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Abstract 

We review the basic principles of the various coupled cluster (CC) methods based on an exponential 
form for the many-body wavefunction, and contrast them with the configuration-interaction ( CI) method. 
Particular emphasis is placed on their applicability to problems in quantum chemistry. We prove that 
in all cases we can construct an energy functional which variationally determines both the ground-state 
wavefunction and the dynamic equations of motion for nonstationary states. As a result the equations 
of motion assume the familiar classical canonical Hamiltonian form in some well-defined (multibody ) 
configuration space. We also thereby construct the expectation-value functional for an arbitrary operator 
in such a way that the Feynman-Hellmann theorem is preserved at all natural levels of truncation of 
the appropriate configuration space. We show in detail that only in the case of the recently introduced 
extended cc method ( ECCM) is the expectation-value functional expressed fully in terms of linked (mul- 
tilocal) amplitudes. The ECCM is thereby capable of describing such global phenomena as shape transitions 
and other stereochemical properties, and the large-scale behavior of the molecular energy surfaces. We 
illustrate our methodology on the one-body density matrix, which is now much more easily discussed 
than by conventional methods in quantum chemistry. 

In t r o d u c t i o n 

The coupled cluster method (CCM) is by now very well known in quantum 
chemistry and many areas of condensed matter physics as providing a very efficient 
fundamental formalism to include at the microscopic level the effects of quantum 
many-body correlations in both finite and extended systems. Recent reviews include 
those in Refs. [ 1-61. 

The original (single-reference) version of the method was invented by Coester 
and Kiimmel [ 71. Based on the work of Hubbard [ 81, they introduced the char- 
acteristic exponential parametrization of the exact ground-state ket wavefunction 
I qo) of the interacting N-body system, I qo) = exp( S )  I a), in terms of a suitable 
reference state I a), which for electronic-structure calculations, for example, is 
usually a Slater determinant of suitable single-particle orbitals (typically optimized 

International Journal of Quantum Chemistry: Quantum Chemistry Symposium 24, 197-21 1 (1990) 
0 1990 John Wiley & Sons, Inc. CCC 0020-7608/90/010197-15$04.00 



198 BISHOP AND ARPONEN 

at the Hartree-Fock level). A key feature of the method is that the cluster operator 
S (which is usually denoted as T in the quantum chemistry literature, following 
the essentially independent reinvention of the method by Cizek [9]) may then be 
perturbatively decomposed wholly in terms of linked or connected terms. (We note 
that at this level of discussion the terms ‘‘linked’’ and “connected” in the context 
of diagrammatic perturbation theory, are synonymous.) 

The ground-state Schrodinger equation, HI qO) = E0 I qo), is then written in 
the typical CCM form, 

(1)  
in which we see the very characteristic appearance of the similarity transformation 
that is another key feature of the CCM . The energy eigenvalue E0 is readily obtained 
as 

e-’HeSI CP) = E~ I CP) , 

Eo = (@le-’He’I@), (2 )  
where we have made use of the implied intermediate normalization (CP I qo) = I ,  
employed henceforth. The microscopic CCM equations for the matrix elements of 
the cluster operator, S, are similarly obtained by taking the overlap of Eq. ( 1 ) with 
all remaining states that span the N-body Hilbert space. These are typically and 
conveniently chosen in electronic-structure calculations, for example, as the n- 
particleln-hole (np-nh) states ( n  = 1, 2, . . . , N )  built on I @) in terms of the 
same complete single-particle basis used to construct I CP) itself. By contrast with 
the more primitive configuration-interaction (CI) method [ 101, the CCM estimate 
for the energy so obtained is size-extensive even when the operator, S ,  is truncated. 
This is manifested by the fact that the expression in Eq. ( 2 )  for E0 contains no 
unlinked terms, unlike its CI counterpart. Furthermore, the microscopic equations 
for the matrix elements of S contain no macroscopic terms that scale with particle 
number, N .  

