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A central part of relational ties between social actors is constituted by shared affiliations and events. The
action of joint participation reinforces personal ties between social actors as well as mutually shared
values and norms that in turn perpetuate the patterns of social action that define groups. Therefore the
study of bipartite networks is central to social science. Furthermore, the dynamics of these processes
suggests that bipartite networks should not be considered static structures but rather be studied over
time. In order to model the evolution of bipartite networks empirically we introduce a class of models
and a Bayesian inference scheme that extends previous stochastic actor-oriented models for unimodal

graphs. Contemporary research on interlocking directorates provides an area of research in which it seems
reasonable to apply the model. Specifically, we address the question of how tie formation, i.e. director
recruitment, contributes to the structural properties of the interlocking directorate network. For boards
of directors on the Stockholm stock exchange we propose that a prolific mechanism in tie formation is

esults
that of peer referral. The r
between boards.

. Introduction

A bipartite network defines a graph on a node set that repre-
ents two distinct types of social entities and where there may
e relational ties only between nodes that are of different types.
he social entities may be individuals and social clubs, authors and
ournal articles, directors and corporate boards, etc. Since bipartite
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

etworks make the conceptual link between social actors and social
roups explicit, the study of bipartite networks is of great theoreti-
al importance for understanding the duality of persons and groups
Breiger, 1974; Doreian, 1979; Feld, 1981; Freeman and White,
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indicate that such a mechanism is present, generating multiple interlocks

© 2010 Elsevier B.V. All rights reserved.

1993; Pattison and Robins, 2002). The nodes and ties in bipartite
networks may be researchers citing papers (e.g., Small, 1973); peo-
ple participating in social events (Breiger, 1974); partners in crime
(Frank and Carrington, 2007); or directors on corporate boards
(Mizruchi, 1996). This paper is focused on the last case, directors
and boards. A so-called interlocking directorate is a bipartite board-
to-director network consisting of vertices representing corporate
boards and directors. A tie exists between board i and director j if j
is a member of board i.

Most previous research on bipartite networks has focused on
one of the two unimodal networks where two nodes of one type
are considered tied if they share at least one alter of the other
type. The obvious benefit is that methods developed for the anal-
ysis of unimodal networks applies. But as pointed out by Robins
and Alexander (2004), the duality in defining for example the indi-
viduals by their affiliations with certain events or in defining the
events by their ties to individuals, makes it hard to give priority
to one type of node over another (Breiger, 1974; Galaskiewicz et
al., 1985; Breiger and Pattison, 1986). Transforming a bipartite net-
work to a unimodal network always means a loss of information
(Borgatti and Everett, 1997). In particular, the strength of a tie is
tion of a bipartite network—Peer referral in interlocking directorates.

lost if we ignore the number of nodes of one type that two nodes of
another type share. It can also be shown that a completely random
bipartite network may give rise to quite interesting but altogether
spurious structural features in the unimodal representations (see
also Newman et al., 2001).

dx.doi.org/10.1016/j.socnet.2010.03.001
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
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Because of the inherent dynamic nature of social networks, a
ide variety of statistical models have been proposed for study-

ng network evolution over time. While several methods assume
hat changes are made in discrete steps from one moment to the
ext (Katz and Proctor, 1959; Wasserman and Iacobucci, 1988;
anil et al., 1995; Robins and Pattison, 2001), considerable advan-
ages may be had from modelling longitudinal social networks in
ontinuous-time (cf Snijders, 1996, 2001). The early models for
ongitudinal social networks using continuous-time Markov chains
Holland and Leinhardt, 1977a,b; Wasserman, 1980a,b; Leenders,
995) built on the assumption that the dyads evolved indepen-
ently of each other, something which excludes the exploration
f dependencies on larger structures than the dyad. In response
o this Snijders proposed a flexible and empirically testable class
f stochastic actor-oriented (or actor-based) models that draw on
he assumption that actors strive towards organising their social
ies in a utility maximizing manner (Snijders and van Duijn, 1997;
nijders, 2001, 2005, 2006).

However, so far the evolutionary network models have not
een adapted to the study of the evolution of bipartite networks,
lthough there are some longitudinal studies of the evolution
f interlocking directorates. Galaskiewicz and Wasserman (1981)
t a discrete-time model to the unimodal corporate network

mplied by interlocks in a small bipartite network. Like previ-
usly proposed models it also assumed dyad-independence. In
heir study they focused primarily on the corporations and they
istinguished between different industries and used a qualified ver-
ion of board membership that gives directed interlocks. Mizruchi
nd Stearns (1988) model the appointment of financial directors
n non-financial boards for a small selection of boards. Study-
ng the dichotomous event “hiring” or analysing the evolution
f the induced unimodal network, prevents investigation of the
trength of interlocks. Similarly, in these two models changes are
argely explained through corporate specific covariates (size, sol-
ency, profitability, etc.) rather than in terms of structural aspects
f the bipartite (and unimodal) network(s), i.e. endogenous self-
rganising principles.

Here we propose a model for studying the evolution of bipartite
etworks that draws on Snijders’ work on stochastic actor-oriented
etworks. We analyse data on corporate boards for all firms traded
n the Stockholm Stock Exchange’s primary list between 1996 and
005 (Edling and Sandell, 2001; Bohman, 2006). In our applica-
ion, we focus on the processes of appointment to and departure of
irectors from boards based on a theory of action in the context of

nterlocking directorates. Central to this concept is the occurrence
f multiple interlocks, which we elaborate on in Section 3.

We proceed by describing the statistical model. This is first done
sing a general model formulation with an inference strategy for
he evolution of bipartite graphs that follows the model proposed
n Koskinen and Edling (2004) that is in turn an extension of the
tochastic actor-oriented models for directed unimodal graphs of
nijders (2001). We then discuss peer referral in interlocking direc-
orates, in Section 3, before detailing the modifications needed for
nalysing interlocking directors in Section 4. We then fit models
ith structural features and with additional controls for director

ttributes in Section 5. To test the goodness of fit for the model,
n Section 6 we compare forecasts from the model with observed
ata. We finish the paper with some concluding remarks.

. Model formulation and estimation
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

We consider a bipartite graph on a fixed vertex set V that is the
nion of two disjoint subsets A and B, m = |A|, n = |B|. We denote by
the subset of pairs of vertices that constitute the set of possible

elational ties between vertices. In the case of a bipartite graph N =
 PRESS
works xxx (2010) xxx–xxx

A × B, there can only be ties between vertices from different classes.
The aim is to model the evolution through time of the random set
of edges E ⊆ N. The (generalised) adjacency matrix is a collection
x = (xe : e ∈ N) of |N| = nm tie-variables 1{e ∈ E}, indicating whether
the tie is present or not, and we denote by X the space of all possible
realisations of x. For x, y ∈ X we define the Hamming metric as

||x − y|| =
∑

e
|xe − ye|.

The model is a continuous-time Markov chain {x(t)}t ∈ R on X ,
which may be defined in terms of its embedded chain (or walk
on the |N|-cube) as in Koskinen and Snijders (2007). The transition
probabilities in the embedded chain are given by a function

�(�, x, y) (1)

and the time spent in x ∈ X exponentially distributed with rate func-
tion

�(�, x) (2)

where � is a vector of parameters. It is assumed that �(�, x, y) ≥ 0
for ||x − y|| = 1 and 0 otherwise. If we let �ex denote the array that
has element e equal to 1 − xe but that is equal to x for all other
elements, e∗ ∈ N\{e}, the process may be described as remaining in
a state x for a period of time that is exponentially distributed, after
which element e is changed to 1 − xe with probability �(�, x, �ex).
For a digraph with N = V (2) this is exactly the way the stochastic
actor-oriented model for unimodal graphs is defined in Snijders
(2001) for the purpose of simulation.

