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EXACT RESULTS FOR SOMENON-INTEGRABLE MODELS OFINTERACTING SPINS AND BOSONSR. F. Bishop and C. EmaryDepartment of Physi
s, UMIST(University of Man
hester Institute of S
ien
e and Te
hnology)P. O. Box 88, Man
hester M60 1QD, UK
1. INTRODUCTIONThere exists a large number of models of 
ommon interest in the �elds of quan-tum opti
s, quantum ele
troni
s, solid-state optoele
troni
s and allied areas that aregeneri
ally of the form of a system of fermions or quantum spins intera
ting withbosoni
 degrees of freedom su
h as photons or phonons. Even though many simplemodels in this 
lass are non-integrable in general, the possibility does neverthelessexist of being able to �nd exa
t solutions at a set of isolated points, i.e., for 
ertainspe
i�
 values of the 
oupling parameters. Su
h isolated points at whi
h exa
t so-lutions are available are nowadays denoted as Juddian points after Judd who �rstobtained them in the 
ase of the Jahn-Teller model [1℄.Previous work has obtained su
h Juddian solutions for a limited 
lass of Hamil-tonians, typi
ally by the use of power series and Neumann series in the bosoni
 �eld[2, 3℄. Su
h approa
hes are generally not very intuitive, and the algebrai
 analysisinvolved is usually rather 
ompli
ated. These features also make the methods of so-lution diÆ
ult to generalise to other model Hamiltonians. By 
ontrast, we des
ribehere the use of a mu
h simper, more intuitive and broader approa
h [4, 5℄. It is basedupon a simple (Bogoliubov) 
anoni
al transformation of the bosoni
 �eld variables,whi
h is itself quite intimately 
onne
ted with the underlying group-theoreti
al stru
-ture of the models. We demonstrate its use by spe
i�
ally 
onsidering two simple,non-integrable, non-adiabati
 Hamiltonians of the above-mentioned kind. A greatattra
tion of our approa
h is that it is easy to generalise.The two important models in quantum opti
s to whi
h we apply our approa
hboth des
ribe the intera
tion of light with matter, with the intera
tion being mediatedby the ex
hange of either one or two photons. For the one-photon ex
hange 
ase,the model is the well-known Rabi Hamiltonian [6℄. Both models are generally non-



integrable for arbitrary 
oupling strengths, but be
ome exa
tly soluble when the
ommon rotating-wave approximation (RWA) is made. Thus, for example, under theRWA the Rabi Hamiltonian redu
es to the familiar Jaynes-Cummings model [7℄.In this 
ontribution we des
ribe in detail the energy spe
tra of both the non-integrable one- and two-photon models, and make a full 
omparison between ea
h ofthese spe
tra and their 
orresponding 
ounterparts when the RWA is made. We thenpro
eed to demonstrate the existen
e of a series of isolated, exa
t solutions for ea
hof the original models. 2. THE HAMILTONIANSWe 
onsider a single-mode �eld of frequen
y !, des
ribed by the annihila-tion and 
reation operators, b and by, whi
h obey the usual Bose 
ommutationrelation, �b; by� = 1. The spin (or two-level system) is des
ribed by the Paulimatri
es satisfying the SU(2) 
ommutation relations, [�k; �l℄ = 2i"klm�m, wherek; l;m 2 f1 � x; 2 � y; 3 � zg and "klm is the anti-symmetri
 Levi-Civita symbol.We de�ne the raising and lowering operators as �� � �x � i�y and the energy-splitting of the two spin states is taken to be !0. We use the following Hamiltonianto des
ribe the two di�erent intera
tions between the �eld and the spin whi
h weemploy here to exemplify our approa
h,Hk = 12!0�z + !byb+ g �byk + bk� (�+ + ��) ; k = 1; 2; (1)where g is the 
oupling strength of the atom to the �eld. With k = 1, the intera
tionis of the dipole type and H1 be
omes the Rabi Hamiltonian (RH). With k = 2 theintera
tion des
ribes two-photon pro
esses, and H2 is referred to as the two-photonRabi Hamiltonian (TPRH) [8℄. Both HamiltoniansHk are, in general, non-integrable.For the systems to be on-resonan
e we have the 
ondition !0 = k!. There is a
onserved quantity asso
iated with Hk, given by�k � exp �i�k �byb+ k2 (�z + 1)�� ; (2)su
h that [�k; Hk℄ = 0. The existen
e of this operator splits the Hilbert spa
e ofHk into 2k sub-se
tors. Thus �1 has the eigenvalues �1 = �1, while �2 has theeigenvalues �2 = �1 and �2 = �i.Whereas H1 is valid for arbitrary values of g, H2 is physi
al, in the sense ofpossessing normalisable eigenfun
tions, only if the 
ondition j4g! j < 1 is satis�ed.This is a 
onsequen
e of the intimate relation between H2 and the squeezed states,as will be demonstrated in Se
. 3.Rotating-Wave Approximation In quantum opti
s, and indeed elsewhere, modelssu
h as Hk are often treated in the rotating-wave approximation (RWA). Althoughuseful at low 
oupling, there are many problems asso
iated with the RWA, and itsrange of validity is often mu
h less than is generally assumed [9, 10℄. In the RWA,