The great attraction of the similarity transformation H = e-’HeS in Eq. ( 1)  is 
that, by using the fact that all partitions of S are composed of creation operators 
only with respect to the state I CP), we see that the well-known (and otherwise 
infinite) nested commutator expansion for H terminates after a finite number of 
terms. For example, this occurs at the term involving four powers of S if H contains 
at most two-body operators, as is the case for Coulombic systems. By now appli- 
cations of the method abound to a diversity of physical systems. Illustrative examples 
and some typical references include atoms and molecules [ 3,6,9,11-141, the ho- 
mogeneous electron liquid [ 2,I5- I7  1, atomic nuclei and extended nuclear matter 
[ 1,4,18], anharmonic oscillators [ 19-2 I], and systems in relativistic quantum field 
theory [ 221. In all of these cases, the quantitative results for the energies of the 
systems achieved by the CCM are at least as good as those achieved by any alternative 
microscopic method. Typical of the accuracy achievable is the case of the correlation 
energy for the electron gas, where over the entire density range of interest for real 
metals ( 1 5 r, 5 6), the CCM results [ 15,161 are accurate to better than about 1% 
by comparison with the essentially exact results of Green function Monte Carlo 
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calculations [ 231. In quantum chemistry the comparable goal of “chemical accu- 
racy” has been to calculate correlation energies to better than about 1 mH. This 
goal has now essentially been achieved by the CCM for several molecules of interest 
[ 12-14]. We also note in passing that this standard of success in quantum chemistry 
has recently led to the hope [24] that comparable methods may be applied to 
problems in relativistic quantum chromodynamics ( QCD) in order to achieve either 
higher accuracy than has proven possible with standard lattice Monte Carlo sim- 
ulations, or comparable accuracy with much reduced computational effort. 

In a typical quantum chemistry study involving molecules and their reactions, 
one may not only wish directly to calculate energies but also such other properties 
as energy gradients. Such calculations permit an efficient search of an energy surface 
in order both to locate such important features as minima and transition states for 
decomposition reactions, and to predict vibrational spectra. Other obvious properties 
of interest include, for example, spin-spin coupling constants and polarizability 
tensors. Now, the situation is less straightforward within the CCM for the calculation 
of observables or properties other than the energy. Thus, in order to calculate the 
expectation value d of an arbitrary operator, A ,  for example, we need also to par- 
ametrize the bra state. The most straightforward way, employed independently by 
Ciiek [9] and Fink [25], is to keep the bra and ket states manifestly hermitian- 
adjoint to each other, to give the expression 

A = (aleStAeSI a ) / (a leSteSIa)  (3a) 

= ( a . ~ ( e ~ ~ ~ e ~ ) ~ ~ a ) .  (3b) 

Although Eq. (3a) may also be reduced to the sum in Eq. (3b) of linked ( L )  
diagrams [ 9,251, there is no such automatic termination upon expansion in powers 
of S as occurs in Eq. (2).  Furthermore, when approximated by truncation, this 
method of calculation is in conflict with the important Feynman-Hellmann theo- 
rem, which implies that A should be calculated diagrammatically from the same 
set of diagrams for the energy, but in which each interaction potential is replaced 
in turn by the operator A [ 261. A more sophisticated method of calculating A 
within the CCM due to Kummel [ 271 is also in similar conflict with this theorem. 

Monkhorst [ 281 gave the first formulation of A within the CCM which is com- 
patible with the Feynman-Hellmann theorem, by using techniques of linear (and 
higher-order ) response theory, although he never introduced an explicit average- 
value functional. When supplemented by the introduction of basis set effects [ 291 
that are essential for the practical analytic evaluation of energy derivatives in quan- 
tum chemistry, this scheme has rather successfully been used [ 301 to predict vi- 
brational spectra and to locate transition states for decomposition reactions. 

Finally, one of the present authors has shown [ 3 I] how to introduce two different 
explicit CCM parametnzations of the bra state which are not manifestly hermitian 
conjugate to the ket state, but which both (i) lead to explicit functionals for an 
arbitrary average value 2, ( ii ) give compatibility with the Feynman-Hellmann 
theorem, and (iii) are derivable from a variational principle. The first of these 
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corresponds to a generalization of the method of Monkhorst [ 281, and is nowadays 
referred to as the normal CCM (NCCM). It parametrin,es the bra state ( *o I (with 
(Go I qo) = 1 ) in the form 

(Sol = (Glde-’, 

For the ground state, although 2 = (@ I fie-’AeSI a) is generally composed wholly 
of linked terms, it was shown that the operator d (composed wholly in terms of 
destruction operators with respect to I @)) contains unlinked terms. 