This is a framework that covers a wide variety of different mod-
els for network evolution. The expression (1) can often be described
with a logistic function, derived from evaluation of utility func-
tions, and Snijders (2006) showed how many models of network
evolution may be couched in the form of stochastic actor-oriented
models. To express the bipartite evolution model in terms of an
actor-oriented model we follow Koskinen and Edling (2004) and
make the assumption that only vertices in A are considered to be
actors so that given that a change is made, it is one of the vertices in
A, say i, that decides to make a change, and if i changes its relation to
j there is a jump from x to �ijx (we use ij as a notational shorthand
for (i,j)).

In the standard stochastic actor-oriented model (Snijders, 2001),
all actors i independently make changes at a rate �i(�, x), given
the current state x. This gives the rate (2) as �(�, x) = ∑

i�i(�, x).
Using well-known properties of the exponential distribution it can
be shown that, given that a change is made, the probability that it
is actor i that makes this change is �i(�, x)/�(�, x). Consequently,
we may express (1) as a product

�(�, x, �ijx) = �i(�, x)
�(�, x)

pi(�, x, j),

where

pi(�, x, j) (3)

is the conditional probability that the process is going to jump from
x to �ijx, given that a change is made to (xij)

m
j=1 for i fixed.

Given that actor i makes a change, i changes the relation to
j ∈ B, such that the “utility” ui(�, x, j, t) is maximised. The “utility”
ui(�, x, j, t) captures the desirability to i of changing xij , of going
from x to �ijx. The stochastic actor-oriented framework for net-
work evolution allows for many aspects of the change to be taken
into consideration (Snijders et al., 2007) but we settle for a simple
tion of a bipartite network—Peer referral in interlocking directorates.

form

ui(�, x, j, t) = fi(�, �ijx, x) + εi(x, j, t),

where the first term on the right hand side is a systematic com-
ponent and the second, εi(x, j, t), is a random component. The

dx.doi.org/10.1016/j.socnet.2010.03.001
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ystematic part of the utility function represents what we model
nd is meant to capture the regularities in the data. The random
omponents represent the non-systematic chance aspects of the
ecision situation that we do not explicitly model. Typically these
re assumed to be independently identically distributed accord-
ng to a type 1 extreme value distribution,1 which is a convenient
hoice for which a form of (3) is computationally equivalent to a
onditional logistic regression.

.1. Estimation

Given T realisations x(t0), x(t1), . . . , x(tT−1) from the model
efined by (1) and (2), the purpose is to perform inference for the
odel parameters �. In describing this process we may without loss

f generality assume that we only have two observations, x(t0) and
(t1), since the Markov property means that we may treat each pair
f observations separately.

In order to write the likelihood function for � given x(t0) and
(t1), let y = y(s0), y(s1), y(s2), . . . , y(sH+2k) be a realisation of the
volution from x(t0) to x(t1). Note that if y(sH+2k) = x(t1) and y(s0) =
(t0), for H = ||x(t0) − x(t1)||, the number of changes must be H + 2k,
or k ∈ {0, 1, 2, . . .}, because when the H necessary changes have
een made to transform x(t0) into x(t1), any extra k unnecessary
hanges have to be reversed. Had a path y been observed then the
ikelihood function would have been given by

(�; y) = exp

{
−

H+2k+1∑
h=1

(sh − sh−1)�(�, y(sh−1))

}

×
H+2k∏
h=1

�(�, y(sh−1), y(sh))�(�, y(sh−1)) (4)

here sH+2k+1 = t1. The likelihood given observed data, the
bserved data likelihood, is obtained when (4) is marginalised with
espect to y, conditional on the endpoints x(t0) and x(t1). From
Bayesian perspective, all relevant information about the model
arameters is given by the posterior distribution, �(�|x(t0), x(t1)),
nd with constant prior distributions it is proportional to the
bserved data likelihood. In this case, neither the posterior distribu-
ion nor the observed data likelihood, are analytically tractable. We

ay however simulate from the joint posterior �(�, y|x(t0), x(t1))
hich is proportional to (4) (multiplied by a proper prior distri-

ution �(�) if available). A sample from this distribution may be
btained using Markov chain Monte Carlo (MCMC) by creating a
arkov chain that alternates between drawing from �(�|y) and
(y|�, x(t0), x(t1)), both of which are proportional to (4) (for details

ee Koskinen and Snijders, 2007).
We return to model estimation in Section 4, when applying this

odel to analyse peer referral in interlocking directorates.

. Interlocking directorates and peer referral—the action
echanism

This section presents an action mechanism for the actor-
riented model of network evolution. We specify and interpret
he model based on two interacting mechanisms: peer referral and
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

omosociality (or cognitive gender homophily). Before we discuss
hese mechanisms, we wish to briefly underscore the importance
f explicitly considering the bipartite structure in the analysis of
nterlocking directorates.

1 The assumption of independence across j ∈ B for each i may be relaxed by positing
multivariate normal distribution instead (Koskinen, 2004).
Fig. 1. A four-cycle (C4): multiple overlaps create a multiple tie between board i and
board k.

One can easily transform a bipartite board-to-director net-
work into two one-mode symmetric networks: The inter-personal,
director-to-director network consists of the directors and the ties
between them. Two directors share a tie if they are members of the
same board. Similarly, in the board-to-board network, the boards
are the vertices and there are ties between pairs of boards that share
a board member. However, some important information is lost by
such transformations.

The multiple interlock as illustrated in Fig. 1 (C4) occurs when
two boards of directors share (at least) two directors (also Four-
cycle, Pattison and Robins, 2002; Wang et al., 2009; or (2,2) biclique,
Borgatti and Everett, 1997). In the following graphs circles and
squares correspond to directors and boards respectively and a line
connecting a director with a board means that the director is a
member of the board. If any one of the ties, say {i,j}, is missing
from the subgraph in Fig. 1, the board i is only indirectly linked to
j through a path of length 3. We refer to this structure as a (bipar-
tite) three-path (L3). Should director j be appointed to the board i,
such that the tie {i,j} is created, the three-path is transformed into
the four-cycle depicted in the figure. The addition of this edge does
not alter any of the one-mode networks as the two directors were
already connected through the other board and the two boards
were connected through the director that sat on both boards. Thus
in terms of the two one-mode networks these two subgraphs L3
and C4 are equivalent.

Most analyses of interlocking directorates have focused on the
one-mode (binary) representations, and multiple interlocks (i.e.
instances of C4) have in general not been distinguished from single
interlocks. The reason for not investigating multiple interlocks can
stem from the choice of model (e.g., Mizruchi and Stearns, 1988),
or lack of data (e.g., Barnes and Ritter, 2001). However, a small
number of studies focus specifically on the prevalence of multiple
interlocks, in particular the broken tie literature (Ornstein, 1982,
1984; Palmer, 1983). Whereas these early studies found that a sev-
ered interlock was more likely to be replaced if this interlock was
part of a multiple interlock, Palmer et al. (1986) suggested that
this association was spurious and that the true determinant was
the level of embeddedness. They referred to the production of an
interlock that corresponds to the transition from a three-path to
a four-cycle as “reinforcement”. The process of reinforcing already
present ties between boards as an expression of the firms’ embed-
dedness can also be taken down to the level of directors. Whereas
we focus on the social process of board-to-board tie reinforcement,
the phenomena have also gained some attention in corporate gov-
tion of a bipartite network—Peer referral in interlocking directorates.

ernance literatures, and the conclusion seems to be that mutual
interlocks are not strategically motivated (Carpenter and Westphal,
2001; Fich and White, 2003, 2005).

