a squeezedrepresentation with parameter �� rather than �.4. RESULTSIn Figs. 3 and 4 we plot the loation of the lowest Juddian points for eahof the two Hamiltonians, plotted against their respetive energy shema and energybaselines.The Juddian points our at the level rossings in the spetra. Thus we see thatthey our when two solutions of di�erent values �k beome degenerate in energy,and it is this degeneray that is the key to the existene of the Juddian solutions. Thedisplaed and squeezed number states used in onstruting the Ans�atze above are not
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states, the other omposed only of even number states. Consequently, no superposi-tion of these states will lead to a redution in the omplexity of either wavefuntionand we have been unable to �nd simple Ans�atze at these level-rossings.5. CONCLUSIONSWe have demonstrated the utility of a rather general method employing Bogoli-ubov transformations of the bosoni mode to �nd some exat solutions of some typialnon-integrable Hamiltonians whih ouple the bosoni �eld to quantum spin-half (ortwo-level) systems via terms either linear or bilinear in the �eld mode. The methodis easy to generalise to other related models. Examples inlude models with morethat one type of boson or �eld mode and/or with ouplings to spins of quantumnumber s > 1=2 (or, equivalently, to n-level (atomi) systems with n > 2). Suhbroad lasses of models nowadays provide a unifying framework in whih to desribesuh important olletive e�ets as superradiane in atomi asses and dissipation inarrays of quantum dots. It is our hope that the approah outlined in the presentpaper will be helpful for the analysis of suh problems.Finally, we note that while our approah does not appear to be immediatelyextensible to desribe the missing rossing points in the TPRH energy spetrum,for example, it may still be possible that exat solutions an also be found at thesepoints. Although there is no a priori reason to expet that suh solutions must exist,we observe from the numerially generated results that the remaining level-rossings,for the resonant ase 2!0 = ! = 1, for example, appear very aurately to lie onsimple baselines given by~E = �12 +N
; N = 2; 3; : : : ; (27)where, as before, 
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