On the other hand, it was also shown that d could itself be written in exponential 
form, d = exp( %), in terms of a new (destruction) operator 2 which contains only 
linked terms. The corresponding complete parametrization of 2 in terms of the 
operators S and 3 is nowadays referred to as the extended CCM ( ECCM). Quantum 
chemists should beware however that this same terminology is sometimes used to 
indicate a truncated NCCM calculation which goes beyond the CCSD approximation 
(which includes singles and doubles only in terms of the n-body partitions of S 
corresponding to np-nh excitations from I (a)) or, equivalently, the SUB( 2)  level. 

One of the key distinguishing features of the ECCM which follows from its double 
exponential structure, is that by contrast with the NCCM and the CI method all of 
the basic amplitudes (which represent the matrix elements of the operators S and 
2) that completely characterize the system are linked-cluster quantities with well- 
defined diagrammatic representations. In turn they all thus obey the cluster property, 
namely that they become zero as any subset of particles described by the amplitude 
becomes far removed from the remainder. The entire system may thus be para- 
metrized in terms of a complete set of ECCM multilocal classical (i.e., c-number) 
amplitudes. We have shown elsewhere [ 321 how an arbitrary quantum-mechanical 
problem with underlying Schrodinger dynamics may be exactly mapped onto a 
classical field theory in which the ECCM amplitudes interact via nonlocal classical 
interactions. We have further shown [ 331 how these amplitudes may also be viewed 
as generalized many-body mean fields or quasilocal order parameters, by considering 
their small-amplitude dynamics around a stationary equilibrium point. 

Successful applications of the ECCM to date include the quantum fluid dynamics 
of a zero-temperature condensed Bose fluid [ 341, the problem of a charged impurity 
in a polarizable medium (of relevance to the important experimental tool of positron 
annihilation in metals, alloys, and other condensed matter systems) [ 351, and 
anharmonic oscillators and spin systems [ 361. Since virtually all of the very suc- 
cessful quantum chemistry CCM calculations to date have used the NCCM, one of 
our main aims here is to highlight the additional attractive features possessed by 
the ECCM which we hope may be of value for future applications in this field. 

Thus, we shall indicate how in its general dynamieal formulation the ECCM is 
capable of describing both equilibrium and nonequilibrium behavior, as well as 
such intrinsically nonperturbative aspects of many-body systems as spontaneous 



CORRELATIONS IN EXTENDED SYSTEMS 20 1 

symmetry breaking, phase transitions, and states of topological excitation or de- 
formation. It thus has the ability to describe simultaneously both local and global 
properties of the system. The latter would include for molecules, for example, both 
the stereochemical structure in real space, and the topology of the potential energy 
surfaces. 

In the next section we compare the CI, NCCM, and ECCM parametrizations at the 
most general level of their respective descriptions for a time-dependent state of a 
many-body system. We first show how each of them can be cast variationally from 
a stationary principle for the action functional, in terms of a canonical set of dy- 
namical equations of motion of similar generic form. We then indicate in the 
subsequent section, by specializing to the equilibrium ground state, how the three 
methods differ in their incorporation of the locality and separability features dis- 
cussed above, which are so important for extended systems. Our findings are sum- 
marized in the last section, and we compare the schemes presented here with other 
alternative coupled cluster ( CC) schemes for evaluating expectation values of ar- 
bitrary operators. 

CI and cc Dynamical Descriptions 

In a typical quantum chemistry calculation, the Hamiltonian is written in the 
occupation number representation as, 

H = 2 JJaIa, + 2 ( i j  1 I k l )a ja fa lak  = f + W ,  ( 5 )  
I , /  Li.k,l 

wherei, is a Fock matrix clement and (ij 1 I k l )  is an antisymmetrized two-electron 
integral, relative to a complete set of ( orthonormal ) molecular (spin-) orbitals de- 
fined in terms of the vacuum state I vac) and the corresponding creation and de- 
struction operators a f  and a, which satisfy the usual fermionic anticommutation 
relations. For the usual Hartree-Fock or self-consistent field ( SCF) case the one- 
body operator f is diagonal, 

t f= 2 c ia ia i .  
I 

A typical (normalized) N-body reference state I@) is then the usual Slater 
determinant formed from the N states { u: 1 vac); a = 1, 2, . . . , N }  of lowest 
energy G, 