Robins and Alexander (2004) mention personal referral as a
possible process that lead to multiple interlocks. When a board is

dx.doi.org/10.1016/j.socnet.2010.03.001
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modifications that stem both from the nature of interlocking direc-
torates as well as from computational considerations that have to
be taken into account when dealing with large datasets.2
ig. 2. Bipartite attribute dependent configurations and the removal/creation of the
ttribute and light node indicates absence of attribute. For attribute being female (W
c) female homogenous four-cycle (CWW).

ooking to appoint a new board member, a present member may
ecommend a person with whom he or she has had previous expe-
ience of working with on another board. If this personal referral is
ndorsed by the board a multiple interlock is created.

This practice can be expressed in terms of an action mechanism
n which ego puts a preference on alter when it comes to recom-

ending new directors to the board of which ego is a member.
xplaining the formation of this preference goes beyond the scope
f this paper, but we can suggest some plausible explanations wor-
hy of future exploration. An obvious candidate is that directors
ave more first-hand information on directors whom they have
orked with, and that they consider first-hand information more

rustworthy than second-hand information. Another suggestion is
hat working together on a board gives rise to a sense of community
mong board members that would make fellow board members
rst choice candidates for filling vacant positions. A related idea,
ssuming that multiple board assignments are attractive, is that
irectors who know each other from working together recommend
ach other reciprocally. A more sophisticated explanation could be
hat directors are bound by silent agreements and codes of conduct
temming from a sense of membership in collectives such as “old
oy’s networks” and “inner circles” (Mills, 1956; Useem, 1984) that
ell them to look out for their peers.

Applying the mechanism of peer referral, the interlock itself
manifested by the two-star) is not desirable for the firm. The
nterlock may be desirable to the director who acts merely as an
nconstrained individual or to the board that acts as a collec-
ive representing a firm that strives to be central (for purposes of
nformation gathering or for other purposes) in the board-to-board
etwork. Boards and directors are also unlikely to strive towards
stablishing reach in the bipartite network as manifested in a desire
o create three-paths. If peer referral of co-members is expressing
he individual action constrained by the setting and informed by
roup norms, then it is a mechanism that is central to the evolution
f the network. The empirical manifestation of this action mecha-
ism is the creation of four-cycles and, on the network level, a high
ipartite clustering. The clustering one might observe in the two-
nimodal networks, as manifested in triangulation as well as short
ath-ways, are emergent features of the processes in operation in
he bipartite evolution. Perpetuating these behaviours reinforces
he norms behind it—these are part of the dynamics, the mechanism
s both the cause and the effect.

Naturally, personal referral does not necessarily result in four-
ycles in the board-to-director network. A board member may well
ecommend a person on other grounds than that they have worked
ogether on another board, and the recommended person might
ot be a member of the (relevant) population. Underlying social
tructures are important in the recruiting process.

If peer referral is indeed a central mechanism to the evolution
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

f the network this may reflect underlying allegiances in which,
e may hypothesise, women are not included. If women are not
art of the old boy’s networks and not generally treated as peers by
en we would expect that the recruitment of women does not fol-

ow the same rules as for men (e.g., Izraeli and Talmud, 1997). This
j}. Structures including dashed tie where dark (director) node indicates node having
ls are: (a) male homogenous four-cycle (CMM); (b) heterogeneous four-cycle (CMW);

would then manifest itself in a low frequency of peer referrals that
involved women. In order to investigate this we may distinguish
different types of four-cycles.

In Fig. 2 there are three types of four-cycles that may result from
� referring j. In Fig. 2a a man is referring another man creating
what may be termed a male-homogeneous four-cycle. In Fig. 2c a
woman is referring another woman creating what may be termed
a female-homogeneous four-cycle. An example of a heterogeneous
four-cycle is given in Fig. 2b, where a man refers a woman. When
women are not included in the peer practices outlined above we
expect instances of heterogeneous four-cycles to be rare. In our
data there is not enough information to fully separate the differ-
ent four-cycles wherefore we settle for including the interaction
effect of women and four-cycles, essentially counting the number
of structures Fig. 2(b) and (c). The mirror image of Fig. 2(b), where
a male is referred by a woman we deem to be of little interest and
too rare to be empirically testable.

If there is a negative tendency towards creating heterogeneous
four-cycles, this is exactly an example of how “homosocial repro-
duction” operates—men prefer to socialise with men and promote
other men (Kanter, 1977; Stafsudd, 2006). If homosocial repro-
duction drives the evolution indicating that women are excluded
from the peer practices of the boards this may well indicate further
imbalances.

To parse out whether peer referral is indeed an active mecha-
nism or whether the prevalence of four-cycles is simply a result
of accumulative interlocks requires a dynamic model. We further-
more need to distinguish between preservation of multiple ties
and the creation of multiple ties, the latter which indicates peer
referral. If the mechanisms investigated here are active and if their
application is reinforced through repeated use, then this is a pro-
cess through time. If cross-sectional snap-shots were investigated
it would not be possible to say whether peer referral is a key ingre-
dient in board appointments or if higher than expected number
of four-cycles at each cross-section is simply inherited from pre-
vious time-points. The process is also by definition dynamic since
the actions of the individuals within the board are not indepen-
dent of their environment, the context. The action by one board
furthermore reshapes the context for other boards.

4. Modelling and estimating peer referral in interlocking
directorates

Before we define the specific forms of (1) and (2), given in Sec-
tion 2, the longitudinal study of interlocking directorates requires
a few further modifications of the model specification. These are
tion of a bipartite network—Peer referral in interlocking directorates.

2 Other modifications are needed for other types of bipartite data. For example,
in the case of co-offending networks, offenders choose offences to participate in
but the offences themselves are transitionary and not independently defined as in

dx.doi.org/10.1016/j.socnet.2010.03.001
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.1. Agency

As argued in the previous section we observe actions taken by
he boards but assume that this is the result of actions of indi-
idual directors making up the boards. For the purpose of fitting
he model the board itself is considered the actor. Given a choice
etween allocating choice to board or directors the former seems
ore plausible.3

Since it is assumed that the actors (now, boards) chose the
ourse of action that maximises the utility to board, and that the
aximisation is carried out over the entire set of actions, we also

ssume that the board is acting on perfect information. The ran-
om components allow for deviations from the systematic part of
he utility function but the random component is assumed to be
ndependent of model quantities and therefore it cannot be used
o account for differential, fuzzy, knowledge of different “parts” of
he decision space. The Markovian nature of the model assume that
here is no strategic action in the sense that a board is prepared to
ake a loss now in order to gain in the future.

.2. Differentiating between recruitment and release

Although we only aim at providing a rough approximation of the
echanism central to the evolution of the interlocking directorates,

he difference in nature between recruiting a director and releasing
director has to be addressed (in the broken tie studies and in

.g., Mizruchi and Stearns (1988), the initiation of a tie is clearly
istinguished from the dissolution of a tie). We may for example
xpect that in many of the instances where a director leaves a board
his is not a consequence of a choice on the part of the board but is

ore likely to be the result of retirement, illness, etc. To distinguish
etween the different processes, we let

i(�, �ijx, x) =
{

fi,1(�, �ijx), if xij = 1
fi,0(�, �ijx), if xij = 0.

(5)

This is akin to the gratification function in Snijders (2001), in
hat the satisfaction with a new state may depend on the previous
tate.