Hk be
omes HRWAk = 12!0�z + !byb+ g �byk�� + bk�+� ; k = 1; 2: (3)For k = 1, this is just the well-known Jaynes-Cummings (JC) model, and k = 2
orresponds to the two-photon Jaynes-Cummings (TPJC) model. Although we shallonly 
onsider k = 1; 2 here, it should be noted that HRWAk does exist for all k, in
ontrast with Hk from whi
h it is derived - a stark example of the e�e
t that makingthe RWA 
an have. The HamiltonianHRWAk is exa
tly soluble for arbitrary parametervalues, sin
e here the ex
itation number,N̂k � byb+ k2 (�z + 1) ; (4)is 
onserved, hN̂k; HRWAk i = 0. This divides the full Hilbert spa
e into k de
oupledmanifolds plus a denumerably in�nite number of two-dimensional sub-spa
es, in ea
hof whi
h the system 
an be simply diagonalised. The energy eigenvalues for the k = 1Jaynes-Cummings model are given byE(0)JC = �12!0;E(n;�)JC = �n� 12�! � 12q(!0 � !)2 + 16g2n; n � 1: (5)On s
aled resonan
e, ! = !0 = 1, the eigenvalues and eigenstates assume parti
ularlysimple forms:E(0)JC = �12 ; eigenstate j0; #i;E(n;�)JC = �n� 12�� 2gpn; n � 1; eigenstates 1p2 (jn; #i � jn� 1; "i) : (6)Similarly, the eigenenergies of the k = 2 two-photon Jaynes-Cummings model aregiven byE(0)TPJC = �12!0; E(1)TPJC = ! � 12!0;E(n;�)TPJC = (n� 1)!� 12q(!0 � 2!)2 + 16g2n (n� 1) n � 2: (7)Again, on s
aled resonan
e, 2! = !0 = 1, the eigenvalues and eigenstates be
omeE(0)TPJC = �12 ; eigenstate j0; #iE(1)TPJC = 0; eigenstate j1; #i (8)
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Figure 1. Spe
tra of the Rabi Hamiltonian H1 and its RWA-
ounterpart HRWA1 ons
aled resonan
e ! = !0 = 1.E(n;�)TPJC = 12 (n� 1)� 2gnr1� 1n ; n � 2; eigenstates 1p2 (jn; #i � jn� 2; "i) :Spe
tra Whereas the spe
tra for the RWA Hamiltonians may be determined ana-lyti
ally, we must use numeri
al te
hniques to study the systems without the RWA.Numeri
al diagonalisation is adequate for this task and in Figs. (1) and (2) we plottypi
al spe
tra obtained in this way for both the one- and two- photon Hamiltoni-ans. These are to be 
ompared and 
ontrasted with the 
orresponding RWA spe
traplotted alongside.Considering the k = 1 results we see that, whereas the RWA spe
trum is 
hara
-terised by the large number of level-
rossings 
hara
teristi
 of integrable systems, thespe
trum of the full Hamiltonian has a redu
ed number of level-
rossings and showsa series of marked avoided 
rossings, whi
h produ
e a \braid-like" stru
ture withpairs of eigenvalues intertwining with ea
h other as the 
oupling is in
reased. FromFig. 2. we observe a similar situation with respe
t to the formation of braids by levelrepulsion, but in addition we see that both the full and RWA spe
tra undergo a dra-mati
 
hange at a 
riti
al value of 
oupling. For the full Hamiltonian, the 
ollapse ofthe spe
trum is be
ause the eigenfun
tions be
ome un-normalisable above g = 0:125(on resonan
e). This feature was referred to earlier, and will be explained more fullybelow. On the other hand, in the RWA we see that for a 
oupling of g � 0:25 allthe E(n;�)TPJC eigenvalues 
onverge, with the result that at this point the ground-stateenergy abruptly 
hanges from having a value of � 12 to being unbounded from be-low. Whilst the eigenfun
tions still remain normalisable throughout this 
hange, thissituation is 
learly nonphysi
al and the validity of the TPJC Hamiltonian is also re-stri
ted, in this 
ase to the range j2g! j < 1. So although the ranges of validity of bothH2 and HRWA2 are 
onstrained, the reason is 
ompletely di�erent in the two 
ases.3. ISOLATED EXACT SOLUTIONSWe now demonstrate the existen
e of isolated exa
t solutions for the Hamilto-nians Hk, k = 1; 2. These will be seen to o

ur at the level 
rossings in the spe
tra.