N 

I+) = n uLIvac); (+I@) = I .  (7) 
a= 1 

Henceforth we use the convention that indices { a ,  p, . . . } label the hole states that 
can be created by removing a particle in I @), indices {a, q ,  . . .} label the remaining 
unoccupied or particle states, and indices { i, j ,  . . .} label a general (particle or 
hole) state. 
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We now introduce general creation operators X and destruction operators fwi th  
respect to the reference state I (a). Both contain rn-particlelrn-hole partitions with 
respect to [(a), with rn = 1, 2, . . . , N ,  

X =  e x m ;  f =  2 F,, 
m m 

1 x, = - c c ( ~ I " ~ ~ m ~ ~ m ~ ~ l " ' ~ m ) A ~ ~ l " ' ~ ~ m ~ a , ~ ~ ~ ~ ~ ~ ~  
( rn! )*  ,] . . . Pm ~, . . .a, 

(W2 .Prn .am 

- t 1 
Y,  = - 2 2 (al' "amlFmlpl* ' * p m ) A a L l  * "aarnaprn* ' .a,, > 

( 8 )  
where the suffix, A ,  indicates an antisymmetrized matrix element. Alternatively, 
in terms of a configuration index Z which represents the set of single-particle indices 
{al - - - p,, a ,  - * - a,}, we write in an obvious notation, 

x = 2 ' xrc,t , F = ' j [ C I  , (9)  
I I 

CI t -  - a,, t - * - a;rnu,m. - - a,, , I = {PI .  * *a,, ( 2 1 '  * *a,} , (10) 

and the sums on I in Eq. (9)  run over all possible rn-particle/m-hole configurations 
with respect to I (a), for rn = 1, 2, . . . , N .  We use the convention that the prime 
on the summations in Eq. (9)  indicate that we omit the (m = 0 or) Z = 0 config- 
uration of I (a) itself, where Ci = Co = 1, the identity operator. Alternatively, if 
we omit the prime from a sum on I ,  we include this Z I= 0 configuration. Thus, for 
example, 

( 1 1 )  

We denote the two sets of all such creation operators X and all such destruction 
operators F as W and @ respectively. Both sets include the identity. 

The time-dependent Schrodinger equations for exact ket states I \k) = I \k( t ) )  
and bra states ( @ I  = ( @ ( t ) l  are 

c cSp)((a~c,= n = ~(a)((a.~ + c~Jpq((a~c~.  
I I 

We choose the normalization such that (@ 1 \k) = I for all times, t .  Thus, when 
the Hamiltonian is hermitian (as usual), H = Ht, 'we have ( $ 1  = (\k I\k)-' 
X (\k 1 ,  where (\k I = ( I \k))t.  It is important to realize from the outset that it is 
not vital to preserve the hermitian conjugacy of I \k) iind (@ I at a given level of 
approximation, as we shall see below. In terms of the action functional, 
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Eqs. ( 12) are completely equivalent to the stationarity principle, 

Sd/S(91 = 0 = S d / S ( * ) ,  (14) 

for all independent variations in the bra and ket states such that IS*( t k ) )  = 0 = 

(S$(tk) l ;  k = 1, 2. 
Different parametrizations of the bra and ket states now lead to different imple- 

mentations of the stationanty principle. The most straightforward is the CI scheme, 

from which it is trivial to show that Eq. (14) leads to the canonical equations of 
motion, 

,d$ d H  
(16) 

where a= ( . k ( t ) l H l * ( t ) )  = H [ f i , k t ] .  Equations (16) are exact when the con- 
figuration space is not truncated, and otherwise lead to the standard CI equations 
if the indices Z are truncated. A typical SUB( n )  approximation limits the configu- 
rations Z to those defined in Eq. ( 10) with m I n.  For example, SUB( 3) approxi- 
mation keeps only the m = 1 (singles), m = 2 (doubles), and m = 3 (triples) 
configurations, to give what is more usually called the CISDT approximation in the 
quantum chemistry literature. 

- I - = -  dfi  aH 
dt afi dt d f i '  

i-=-. 