The number of seats on a board of directors is not likely to fluc-
uate much from year to year. To control for the effect of board
ize in the model outlined above would require a complicated rate
unction. This would also have to be combined with sensibly cho-
en functions of the board size in fi(�, �ijx, x) but the differences in
oard sizes between boards, and the small number of choices for
eleasing a board member in comparison to the number of available
hoices leads to numerical instabilities.4 For the present dataset for
nstance, a board in 1996 with six board members has six choices
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

f directors to release and a choice of 1238 directors to recruit. To
esolve this problem we introduce a binary random variable vi(	, x)
hat indicates whether the board i decide to recruit or release a
irector. This is included in the model as follows: given that i decide

he case of boards of directors. Similarly, in co-authorship networks, the event, an
rticle, is not defined independently of its authors.
3 A model where both boards and directors initiate change may lead to identifica-

ion issues since we would not be able to determine whether the decision was made
y the board or the director. Furthermore, if one is prepared to accept the notion
hat (to all intents and purposes) the board operates with relative autonomy, there
till remains to explain the complex collective action of board room. While some
f this may be addressed in the current model framework for our purposes we are
atisfied with the fact that we have a model for how the individual action mech-
nism is reflected in the actual board decisions. An alternative would be to frame
ppointment as a negotiating process which is close to the utility based models for
dge-based processes proposed in Snijders (2006).
4 Previously Koskinen and Edling (2004) tried to solve this by including a quadratic

unction of the number of current board members in fi(�,�ijx,x).
 PRESS
works xxx (2010) xxx–xxx 5

to make a change to the board composition (xij)
m
j=1, and vi(	, x) = v,

(3) is set to

pi,v(�, x, j) =
{ exp(fi,v(�, �ijx))∑

k exp(fi,v(�, �ikx))1{xik = v} , if xij = v

0, otherwise
.

The jump probabilities in (3) may now be written as mixtures

pi(�, x, j)=Pr{vi(	, x)=1}pi,1(�, x, j)+ (1−Pr{vi(	, x)=1}) pi,0(�, x, j).

We settle for a simple expression for the probabilities

Pr{vi(	, x) = 1} =
{

	, if
∑

jxij > 0
0, otherwise

.

We are not going to specify the probabilities Pr{vi(	, x) = 1} any
further since the corresponding variables are ancillary for the pur-
pose of parameter inference in the estimation scheme (as we shall
see further on).

4.3. Latent walk length

In the basic model formulation, given that x(t0) changes into
x(t1), we know that at least H changes have taken place. In addi-
tion there might have been k ∈ {0, 1, 2, . . .} superfluous changes
that were then reversed. For friendship networks it is plausible to
assume that a number of such superfluous changes have been made
but perhaps less so for interlocking directorates.5 We could intro-
duce strong prior information to reflect the fact that we believe k
to be small but the size of the dataset makes it convenient to per-
form inference conditioned on k = 0. The consequences for inference
are that we only need to employ “Move type 3” (in the terminol-
ogy of Koskinen and Snijders, 2007, i.e. permuting the order of the
changes) in the updating of latent walks and, that the probabili-
ties Pr{vi(	, x) = 1} cancel in the evaluation of (4) for updating the
latent walks.

As for all the models in the stochastic actor-oriented frame-
work for network evolution, had the exact timing of the changes
been observed sequential logistic regression could have been used
(Butts, 2008). In the case investigated here the exact times are how-
ever not available. In principle there are fixed points in time when
the new boards are officially appointed6 (annual grand meetings)
but (notwithstanding the fact that they are not recorded here) from
a substantive point of view the decisions are not instantaneous. The
process of appointment may be said to be one going on over a longer
period of time, during which the search for directors goes on. The
search for directors to nominate can take many expressions as it
is not legally regulated (Bohman, 2009). Sometimes, but far from
always board nomination committees are used (ibid.). At the time
of official endorsement by the shareholders the boards have already
tion of a bipartite network—Peer referral in interlocking directorates.

been de facto appointed (there are exceptions, instances when the
annual grand meeting reject the recommendations by the board,
but these are rare).

5 For the EIES friendship network k was found to be of the order 5–10 (Koskinen
and Snijders, 2007).

6 If this was thought to be the evolutionary process of the network then a
model where changes are made all at once could be applied (Mayer, 1984). If a
dyad independent model is assumed and the times of appointment are observed
a discrete-time model may be defined (Galaskiewicz and Wasserman, 1981). Note
that they also deal with the directed unimodal board-to-board network. Both of
these approaches would require a different framework for decision-making and
might also require a level of detail that we do not aspire to and in the interest of
introducing the bipartite evolution model we do not want to unnecessarily limit the
generality of the approach.

dx.doi.org/10.1016/j.socnet.2010.03.001
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ig. 3. Boundary issues for the evolution of bipartite graphs: between t0 and t1, fou
ied. As a consequence and due to the fact that directors that are not on boards do

.4. Data and boundary considerations

The definition of node sets when studying evolution of bipartite
etworks may depend on the application but in most cases the
oundary specifications differ from those for unimodal network
nalysis. As an example of the difficulties in the longitudinal study
f interlocking directorates consider the networks in Fig. 3. There
re two (hypothetical) realisations of a bipartite network at time
0 and t1, and for the two cross-sectional networks it is assumed
hat a node of either type can only be part of the network if it is
ied to a node of another type. Tie dissolution and tie creation thus
edefine the set of nodes (at t1 greyed lines denotes ties or vertices
hat have disappeared and thick lines denotes ties or vertices that
ave appeared). There are three instances where ties are dissolved.
hen {i,n} is dissolved, n disappears from the bipartite graph since

is the only board n is a member of. The node t does not disappear
hen {i,t} is dissolved since t is also a member of board k. The
ode x is only a member of board i and consequently would have
isappeared had the tie {k,x} not been created. The fact that {i,y} is
reated means that y is added to the population. If a node dies like
, it takes all nodes with it, like s, that are not tied to any other node.
nalogously, the birth of a board may bring with it nodes that were
ot already part of the population, like in the case of {�,v} and v.

We use what may be termed a pair-wise union rule, according
o which for two points in time t0 and t1, the node set is considered
o consist of all the nodes that are present at at least one of those
ccasions. By analysing the data for years pair-wise rather than
or the entire period 1996–2005 we minimise the errors that may
ccur as a result of node set discrepancies as well as reduce the
ata down to a manageable size—the period 1996–2005 has 429
nique boards and 3177 unique directors but the largest network
ccording to the union rule is 2001–2002 that has 306 boards and
675 directors.

The population of boards necessarily changes over time as a
esult of mergers, acquisitions, businesses going out of business
nd the introduction of new corporations. The number of births
nd deaths each year are given in Table 1. For example we see that
ut of the 220 boards of corporations listed in 1996, 20 had died
n 1997 and another 26 boards had been born. By the pair-wise
nion rule this means that the number of boards in the population

n the period 1996–1997 is 220 + 26 = 246 and the size of the dis-
oint union is 220 − 20 = 200. Since 40 boards are born in 1998, the
umber of boards in the period 1997–1998 is 266.

The derived population of directors also changes as a result
f board deaths and births as well as dissolution and creation of
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

ies. The effect of the pair-wise union rule on the bipartite director
egree distribution may be seen in Table 1. The degree distribu-
ion when the data for 1996 has been transformed according to the
nion rule is identical to the original data except for the number
f directors without board positions, the number of directors with
ave disappeared, four ties have been created, one board is born and one board has
long to the graph, two directors died and two were born.

degree 0. These 216 individuals are the directors that are members
of at least one corporate board in 1997 but not members of any
board in 1996. The data at 1997 are augmented by 211 directors
with zero degree when 1997 is used as the second time-point. These
are the individuals that that are members of at least one corporate
board in 1996 but not members of any board in 1997.