0 0.025 0.05 0.075 0.1 0.125

g

-1

0

1

2

3

4

5

E

0 0.1 0.2 0.3 0.4 0.5
g

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E

Figure 2. Spe
tra of the two-photon Rabi HamiltonianH2 and its RWA-
ounterpartHRWA2 on s
aled resonan
e 2! = !0 = 1.We begin by res
aling the Hamiltonians as Hk = ! ~Hk, where~Hk = ~!�z + byb+ ��byk + bk��x; k = 1; 2; (9)and where ~! � !02! and � � 2g! . Note that for k = 2, H2 remains physi
al providedthat j�j < 1=2. We begin by expressing the Pauli matri
es in a representation inwhi
h �x is diagonal. We 
hoose �x = � 1 00 �1�, �y = � 0 i�i 0�, and �z = �0 11 0�. In termsof the two-
omponent wavefun
tion, j	i = �j	1ij	2i�, the time-independent S
hr�odingerequation for the system, ~Hkj	i = ~Ej	i, then reads~!j	2i+ �byb+ ��byk + bk�� ~E� j	1i = 0;~!j	1i+ �byb� ��byk + bk�� ~E� j	2i = 0: (10)We next perform a Bogoliubov transformation of the �eld mode from the opera-tors b and by to a des
ription in terms of new bosoni
 operators, a and ay, whi
h obeythe same 
ommutation relation as before, namely �a; ay� = 1 [11℄. The most generallinear Bogoliubov transformation may be viewed as a rotation plus translation of theoriginal os
illator Hilbert spa
e to the new os
illator spa
e,a = e�i� �1� j�j2��1=2 �b� �by � z� ;ay = ei� �1� j�j2��1=2 �by � ��b� z�� ; (11)where � and z are 
omplex numbers des
ribing the amplitudes of the rotation andtranslation respe
tively. The parameter � is a simple, and usually rather unimpor-tant, phase fa
tor. From the outset it is important to note the restri
tion j�j < 1 inorder to preserve the unitarity of the transformation.If we set � = � = 0, the resulting transformation is of the type that maybe used to diagonalise the Hamiltonian of the displa
ed harmoni
 os
illator, theeigenstates of whi
h are know to be the (Glauber) 
oherent states. With z = 0, the



Bogoliubov transformation be
omes that used in diagonalising the squeezed harmoni
os
illator, the eigenstates of whi
h are the squeezed states. The 
onstraint j�j < 1then 
orresponds to the requirement that the 
oeÆ
ients of both x2 and p2x in thesqueezed os
illator are positive. It is simple to see how this 
ondition is translatedinto the 
urrent two-photon model. If one 
onsiders Eq. (10) for k = 2 with ~! = 0,one obtains the S
hr�odinger equations for two de
oupled squeezed os
illators, andthe 
ondition on the squeezing parameter � translates to a 
onstraint of the 
ouplingj�j < 1=2.In the following we shall use both of these two spe
i�
 forms, the displa
ementand the squeezing transformations, to �nd isolated, exa
t solutions for the one- andtwo- photon RH respe
tively.One Photon For the RH, k = 1, we set � = � = 0 in Eq. (11), giving us theBogoliubov transformation of 
oherent states,by = ay + �; b = a+ �: (12)The va
uum state of the a-type bosons, aj0; �i = 0, in the original b representationis the 
oherent state j�i, bj�i = �j�i, with amplitude given by the s
aled 
oupling �.With this transformation Eqs. (10) be
ome~!j	2i+ naya+ 2� �ay + a�+ 3�2 � ~Eo j	1i = 0;~!j	1i+ naya� �2 � ~Eo j	2i = 0; (13)where the kets j	1;2i are now in the transformed representation. For these kets we
hoose the Ans�atzej	1i = N�1Xn=0 pnjn;�i = N�1Xn=0 pn �ay�npn! j0;�i = PN�1 �ay� j0;�i; (14)j	2i = NXn=0 qnjn;�i = NXn=0 qn �ay�npn! j0;�i = QN �ay� j0;�i; (15)where jn;�i are number states of the displa
ed bosons, ayajn;�i = njn;�i, and wehave introdu
ed the polynomials PN�1 and QN of order N � 1 and N respe
tively.Making these substitutions we have~! NXn=0 qnjn;�i+ N�1Xn=0 pn �n+ 3�2 � ~E� jn;�i+2�N�1Xn=0 pnpn+ 1jn+ 1;�i+ 2�N�1Xn=1 pnpnjn� 1;�i = 0;~! N�1Xn=0 pnjn;�i+ NXn=0 qn �n� �2 � ~E� jn;�i = 0: (16)