In the NCCM the ket state is written in the usual form, 

where k = k( t )  is a (c-number) time-dependent scale factor. We may now ask 
whether it is possible to parametrize the bra state (91 in a form which is not 
manifestly hermitian conjugate to I \k) but so that the canonical form of the equa- 
tions of motion, 

is preserved when { X I }  + { sI } . In other words, we now seek a NCCM parametri- 
zation of ( 9  I in terms of a destruction operator E @ with amplitudes { j j l }  as 
in Eq. (9)  canonically conjugate to the creation cluster amplitudes { sl} . It is easily 
seen that this is readily achieved by writing { j7,} --* {GI}, where 
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The NCCM thus fully parametrizes the system in terms of amplitudes { X I  + S I ,  

f I  4 G I } .  It has the great advantage over the CI method, where { x, +-A7 91 -+ 

f i }  , that an arbitrary average-value functional, A = (*( t )  I A I \E( t ) )  = A [XI,.&; t l  
is composed of fully linked terms only. 

Just as considerable advantages have accrued from writing the CI wave operator 
F i n  the linked-cluster exponential form F = exp(S), so it is now similarly advan- 
tageous to write f2 in what also turns out to be a linked-cluster form, 

d = exp(5) ; 5 = 2‘ G ~ c ~ ,  (20) 
I 

which defines the ECCM parametrization. Although the ECCM may thus be fully 
specified in terms of the amplitudes { s l ,GI} ,  these do not form a canonically con- 
jugate set in the sense of satisfying Eq. ( 18 ). Indeed, if we wish to keep the canonical 
form of Eq. ( 18) with { P I }  -+ { G I } ,  it is simple to see that the corresponding 
parametrization of the ket vector must be given in terms of a new creation operator 
Z E W, where 

Zl@) = QePSI@) ; Z = 2‘ aIC:,  (21 1 
I 

where Q = 1 - I @)( G 1 is the projector into the complementary space of the 
model reference state. Then the ECCM set of amplitudes { xI 4 uI, PI 4 G I }  also 
satisfies the canonical equations of motion ( 18). Equation (21) has the inverse 
transformations 

uI = (+IcIe’Sla) sI = ( @ . I c ~ ~ - ~ z ~ @ ) .  (22) 
Either of the sets { sI,GI} and { aI,GI} is thus complete and sufficient to specify 
the ECCM. 

We have thus seen how each of the three methods, namely (i) the CI method, 
(ii) the NCCM, and (iii) the ECCM, satisfies the dynamical equations of motion in 
the same generic canonical form of Eq. ( 18). The canonically conjugate basic 
operators { X ,  f } are respectively (i) { F,F}, (ii) { S $ } ,  (iii) { 2,2 } . Although 
the corresponding classical phase spaces, parametrized and spanned by the respective 
configuration-space (c-number) amplitudes { xI ,pI } ,  are in principle all equally 
complicated, the three individual forms of the Hamiltonian functional H [  xI ,yI; t ] 
lead to distinct differences. These are specifically reflecl ed in the respective locality 
and separability features of the three methods. Just as the NCCM has the well-known 
advantages in this regard over the CI method when we consider only the ground- 
state energy functional EO = E0[sI] of Eq. (2), so we shall see below that when 
considering an arbitrary expectation-value functional ii, and hence when we need 
to consider both sets of amplitudes { X I }  and { P I } ,  the ECCM has comparable ad- 
vantages over the NCCM . We also note that all three methods can be systematically 
approximated in terms of a SUB( n) truncation scheme for the respective canonical 
parameters { x I , $ I } ,  in which only n-tuply excited configurations described by the 
indices I are included in the sums on I .  This results in finite expressions for the 
energy in each case. 
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Stationary Ground-State Descriptions and Diagrammatics 

We first remark that from Eqs. ( 17) and ( 19) we see that the NCCM amplitudes 
{ G I }  are just given by the average values of the corresponding creation operators, 
GI = ( C ! ) ,  and hence it is clear that these are not linked quantities. Conversely, 
the definition in Eq. (20) shows that the linked ( L )  parts of these averages are 
precisely the corresponding ECCM amplitudes, GI = ( C:), . Furthermore, it is clear 
from the definition in Eq. (22) that the remaining ECCM amplitudes { uI} are also 
linked provided that the NCCM amplitudes { s I }  are. As is well known, the fact that 
Hubbard [ 81 has shown that the operator S for the exact ground state I qo) is just 
such a sum of linked diagrams, lies at the heart of the entire cc methodology. 