The percentage of female directors increases from 4.8% in 1996
to 18% in 2005. As an example of how the population of directors
is affected by the pair-wise union rule consider the percentage of
female directors in 1996 and in 1997, which is 4.8 and 4.3 respec-
tively. Since all female directors that are board members for at
least one time-point are included in the population for 1996–1997,
the percentage of female directors in the data used is in-between,
namely 4.7. The effects on the average number of board positions for
men and women, respectively, from applying the pair-wise union
rule are also given in Table 1, as are the bipartite director degree
distributions for the original data and the transformed data.

In some instances the pair-wise union rule may come with some
drawbacks. Some director departures may in fact reflect board
deaths rather than release of a director. Births of directors may
involve something of a circular definition; if a director is not on any
board in 1996 but on a board in 1997, the board may choose that
director according to the model because this director is going to be
chosen in the future by that board. It would be better to model births
of directors separately and in principle it is straightforward to do
so in the Bayesian framework but in view of parsimony we refrain
from modelling this. An alternative would be to start only with
directors that are board members. Huisman and Snijders (2003)
deal with changing composition by letting the births and deaths of
nodes be time-varying but exogenously defined events.

When a director retires, dies or in another way leaves the popu-
lation altogether, this may mean the director leaves several board
positions simultaneously, which violates the model assumptions
and may introduce additional dependencies between the decision
processes of the boards. This is likely to affect the dissolution pro-
cess more than the appointment process.

4.5. Statistics

To define the systematic functions in (5), we introduce a set
of parameters �1, . . . , �p, that are used to weight together counts
zi1(x), . . . , zip(x) of configurations in a bipartite graph to determine
the (systematic) contribution to the satisfaction of the board i with
x. When differentiating between creating a tie and dissolving a tie,
we may write
tion of a bipartite network—Peer referral in interlocking directorates.

fi,v(�, �ijx) = �1,vzi1,v(�ijx) + · · · + �p,vzip,v(�ijx) (6)

where v = xij . The vector of parameters here is assumed to
be unrestricted. When a parameter is positive this means that
boards tend to prefer to make changes that lead to increases

dx.doi.org/10.1016/j.socnet.2010.03.001
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Table 1
Bipartite director degree distributions. The order of the degree distributions for a year is: when year used as t1, original data (in bold face), when year used as t0.

Deaths/births Number of positions Average position

0 1 2 3 4 5 6 7 8 9 10 Men W %W

1996 (220) – 799 120 45 34 11 15 2 2 0 0 1.46 1.11 4.8
23 216 1.21 0.93 4.7

1997 26 211 1.22 0.91 4.7
– 796 129 47 27 14 12 7 1 0 0 1.47 1.19 4.3

20 276 1.16 0.85 4.8

1998 40 173 1.27 1.02 4.8
– 864 154 56 28 21 7 5 1 0 0 1.46 1.20 4.7

20 291 1.16 0.88 5.1

1999 38 193 1.23 0.99 5.1
– 965 147 58 32 21 6 4 1 0 0 1.42 1.24 4.7

30 394 1.08 0.84 5.2

2000 44 262 1.14 1.11 5.2
– 1085 172 49 38 11 7 4 0 0 0 1.36 1.27 5.5

19 297 1.12 1.07 5.3

2001 33 227 1.17 1.18 5.3
– 1137 183 64 28 16 3 1 3 0 1 1.36 1.27 5.7

26 239 1.17 1.02 6.1

2002 17 311 1.11 1.22 6.1
– 1063 188 61 27 12 8 2 2 1 0 1.38 1.37 6.7

18 240 1.22 0.75 10.9

2003 3 273 1.11 1.32 10.9
– 1042 188 51 28 11 8 3 0 0 0 1.35 1.39 12.6

10 233 1.18 1.01 15.1

2004 5 231 1.13 1.25 15.1
– 1050 182 55 28 8 6 2 1 1 0 1.35 1.37 16.3

i
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b
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14 175

2005 4 213
– 1023 173 66 17

n (or preserves in the case of dissolution) the number of con-
gurations corresponding to that parameter, given everything
lse.

In the case of cross-sectional data, the Markov assumptions of
rank and Strauss (1986), as applied to bipartite networks implies
hat the only sufficient statistics are the bipartite star statistics
Skvoretz and Faust, 1999; Wang et al., 2009). Four-cycles may also
e derived from social circuit outcome dependence assumptions
Snijders et al., 2006) as shown in Wang et al. (2009). Here our
rimary interest is in peer referral and the creation of four-cycles,
hich is why we let the four-cycle be one of the configurations we

nclude in (6). As illustrated in Fig. 4(c), a four-cycle is created when
tie {i,j} is added by i to a three-cycle. If there is a positive coeffi-

ient corresponding to the number four-cycles for creating ties then
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

e know that there is a preference for appointing directors that is
onsistent with peer referral. If in addition the coefficient corre-
ponding to the number of four-cycles for dissolving ties is zero or
egative then we know that the preference for appointing direc-

ig. 4. Bipartite configurations and the removal/creation of the tie {i,j}. Structures includi
ipartite four-cycle (C4).
1.2 1.16 17.2

1.14 1.19 17.2
7 5 3 1 0 0 1.34 1.33 18.0

tors that is consistent with peer referral is not only an artefact of
boards wanting to have strong ties to other boards. The systematic
function is a linear function of the number of four-cycles (ceteris
paribus) not primarily because the value of multiple interlocks is
assumed to be additive but because there is a positive (negative)
preference for recruiting a director if he or she has been referred
by someone on the board. Occasionally, the addition of a tie may
create more than one additional four-cycle and one may then ask
if the effect in those cases should be additive—does it matter if a
director is referred by more than one present director? Here we
assume that it does but alternatives where only the sign (addition
of four-cycle or not) is considered could well prove useful.

The four-cycle is built up of bipartite director two-stars (SB2)
(Fig. 4a) and a bipartite three-path (L3) (Fig. 4b). To ascertain that
tion of a bipartite network—Peer referral in interlocking directorates.

the preference for creating four-cycles is not merely due to a pref-
erence for establishing interlocks (SB2) or long paths (L3), we need
to include counts of these as well. Some other counts described
in Skvoretz and Faust (1999), Wang et al. (2009), and Robins and

ng dashed tie: (a) bipartite director two-star (SB2); (b) bipartite three-path (L3); (b)

dx.doi.org/10.1016/j.socnet.2010.03.001
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Table 2
Parameter estimates (posterior means and standard deviations) for longitudinal model fitted pair-wise to corporate boards on the Stockholm stock exchange. Structural
effects only.

Effect

Dissolution Creation

Dir. Two-star Three-Path Four-Cycle Dir. Two-star Three-Path Four-Cycle

1996–1997 −0.409 (0.159) 0.045 (0.014) 0.052 (0.073) −0.477 (0.205) −0.002 (0.016) 1.046 (0.076)
1997–1998 0.219 (0.266) −0.022 (0.023) 0.227 (0.092) −1.110 (0.203) 0.021 (0.017) 1.019 (0.077)
1998–1999 −0.118 (0.198) 0.014 (0.017) 0.028 (0.074) −0.981 (0.202) 0.012 (0.017) 1.437 (0.084)
1999–2000 −0.175 (0.221) 0.017 (0.02) 0.162 (0.117) −0.896 (0.256) −0.039 (0.022) 1.295 (0.112)
2000–2001 −0.220 (0.182) 0.023 (0.017) −0.096 (0.115) 0.430 (0.223) −0.122 (0.019) 1.509 (0.109)
2001–2002 0.172 (0.162) −0.002 (0.016) 0.182 (0.110) −0.084 (0.255) −0.073 (0.021) 1.685 (0.087)

.089)

.151)

.136)
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2002–2003 −0.058 (0.181) 0.004 (0.016) 0.047 (0
2003–2004 −0.309 (0.352) 0.032 (0.030) 0.235 (0
2004–2005 −0.273 (0.231) 0.023 (0.022) 0.286 (0

lexander (2004) such as the number of edges and bipartite board
wo-stars are not relevant if we condition on walk length. For
xample, conditional on the event that the board is going to add
director, all potential new board members will yield the same

ontribution to the count of bipartite board two-stars. The corre-
ponding parameter is hence not estimable.