Considering the highest number state, jN ;�i, in the se
ond of these equations, wesee that for this equation to hold we require�N � �2 � ~E� qN = 0: (17)Sin
e qN 6= 0 by Ansatz, we obtain a determination of the energy~E = N � �2: (18)This equation identi�es the Juddian baseline energies, along whi
h the Juddian solu-tions lie. Comparing the 
oeÆ
ients of the remaining number states gives us 2N + 1linear equations for the 2N+1 
oeÆ
ients (pm; 0 � m � N�1) and (qk; 0 � k � N).To obtain non-trivial solutions, we 
learly require the determinant of this equationset to be zero. This gives the 
ompatibility 
ondition, providing the lo
ations of theJuddian points. The �rst two 
onditions (N = 1; 2) have the expli
it forms~!2 + 4�2 = 1; N = 1; (19)~!4 + �12�2 � 5� ~!2 + 32�4 � 32�2 + 4 = 0; N = 2: (20)Thus, for a given N , we have a polynomial of Nth order in �2 and ~!2. Note thatthere is always an additional solution with ~! = 0 to the 
ompatibility 
ondition, sin
ethis value de
ouples the equations (16). Ea
h of these has N roots for �2 in terms of~!2, whi
h all turn out to be real, thus giving the lo
ation of N Juddian solutions.These solutions may also be found independently by using the displa
ed bosonsby = ay � �; b = a� �: (21)and inter
hanging the roles of j	1i and j	2i. This demonstrates the degenera
y ofthe spe
tra at these Juddian points, and shows that they o

ur at the level 
rossingsin the spe
tra.Two Photon For the TPRH 
ase we shall utilise squeezed bosons to �nd isolatedexa
t solutions. We set z = � = 0 in Eq. (11), obtainingb = �1� �2��1=2 �
+ �
y� ; by = �1� �2��1=2 ��
+ 
y� ; (22)where 
 and 
y are the squeezed bosoni
 operators. We now 
hoose � to be real andgiven by � = 
� 12� ; 
 �p1� 4�2: (23)Making this Bogoliubov transformation in Eq. (10) with H2, we obtain~!j	2i+ �

y
� � ~E + 12 � 
2 �� j	1i = 0;~!j	1i+ 1
 n�p1� 
2 �
y2 + 
2�+ �2� 
2� 
y
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Figure 3. The �rst ten Juddian points of the Rabi Hamiltonian (diamonds). Alsoplotted are the energy levels obtained by numeri
al diagonalisation (dark lines), andthe Juddian base-lines (light lines). The Hamiltonian is resonant; ! = !0 = 1.+12 (1� 
) (2 + 
)� 
 ~E� j	2i = 0: (24)In a fashion similar to the k = 1 
ase, we now 
hoose simple Ans�atze for j	1i andj	2i in terms of the squeezed number states;j	1i = NXn=0 pnjn;�i; j	2i = N�2Xm=0 qmjm;�i: (25)We then pro
eed in dire
t analogy to the one-photon 
ase, This determines the energybaselines, along whi
h the solutions lie, to be~E = �12 + �N + 12�
: (26)We also obtain the 
ompatibility 
onditions whi
h provide the lo
ations of the solu-tions in �{~! spa
e, whi
h we shall not reprodu
e here. As in the k = 1 
ase, furthersolutions degenerate in energy with those above may be found by using a squeezedrepresentation with parameter �� rather than �.4. RESULTSIn Figs. 3 and 4 we plot the lo
ation of the lowest Juddian points for ea
hof the two Hamiltonians, plotted against their respe
tive energy s
hema and energybaselines.The Juddian points o