In order to make further contact with the diagrammatic expansions of many- 
body perturbation theory ( MBPT ), it is convenient to specialize the above dynamical 
treatment to the stationary (in time) equilibrium values of the various parametri- 
zations { x, ,JI}  that characterize the exact ground-state eigenvalues I qo) and 
(?to I .  In this case the generic variational equations ( 18) become simply the sta- 
tionanty conditions, dHld?/ = 0 = dH/dx l ,  for the energy expectation value. For 
the NCCM, where H = (@16e-’HeSI@) and xr + sI ,  --* G I ,  these equations 
trivially become 

(@ICIe-’HeSI@) = o ;  Z Z O ,  (23) 
( @ l f i e - ~ [ ~ , ~ l l e ’ ~ @ )  = o ; I +  0 .  (24) 

Equation (23) is just the usual coupled set of ( finite-order) CCM equations for the 
amplitudes sI, and Eq. (24) is its counterpart for the amplitudes GI. By making 
use of Eq. ( I  1 )  it is clear that Eq. (23) is equivalent to the Schrodinger Eqs. ( 1 )  
and (2) for the ground ket state. Furthermore, Eqs. (24) and (23) together similarly 
lead to the comparable bra-state equation, 

( 1 fie-S(H - Eo)eS = o . (25) 

In the practical schemes to utilize the NCCM or the ECCM, we now typically solve 
Eqs. (23) and (24) with the corresponding amplitudes restricted to the SUB( n )  
truncation scheme. In such cases the restricted ket vectors exp(S) 1 a) and bra 
vectors ( @ I 6 exp( - S )  or ( @ I exp( 2) exp( - S )  do not fully span the entire Hilbert 
space, and the corresponding variational calculations are only approximate. We 
further note that although both CCM calculations are variational, they do not nec- 
essarily give upper bounds for the energy eigenvalue Eo in SUB( n )  approximations. 
Thus, the quantity ( ?t I ( H  - Eo) I q)/ (?t I q) is only manifestly positive-semi- 
definite for all wavefunctions I JI) and (?t I when (?t I cc ( I @))+, as in the CI 
method, but not in either the NCCM or the ECCM. 

Our methods so far have been to treat the amplitudes { xI,yr}  as variable param- 
eters to be determined by a variational principle. These methods and the truncation 
schemes are quite self-contained and fully prescribed. Nevertheless it is useful to 
make contact with the diagrammatic expansions of MBPT. In order to do this we 
now restrict ourselves to the canonical SCF case where the one-body term f in  the 
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Hamiltonian is diagonal and given by Eq. (6). It is then easy to evaluate explicitly 
the termf= (Go I f 1  qo) from the energy expectation value, H = f +  w, in each 
of the three representations, since in this case the complete set of states I @) and 
C: I are eigenstates off, 

N 

f l @ )  = &,I@); 6 0  = c &a, 
a= I 

fc: I+>  = (6, + e I > d  I@) ,  
m 

eI = 2 (cP, - em,)  ; Z = {pl - - - pm, a1 - - a m }  . (26) 
I =  1 

In the CI representation it is then trivial to see that 

f =  ( @ l @ F l @ )  = 6, + (@lP(f- G,)FI@)  = 6, + CteI$ l f i ,  (27) 
I 

by an obvious insertion of the complete set of states of Eq. ( I I ). Furthermore, 
since each term in Eq. (6 )  contains exactly one creation operator with respect to 
I a), namely at, or a,, and since S similarly contains only such creation operators, 
we have 

e-sfe" = f + [fSI > (28) 

where the higher-order terms in the nested commutator expansion vanish identically. 
We then similarly find that the NCCM expansion forfis 

f= ( @ I  de-'feS/ @) = Go + ( @ I  f i ( f -  Go)SI  @) = 6, + C' eGIsI. 

Finally, the ECCM expression is obtained by replacing d --* exp( 2),  to get 

(29) 
I 

f= + e'(f- &,)e-'e'SI@). (30) 

A similar expansion to that in Eq. (28) for the similarity transform in Eq. (30), 
then leads to the expression 

f =  6, + ( @ / 5 ( f -  &,)zI@) = 6, i. C t e I Z I u I ,  (31 1 
I 

where we have used the definition of Z in Eq. (2  1 ). 

has the same generic form for the energy expectation value, 
We thus see from Eqs. (27) ,  (29), and ( 3 1 ) that each of our three representations 

H = H[xI , y I ]  = Go + ' eIx& + W [ x I , j I ]  , (32)  
I 

and they differ only in their explicit form for the potential energy average-value 
functional w. The stationarity principle therefore leads in each case to the generic 
Dyson equations for the amplitudes, 
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We now see the factors eI appearing in the familiar guise of energy denominators. 
The iterative solutions of Eq. (33 )  lead to sets of terms which can rather obviously 
be placed in a one-to-one correspondence with classes of MBPT (Goldstone) 
diagrams. 