In a first model only the three structural features illustrated
n Fig. 4 are included. In a second model we also include several
irector attributes as covariates. In the cases where these are time-
arying, they are defined in relation to time-points t0 and t1 for the
elevant pair of years.
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

.6. Covariates

Many studies have pointed to the importance of the relation
etween the corporate board and the CEO (Zajac and Westphal,

ig. 5. Probability intervals (.99 equal tail probability) for parameters across time in the
hree-paths (L3), and four-cycles (C4), for the dissolution of ties and parameters �4 throu
reation of ties.
−2.390 (0.522) 0.085 (0.044) 1.220 (0.102)
−2.225 (0.551) 0.063 (0.044) 1.303 (0.150)
−3.003 (0.460) 0.122 (0.036) 1.626 (0.150)

1994; Fich and White, 2003) for the performance of the board and
the company. The position of CEO offers an opportunity for forg-
ing alliances and gaining experience and insight. Fich and White
(2005) also put the focus on the overrepresentation of CEOs in mul-
tiple interlocks. Here we do not include any interaction for CEO and
multiple interlocks but include an indicator of whether a director
has any CEO-experience. This covariate indicates if a director has
been the CEO for a corporation for a year previous to the second
time-point t1.

We define chair-experience in an analogous fashion to CEO-
experience, namely if a director has been chairman of a board in the
year previous to the second time-point. The chair has a central posi-
tion of a bipartite network—Peer referral in interlocking directorates.

tion in the board of directors and someone with chair-experience
may therefore be regarded as having insight into the corporations
on which he or she has served. Having chairman experience may
also signal status and add to one’s reputation.

purely structural model. Parameters �1 through �3 correspond to two-stars (SB2),
gh �6 correspond to two-stars (SB2), three-paths (L3), and four-cycles (C4), for the

dx.doi.org/10.1016/j.socnet.2010.03.001
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Table 3
Parameter estimates (posterior means and standard deviations) for longitudinal model fitted pair-wise to corporate boards on the Stockholm stock exchange. Structural
effects, director attribute effects and the interaction of sex and peer referral for the dissolution of a tie. NB: ‘*’ indicates that marginal posterior is improper.

Effects dissolution

Dir. Two-star Three-Path Four-Cycle CEO exp. Chair exp Seniority Woman Int. Wom. four-cycle

1996–1997 −0.280 (0.158) 0.033 (0.013) 0.101 (0.066) 0.276 (0.151) −0.043 (0.168) −0.093 (0.070) −0.234 (0.283) 0.468 (0.762)
1997–1998 0.230 (0.151) −0.023 (0.013) 0.252 (0.071) 0.579 (0.173) −0.003 (0.151) −0.130 (0.074) −0.042 (0.321) 1.017 (0.701)
1998–1999 −0.151 (0.178) 0.017 (0.014) 0.041 (0.085) 0.118 (0.148) 0.052 (0.162) −0.217 (0.070) −0.262 (0.345) −0.120 (0.576)
1999–2000 −0.086 (0.192) 0.009 (0.018) 0.143 (0.121) −0.076 (0.126) −0.305 (0.123) −0.183 (0.062) 0.290 (0.433) 2.742 (0.849)*
2000–2001 −0.092 (0.222) 0.012 (0.021) −0.104 (0.127) 0.000 (0.158) 0.138 (0.131) −0.128 (0.085) 0.501 (0.299) 1.596 (1.558)*
2001–2002 0.227 (0.199) −0.010 (0.019) 0.214 (0.101) 0.151 (0.127) −0.238 (0.123) −0.068 (0.061) −0.015 (0.273) 1.268 (1.873)
2002–2003 −0.075 (0.206) 0.007 (0.018) 0.067 (0.118) 0.060 (0.117) 0.050 (0.133) −0.267 (0.058) 0.919 (0.347) 1.349 (0.977)
2003–2004 0.071 (0.283) 0.002 (0.024) 0.103 (0.139) −0.034 (0.121) 0.162 (0.165) −0.352 (0.073) 0.188 (0.277) 5.605 (2.887)*
2004–2005 −0.404 (0.283) 0.035 (0.025) 0.310 (0.184) −0.009 (0.176) 0.198 (0.189) −0.130 (0.077) 0.068 (0.237) 0.089 (0.375)

Table 4
Parameter estimates (posterior means and standard deviations) for longitudinal model fitted pair-wise to corporate boards on the Stockholm stock exchange. Structural
effects, director attribute effects and the interaction of sex and peer referral for the creation of a tie.

Effects creation

Dir. Two-star Three-Path Four-Cycle CEO experience Chair experience Seniority Woman Int. wom. four-cycle

1996–1997 −0.599 (0.202) 0.008 (0.017) 1.002 (0.073) −0.106 (0.128) 0.359 (0.183) −0.247 (0.046) −0.270 (0.240) 0.362 (0.536)
1997–1998 −1.360 (0.161) 0.048 (0.014) 0.971 (0.084) −0.136 (0.139) 0.663 (0.131) −0.219 (0.048) −0.208 (0.217) −0.698 (0.801)
1998–1999 −0.796 (0.288) 0.002 (0.023) 1.354 (0.090) −0.532 (0.177) 0.226 (0.178) −0.282 (0.042) −0.344 (0.230) 0.429 (0.413)
1999–2000 −0.554 (0.198) −0.063 (0.019) 1.406 (0.096) −0.341 (0.145) 0.106 (0.154) −0.347 (0.045) −0.033 (0.189) −0.111 (0.639)
2000–2001 0.236 (0.271) −0.097 (0.026) 1.527 (0.096) −0.501 (0.147) 0.343 (0.161) −0.267 (0.048) −0.252 (0.222) −0.451 (0.505)
2001–2002 −0.715 (0.219) −0.011 (0.019) 1.662 (0.089) −0.359 (0.148) 0.028 (0.129) −0.219 (0.044) 0.373 (0.171) −0.721 (0.709)
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2002–2003 −1.698 (0.382) 0.039 (0.029) 1.163 (0.110) −0.141 (0.128
2003–2004 −2.149 (0.379) 0.066 (0.029) 1.388 (0.121) −0.490 (0.149
2004–2005 −2.854 (0.452) 0.114 (0.037) 1.580 (0.133) −0.452 (0.199

Seniority may be important as both marker of position in status
ierarchies as well as a control for natural demographic changes.
ere we used age and to improve numerical stability, age is stan-
ardised for each time period.

The female representation on company boards has long been a
otly debated issue, and we have already alluded to the occurrence
f and change in female board representation in the study period.
ut does increasing representation mean increasing interlocking
hen controlling for other factors? Are women fully integrated in

he corporate structure and are they as powerful as men in terms
f being central in the network? The indicator of whether a direc-
or is a woman or not also serves as the lower order term for the
nteraction effect of sex and four-cycles. As previously stated, the
nteraction term counts the number of structures corresponding to
ig. 2(b) and (c).

. Results

For setting initial parameter values and variance–covariance
atrix for the proposal distribution we followed Koskinen and

nijders (2007) and obtained the Hessian of and parameter
alues that maximised the likelihood for arbitrarily chosen short-
st paths. The Metropolis–Hastings algorithm was implemented
ith a total of 4000 iterations and a burn-in period of 1000

terations.
Summaries for the posterior of the purely structural model are

iven in Table 2 and comparisons of interval estimates are given in
ig. 5. The processes of appointments and releases are quite differ-
nt. Apart from a tendency to preserve three-paths in 1996–1997,
here are no structural effects in the release.