ur at the level 
rossings in the spe
tra. Thus we see thatthey o

ur when two solutions of di�erent values �k be
ome degenerate in energy,and it is this degenera
y that is the key to the existen
e of the Juddian solutions. Thedispla
ed and squeezed number states used in 
onstru
ting the Ans�atze above are not
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Figure 4. The �rst twelve Juddian points (diamonds) of the two-photon Rabi Hamil-tonian determined by the method outlined in the text, plotted against the energyspe
trum determined numeri
ally (solid lines). Also plotted are the energy baselines(dotted lines). Ea
h point is labeled with its order N . The Hamiltonian is resonant;2! = !0 = 1.states of de�nite �k, and it is pre
isely be
ause we 
an 
onstru
t wavefun
tions ofmixed �k that allows us to �nd su
h simple Ans�atze at the Juddian points.In the one-photon 
ase, the solutions found by the above method 
over ea
hand every level-
rossing in the spe
trum. For the TPRH, however, only a 
ertainsubset of 
rossings are des
ribed by the above method. Considering the quantumnumbers �2 of the two interse
ting lines at ea
h 
rossing, we see that the above typeof solution 
an only des
ribe the 
rossings of states having �2 = +1 with ones having�2 = �1, and of 
rossings of states having �2 = +i with ones having �2 = �i. Theremaining four types of possible 
rossings are not des
ribed. This series of 
rossings
an be understood by 
onsidering the operator �22 = exp �i�byb�, whi
h obviously
ommutes with the Hamiltonian. From 
onsidering the eigenvalues of this operatorwe see that the Juddian solutions we have des
ribed o

ur between levels whi
h havethe same value of �22. Thus although the Ans�atze of the Juddian solutions above arenot eigenstates of �2, they are eigenstates of the square of this operator.The reason why the above Ans�atze 
an des
ribe these solutions and not theothers is as follows. The solutions that we have been able to �nd o

ur at 
ross-ings between energy eigenfun
tions that are both 
omposed of either all even orall odd number states. At the Juddian points these two eigenstates be
ome degen-erate in energy and thus, to �nd the energy at the level-
rossing, we may forma linear superposition of the two eigenstates, whi
h will, in general, not be aneigenstate of �22. Be
ause the degenerate energy eigenstates are both \odd" orboth \even", the formation of the superposition allows the individual terms in onewavefun
tion to add to the terms in the other. If we form the superposition 
or-re
tly, the resultant wavefun
tion may have a form mu
h simpler than the 
on-stituent wavefun
tions, whi
h is exa
tly the 
ase in the Ansatz 
hosen above.The solutions that we have been unable to �nd with the above method o

ur atthe level-
rossings between eigenstates one of whi
h is 
omposed of only odd number



states, the other 
omposed only of even number states. Consequently, no superposi-tion of these states will lead to a redu
tion in the 
omplexity of either wavefun
tionand we have been unable to �nd simple Ans�atze at these level-
rossings.5. CONCLUSIONSWe have demonstrated the utility of a rather general method employing Bogoli-ubov transformations of the bosoni
 mode to �nd some exa
t solutions of some typi
alnon-integrable Hamiltonians whi
h 
ouple the bosoni
 �eld to quantum spin-half (ortwo-level) systems via terms either linear or bilinear in the �eld mode. The methodis easy to generalise to other related models. Examples in
lude models with morethat one type of boson or �eld mode and/or with 
ouplings to spins of quantumnumber s > 1=2 (or, equivalently, to n-level (atomi
) systems with n > 2). Su
hbroad 
lasses of models nowadays provide a unifying framework in whi
h to des
ribesu
h important 
olle
tive e�e
ts as superradian
e in atomi
 asses and dissipation inarrays of quantum dots. It is our hope that the approa
h outlined in the presentpaper will be helpful for the analysis of su
h problems.Finally, we note that while our approa
h does not appear to be immediatelyextensible to des
ribe the missing 
rossing points in the TPRH energy spe
trum,for example, it may still be possible that exa
t solutions 
an also be found at thesepoints. Although there is no a priori reason to expe
t that su
h solutions must exist,we observe from the numeri
ally generated results that the remaining level-
rossings,for the resonant 
ase 2!0 = ! = 1, for example, appear very a

urately to lie onsimple baselines given by~E = �12 +N
; N = 2; 3; : : : ; (27)where, as before, 
 = p1� 4�2. These baselines are so similar to the baselines for theJuddian solutions found above in Eq. (26) as to strongly suggest that similar Juddiansolutions might also be obtainable at these remaining level-
rossings. Further workin this dire
tion therefore seems well merited.ACKNOWLEDGMENTSC.E. a
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