The CI functional w = w[&,$], 
w =  c wIJ$h; WIJE ( @ I c ~ w c J I * ) ,  (34) 

I J  

has the great merit of simplicity but clearly suffers from the well-known inclusion 
of disconnected terms and the consequent lack of size-extensivity. Equations (33 )  
and (34)  lead to the usual sets of linear CI equations, 

(35 )  

from which it is clear that both sets of amplitudes { fi} and {$) contain discon- 
nected terms. 

erfi + C wIJh = 0 ; el$ + C 5w.r = 0 , 
J J 

By contrast, the NCCM functional w = w[ sI,Gr] is fully connected, 

W[sI,i jI]  = ( @  1 6e-SWeSI a) = 2 7 (a I 6( W S " ) ~  I @) , 

where the linking (L) now comes from the nested-commutator expansion. Whereas 
the amplitudes { s I } ,  now given by Eqs. (33 )  and ( 3 6 )  as solutions to the usual 
nonlinear coupled CCM equations, 

(36 )  
4 1  

"-0 n.  

1 4 1  

are self-evidently linked, the amplitudes { G I }  still contain unlinked terms. 
Finally, the ECCM functional w = w[ aI,ZI] is obtained from Eq. (36 )  by the 

replacement 6 + exp( 5) .  By a rather straightforward expansion of the resulting 
expression into diagrams, and by using the definition of Eqs. (2  1 ) and (22 ) ,  it is 
not difficult to see that w[ aI,ZI] now has an even more connected form, which 
can be written formally as 

where, as before, the linking (L) constraint requires that each a-amplitude must 
be connected (by at least one particle or hole line) to the interaction operator W, 
and the double-linking (DL) constraint requires that if a Z- amplitude is not also 
similarly connected directly to W, it must be connected to at least two different a- 
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amplitudes. It is then easy to see that this extra connectivity of w ensures that all 
ECCM amplitudes { a,,GI} are fully connected. It is this basic property which ensures 
that at all SUB( n )  levels of approximation within the ECCM: ( i )  the size-extensivity 
and size-consistency properties are obeyed, (ii) both the bra and ket wavefunctions 
are properly (multiplicatively) separable in the dissociation limit, and (iii) all of 
the basic amplitudes { ar,Zr} exactly obey the cluster property. It is this latter prop- 
erty which in particular distinguishes the ECCM from both the NCCM and the CI 
method, and which makes the ECCM alone capable, at least in principle, of describing 
global properties of a system as well as the local properties which are so well handled 
by the NCCM . 

We remark finally that the NCCM linking ( L )  properties encapsulated in Eq. 
( 3 6 )  are rooted ultimately in the single similarity transformation induced by the 
operator exp( S), and the ECCM double-linking ( 3 L )  properties encapsulated in 
Eq. ( 3 8 )  are comparably rooted in the double similarity transformation induced 
by the two operators exp(S) and exp( 5 ) .  The structure of the corresponding dia- 
grammatic expansions for %‘ can be further analyzed in terms of generalized tree 
diagrams with specific generalized time-ordering ( GTO) properties [ 371. The NCCM 
has well-known GTO properties “backwards in time” corresponding to the linked 
nature of the creation amplitudes { s I }  . The GTO property is a useful device for 
classifying and combining certain classes of Goldstone MBPT diagrams. It is based 
on the property of Goldstone diagrams containing disjoint sets of particle and hole 
lines, which permits a factorization of the corresponding energy denominators across 
such sets of lines after all time orderings are combined which preserve their particle 
or hole nature. The linked nature of both sets of amplitudes { ur}  and { ZI} in the 
ECCM similarly leads to this method being diagrammatically decomposable in terms 
of generalized tree diagrams which have the GTO property both forwards and back- 
wards in time. The interested reader is referred to the literature [ 31,381 for further 
details. 