There is no desire (or an aversion in 2000–2002) to create bipar-
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

ite director two-stars when recruiting directors, everything else
iven. Creating interlocks is thus not desirable to the board per se.
ince the coefficient for three-paths is negative or zero there is no
esire to link to boards (via directors) with many directors or desire
o reach directors indirectly (to shorten path-ways in the bipartite
0.143 (0.207) −0.315 (0.062) 0.866 (0.119) 0.161 (0.154)
0.059 (0.227) −0.302 (0.050) 0.337 (0.138) −0.872 (0.254)
0.139 (0.179) −0.220 (0.063) 0.081 (0.171) −1.200 (0.816)

graph in an efficient manner; it appears to be a negative effect in
2000–2001 and in 2001–2002 and a positive effect in 2004–2005,
otherwise no effect).

There is a marked desire to create four-cycles and in combi-
nation with the fact that there is no tendency towards preserving
four-cycles, this is strong evidence of peer referral operating.

While parameter estimates may not be directly comparable
over time due to changes in network compositions, the trends in
Fig. 5, reveal that the evolution appears to go through three dif-
ferent phases. In 1996–2000 the model seems homogeneous with
respect to the (negative) preference for interlocking directors (two-
paths), three-paths and peer referrals; in 2000–2002, the clustering
increases; in 2002–2005 the process returns to something resem-
bling the first phase but with greater variation (less certainty in the
parameter estimates).

Adding director attributes does not change the structural effects
to any greater extent. Summaries of the posteriors for the model
with director attributes are given in Table 3 for dissolution of ties
and in Table 4 for creation of ties. Interval estimates for the param-
eters are given in Fig. 6.

There is a positive CEO-effect for dissolution of ties in
1997–1998 but not in any other year suggesting that it is not of
great importance to retain directors with CEO-experience. For four
periods there is a negative CEO-effect on recruitment. Looking at
the distribution of the number of board appointments for direc-
tors with and without CEO-experience (table not reproduced here)
there is no clear discernible difference other than that the pro-
portion of directors with two or more seats is slightly larger for
directors with CEO-experience and also that the proportion of iso-
late directors is higher for this group (at the second time-point).
The latter means that many of the directors that leave the pop-
tion of a bipartite network—Peer referral in interlocking directorates.

ulation have CEO-experience but few of the directors entering the
population have CEO-experience (details may be obtained from the
authors).

There is a consistent negative recruitment effect for seniority
as well as for release in some periods. While there is a positive

dx.doi.org/10.1016/j.socnet.2010.03.001
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ig. 6. Probability intervals (.99 equal tail probability) for parameters across time i
eferral.

ssociation between seniority and the number of board seats for
ost years cross-sectionally, the increase in the number of boards
director sits on is not positively related to age.

In 1997–1998 there is a positive effect for chair-experience but
n other periods there is no attribute effect for having experience
s chairman of the board.

There is no effect of sex in the period 1996–2001 but in
001–2004 there seems to be a positive effect for recruitment
the .99-intervals just cover 0 in 2000–2001 and 2003–2004) and
n 2002–2003 boards tend to want to keep female directors. This
evelopment is also reflected in Table 1, the transition from 2001
o 2002 is the year when the average number of board positions
er women first reaches that of men. The following year there is
lso a preference for keeping these women, a tendency against
ring women, which is reflected in the positive coefficient �7 in
001–2002. Hence, in this period women hold more board posi-
ions than men on average. This is not explained by seniority, CEO or
hairman-experience. As to how these women were recruited there
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

eems to be a lot of uncertainty. There are not enough opportuni-
ies to create female interlocks since there were in general too few
omen (cf Table 1) and at the start of the series women accounted

or too few ties (but from 2002 women occupy the same number
f board seats as men on average).
el with structural effects, director attributes and interaction between sex and peer

The increased representation of women after 2001 is not accom-
panied by increasing peer referral. In fact, there is a tendency
against referral of female directors in 2003–2004 – the posterior
probability that the corresponding parameter is negative is prac-
tically 1 – and the following period the corresponding posterior
probability is .95. We may tentatively conclude that while there
is an increasing representation of women on the stock exchange,
they are still not integrated in the male dominant power structures.
Furthermore, the relative popularity of female directors is short-
lived. We could speculate that there is an influx of token women in
response to the threat of legislation.

We performed two robustness checks to assess the sensitivity of
the model. To investigate the effects of the possible dependencies
that may be induced by directors (permanently) leaving the popu-
lation in a time interval, we fitted the model for each interval (t0, t1)
excluding the directors that were isolates at t1 (see Table 1). The dif-
ferences in posteriors are overall small. For dissolution seniority in
1997–1998 has a negative effect, and in 1999–2000 and 2003–2004
tion of a bipartite network—Peer referral in interlocking directorates.

no effect; and there is too little information to infer anything
for the interaction of female director and four-cycles. For recruit-
ment the effect of CEO disappears in 1998–2001 and 2003–2004;
chair-experience becomes positive in 1996–1998 and 1999–2001;
seniority has no effect in 2003–2004; the effect for female directors

dx.doi.org/10.1016/j.socnet.2010.03.001
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ig. 7. A bipartite director three-star (SB3), a bipartite 6-cycle (C6), a unimodal board
wo-star (S2A), and unimodal board triangle (TA).

dges up above 0 and the negative effect of the interaction of female
irector and four-cycle weakens in 2003–2004. While the average
ge of isolate directors at time t1 is consistently .5 standard devia-
ion units higher than at time t0 (meaning that directors that leave
he population are on average older than directors that enter the
opulation) this does not explain the negative effect of seniority.
he previously mentioned demographics do cause CEO-experience
o lose its effect when the isolates at the second time-point are
xcluded.
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

. Goodness of fit

We may use Bayesian forecasting to assess the goodness of fit of
stochastic actor-oriented model (Koskinen and Snijders, 2007). If

ig. 9. Posterior predictive distributions for bipartite graph counts: observed count in 200
004 (dashed dot); posterior predictive distribution using posterior distribution of model
istribution with all parameters set to 0 (solid).
Fig. 8. A unimodal director two-star (S2B), and unimodal director triangle (TB).

the model is fit to observations x(t0) and x(t1), a third observation
x(t2), which is not used in fitting the model, may be used for model
evaluation. The idea is to assess how probable x(t2) is given x(t0)
and x(t1), unconditional on the parameters. The distribution of x(t2)
given x(t0) and x(t1) is unconditional on the parameters is the pos-
terior predictive distribution p(x(t2)|x(t0), x(t1)). Assuming that the
model is time-homogenous, the posterior predictive probability is
given by

p(x(t2)|x(t0), x(t1)) =
∫

p(x(t2)|�)�(�|x(t0), x(t1))d�, (7)

in which p(|�) is the model defined by (4) marginalised with respect
to the intermediate paths. It is very rarely possible to evaluate this
integral analytically. Instead, we have to rely on Monte Carlo meth-
ods. In practice we simulate from the model for different parameter
vectors, where we choose the parameter vectors in proportion to
their posterior probability, their probability given x(t0) and x(t1).
To choose these parameter vectors in proportion to their poste-
rior probability we take the parameters from our posterior MCMC
tion of a bipartite network—Peer referral in interlocking directorates.

sample.
Predicting the individual elements of x(t2) may not necessarily

be very informative and therefore we choose to look at a variety
of functions of the bipartite network, such as the one-mode degree
distributions and bipartite clustering. Since the inference for � given

5 (triangle); (true) posterior predictive distribution given observations in 2003 and
parameters conditional on given observations in 2004 and 2005 (dotted); base-line

dx.doi.org/10.1016/j.socnet.2010.03.001
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ig. 10. Posterior predictive distributions for bipartite director degree, unimodal bo
istributions in 2005 (circle solid line); columns left to right: base-line distribution

n 2003 and 2004; posterior predictive distribution using posterior distribution of m

(t0) and x(t1) was conditioned on the walk length and thereby
he sum of the variables vi(	, x) for each i, the posterior predictive
istribution is similarly conditioned on the number of changes per
oard and the number of these changes that involved recruiting or
eleasing a director. Note that when this approximation is used then
he posterior predictive distribution does incorporate information
bout the observation that is being used for validations and hence
he distribution is not strictly speaking a true posterior predictive
istribution as in (7).

We chose the observations in 2002 and 2003 as our x(t0) and
(t1) and use the posterior conditional on these two observations
o draw from our approximation of (7). The results for a collection
f graph functions are given in Figs. 9 and 10. For reference, the
orresponding graph functions under a random walk are included.
he random walk process is simulated in the same fashion as the
osterior predictive distribution but with all parameters set to 0.
his means that all sequences of changes that are concordant with
he data structure are equally probable.
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

We have fixed the board sizes and hence any variation in uni-
odal board triangles (TA in Fig. 7) is due to variation in overlapping

irector two-stars (SB2). Because of structural restrictions all three
f the models capture the unimodal director clustering (i.e. TB). In
he case of the random walk the ability to replicate TB is in some
odesic distribution, unimodal director geodesic distribution on logit scale. Observed
all parameters set to 0; (true) posterior predictive distribution given observations
parameters conditional on given observations in 2004 and 2005.

part due to over representing the number of unimodal director two-
paths (S2B, see Fig. 8). Consequently, if we were to compare the ratio
of the number of TB to S2B for the different models, and use that as a
measure of the unimodal director clustering, then the random walk
would not capture the unimodal clustering.

The forecast makes an accurate prediction for the three-paths
and four-cycles (Fig. 9). The random walks severely overestimates
the number of three-paths and underestimates the number of four-
cycles which, using the definition of Robins and Alexander (2004),
means that the bipartite clustering coefficient is underestimated.

As seen in Fig. 9, the prediction model does not quite capture the
number of SB3 (and neither does the model estimated using 2005).
The random walk more closely manages to capture the number
of SB3. As a result the random walk also captures unimodal board
triangles (TA) better but produces too many unimodal board two-
stars (S2A). Note that apart from directors that sit on many boards,
SB3, the other distinct underlying bipartite structure that yields TA

is a 6-cycle, C6. On the whole, the forecast, the random walk and
tion of a bipartite network—Peer referral in interlocking directorates.

the fitted model do an equally good job of predicting the bipartite
director degrees, or bipartite director stars, as seen in the top three
panels in Fig. 10.

We can claim to have captured the substantive element of TA,
unimodal board clustering. We could possibly have improved on

dx.doi.org/10.1016/j.socnet.2010.03.001
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he fit of S′
B3s but there is no substantive reason for including this

n the model for a boards satisfaction with a new configuration and
ven less so for including 6-cycles.

Thus, there is a clustering of boards that is unexplained by the
odel but that is likely to be the result of heterogeneity in the

opularity of directors. By the popularity of a director we refer
rimarily to his or her actual number of board appointments. Differ-
nces in popularity may be explained by underlying peer groups or
ay be reflected in or reflected by status and prestige. Differential

tatus and popularity could be captured by including further direc-
or attributes but there could also exist a self-organising principle
hat explains status through reputation (Useem, 1984; Kaplan and
eishus, 1990; Zajac and Westphal, 1994; Podolny, 2005). Whether
his status stems from the increased experience that comes with
eing central in the network or whether there was previously a peer
ependent selection process so that multiple interlocks merely
eflect high status and prestige in underlying social structures is
n open question.

As an example of how well the model captures the other
raph structures of the unimodal networks, we may compare
he observed distribution of geodesic distances to the predicted
Fig. 10). The model does surprisingly well but some thought must
e given to the inherent structural restrictions on the unimodal
epresentations. This is evident in the unimodal projections of the
raphs produced by the random walk in that the geodesic distribu-
ions closely resemble data. The random walk does however fail in
apturing the tail of the distribution, not giving enough probability
o long distances.

The prediction based on 2003–2004 largely replicates the
umber of four-cycles in 2005 (overall the number of predicted

our-cycles is a little lower than observed and as predicted using
005, which is a consequence of, among other things, the estimate
or 2003–2004 being lower than that for 2004–2005). The random
alk, by comparison, predicts far too few four-cycles. Since the ran-
om walk already predicts too few four-cycles it almost manages
o predict the number of CMW.

By including the base-line model we have shown that the fit
f our model is not an artefact of the restrictions stemming from
ooking at the evolution from one point in time to another—there is
ufficiently much change to highlight the processes at work in the
ata.

. Discussion

We introduced a model for bipartite evolution drawing on Sni-
ders’ work on stochastic actor-oriented models, and showed how
o apply this model for the study of interlocking directorates.
nalysing data on firms traded at the Stockholm Stock Exchange
etween 1996 and 2005, we found that creating four-cycles seems
esirable for corporate boards but that preserving them is not as

mportant. We conclude that this is a sign of peer referral in the
ecruitment process, and that this is central to the evolution of the
ipartite network. However, the increase in female directors during
he early 2000s is not associated with any peer referral, suggesting
hat women where assigned to boards through other recruitment

echanisms. Lastly we showed by using time-series forecasting as
ross-validation, that the fitted model managed to explain many
eatures of the data that were not explicitly modelled.

In addition to the analysis conducted here there are some exten-
ions that would be worthwhile pursuing. Although the strategic
Please cite this article in press as: Koskinen, J., Edling, C., Modelling the evolu
Soc. Netw. (2010), doi:10.1016/j.socnet.2010.03.001

nd instrumental interests of the corporations were not consid-
red here it would be possible and useful to incorporate firm
haracteristics (e.g., Mizruchi and Stearns, 1988) and business
roup affiliation (Smangs, 2006), as well as board composition
e.g., Ruigrok et al., 2006) and additional director attributes. The
 PRESS
works xxx (2010) xxx–xxx 13

literature also contains frequent mentioning of underlying net-
works and these could be taken into account to some extent by
including director affiliation network (clubs and affiliations from
e.g., who’s who). The question is whether the result would change
considerably or whether these affiliations are already channelled
through the social neighbourhoods and the peer referral process. A
slightly different perspective would be to fully investigate the co-
dependence of the board networks and other formal networks. It is
a reasonable suggestion that there is co-dependence between the
interlocking network and the ownership network (Bohman, 2006).
To analyse either one as evolving exogenously and independent of
the other would be similar to when dyadic board covariates are
employed. A more substantive interest would be to consider the
joint co-evolution of the interlocking directorate network and the
ownership network. Needless to say any of these further explo-
rations would require extensive data collection in addition to the
data that we had available for the current analysis.

For bipartite networks other than interlocking directorates
model specifications would necessarily have to be redefined to
reflect differences in boundaries, type of actions, etc. We believe
that the methodology as laid out here goes some way towards giv-
ing directions as to how that could be made and that this opens for
plenty of future applications, as do the opportunities to relax some
of the simplifying assumptions made here. In addition to these
extensions we could think of fitting a joint model for evolution
using change point analysis techniques or likelihood-based model
selection (Snijders et al., in press); treating changes in the popula-
tion using birth and death processes for directors and boards.
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