Discussion 

We first recall that due to their derivation from a stationarity principle, both 
versions of the CCM presented here share with the CI method that they satisfy the 
Feynman-Hellmann theorem. Thus, if when H undergoes a perturbation H + 

H + 6H,  the corresponding wavefunctions undergo first-order changes I\k) + 

I \k) + I6\k) and ( @ I  + (@ I + ( 6 9  I so that the normalization ( @ I  \k) = 1 is 
maintained, then 

6H = ( @ 1 6 H I \ k ) .  (39 )  

Equation (39), true for the exact wavefunction, is thus shared by each of the CI, 
NCCM, and ECCM schemes in suB(n) approximation. It ensures that the expectation 
value of an operator and the energy derivative of a Hamiltonian perturbed by that 
operator are equivalent. This is of particular importance in quantum chemistry 
since it provides a simple alternative method for calculating such properties as 
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gradients (which may derive, for example, from nuclear displacements or external 
fields) or moments. Furthermore, the satisfaction of the Feynman-Hellmann theo- 
rem ensures the usual "( 2n + 1 ) rule" of perturbation theory, namely that a knowl- 
edge of the perturbed energy eigenfunction to nth order leads to a value for the 
perturbed energy eigenvalue to (2n + 1 )th order. Thus, a knowledge of the first- 
order perturbed amplitudes { 6 ~ , , 6 ~ ~ }  suffices to evaluate second and third energy 
derivatives, 

S 2 H =  (@IS2HI\E) + (SGIsHIq + ( 5 ! 1 6 H p P ) ,  

S 3 H =  (@1S3H1\E) + 3(6@la2H1\E) + 3(@162H169) 

+ 6(6@1(6H- 6H)I6*) ,  (40) 

which can be used for such properties as force constants, magnetic susceptibility 
tensors, and the hyperpolarizabilities of interest for nonlinear optical behavior. 

The rather small price that has been paid in these cc methods is the doubling of 
the number of independently determined amplitudes, which has arisen from giving 
up the explicit adjoint symmetry between the bra and ket states. This lack of manifest 
adjoint symmetry in the NCCM and ECCM also loses us the variational upper bound 
on the energy which the CI method retains. We see clearly that one must generally 
choose between maintaining the bound and maintaining the size-extensivity prop- 
erty. However, since only energy differences are physically observable in quantum 
chemistry, the loss of the bound for absolute energies is no real loss in practice. 

The NCCM considered here may be compared with the alternative CCM technique 
for observables of Luhrmann [ 391. His method is identical to ours except for the 
construction of the {GI} amplitudes. While his { sI} amplitudes are calculated as 
in our Eq. (23), he chooses to calculate the set {GI} not from Eq. (24) but by 
preserving the exact adjoint relation ( C ! )  = ( CI)* in SUB(n) approximation, so 
that 

ij, = (+.(l;e-SC,esl+)* (41) 

in his method. It is easy to see that this method does not preserve the Feynman- 
Hellmann theorem. 

Finally, two other cc methods for calculating average values, which Bartlett 
refers to as the xcc (expectation-value CC) [9,25,40,41] and ucc (unitary CC) 
methods [ 4 1,421, have been discussed recently within quantum chemistry. The 
xcc method is based on Eq. (3) ,  while the ucc method is based on a unitary 
ansatz [ 421, 

where 7 = S - St = - T +.  Unlike the NCCM and ECCM expansions for 2, both the 
xcc and ucc expressions in Eqs. ( 3 )  and (42) lead to an infinite series of terms, 
even in SUB( n )  approximation, rather than terminating into a closed form. However, 
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they may still be approximately implemented by  further truncating, for example, 
so that the energy is correct to some given order in Win MBPT. The upper bound 
for the energy is thereby lost by both methods, even though they do preserve the 
explicit adjoint symmetry. The ucc method in this perturbative nth order truncation 
scheme does however preserve the (generalized) Feynman-Hellmann theorem, 
whereas the xcc method does not [4  11. 

It seems clear from our discussion that both the NCCM and ECCM presented here 
are intrinsically more powerful, more systematic, and more consistent than any of 
these alternative techniques. It is our hope and expectation that the ECCM in par- 
ticular will find rich applications in quantum chemistry both for the practical analytic 
evaluation of such local properties as the energy derivatives of great current interest, 
as well as for more global properties. We presume that these latter, which include 
topological excitations and phase or shape transitions, will become of increasing 
interest as the molecules under scrutiny become more complex, or as the studies 
are broadened to include such extended systems as polymers and solids. 
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