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Abstract—This paper proposes a methodology to efficiently es-

timate the probability of small-disturbance rotor angle instability 

of uncertain power systems. Traditional Monte Carlo (MC) ap-

proaches are computationally intensive and inefficient, 

particularly when used to study low probability conditions which 

result in small disturbance instabilities and develop into serious 

outage events high impact. The proposed methodology uses im-

portance sampling to focus on conditions which contain the high 

information content required to make relevant decisions about 

low probability events.  Latin Hypercube Sampling (LHS) is used 

to efficiently bound the search space and identify operating con-

ditions leading to a marginally stable or unstable system 

response. The proposed approach is demonstrated on a model of 

a multi-area transmission network with a significant capacity of 

intermittent generation connected through a multi-terminal 

Voltage Source Converter-based High Voltage Direct Current 

(VSC-HVDC) grid. It is demonstrated that the methodology 

yields accurate results with just a small fraction of the sample 

points required using a conventional numerical MC approach.  

 
Index Terms—Eigenvalues, electromechanical oscillations, 

importance sampling, instability, Monte Carlo, probability, small 

disturbance stability, uncertainty.  

I.  INTRODUCTION 

OWER systems are operated under increasingly variable 

conditions due to the proliferation of intermittent renewa-

ble energy sources and new types of system loads. There is 

also a drive for greater asset utilization to improve the effi-

ciency and economics of power networks which is resulting in 

operation closer to system capacity limits. With systems more 

exposed to uncertain and variable conditions, standard deter-

ministic approaches towards stability and security analysis are 

inadequate. Probabilistic studies are required to correctly rep-

resent the variability inherent in power system operation and 

to provide statistical results that incorporate uncertainty. 

Small-disturbance stability relates to the ability of a power 

system to maintain stability following the small variations that 

naturally and continuously occur during daily operation. As 

synchronous generators regain stability following disturb-

ances, oscillations are seen in their rotor speeds, resulting in 
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power oscillations throughout the system. Low frequency in-

ter-area electromechanical oscillations (or modes) are inherent 

in all large power systems [1], and can be exacerbated by in-

creased power transfer across key transmission corridors and 

the use of high gain excitation systems to enhance the transi-

ent stability of power systems. Furthermore, future power 

systems may be characterized by reduced capacity margins, 

fewer conventionally regulated generation units, and lower 

system inertia (caused by converter-connected renewable en-

ergy sources). In such systems, there is an increased likelihood 

that troublesome inter-area modes develop into potentially un-

stable conditions requiring increased monitoring and control. 

The importance and benefits of probabilistic approaches for 

power system stability analysis has been highlighted in previ-

ous research [2]–[4]. These studies demonstrated accurate 

depictions of the modal variation in the case of uncertain op-

erating conditions. They, however, are dependent on 

numerical Monte Carlo (MC) sampling and the large number 

of required samples (typically thousands) can limit their po-

tential use for practical size systems. The standard MC-based 

approach applied to realistic size power systems can be too 

computationally intensive for fast assessment applications or 

for repeated probabilistic studies, particularly when identify-

ing low probability conditions which may develop into serious 

outage events with high impact. 

Different approaches have been proposed in the past to at-

tempt to reduce the computational burden of these 

probabilistic stability studies whilst maintaining the accuracy 

and detail of the results. Point estimate methods [5], [6], ana-

lytical cumulant-based approaches [7], [8], and the 

probabilistic collocation method [9], [10] can all be applied to 

probabilistic small-disturbance stability studies – though much 

of the focus has been on probabilistic load flow to date. All of 

the above methods can be used to derive the probability densi-

ty functions (pdfs) of a variable system output based on known 

input uncertainty using significantly fewer sample points than 

required for traditional numerical approaches. 

The efficient sampling approaches detailed in [5]–[10] can 

provide very accurate results when the output pdfs are sym-

metrical (or nearly symmetrical with low skewness). However, 

although they do not impose Gaussian representations, it has 

been observed that they become less efficient and more inac-

curate when distributions are long-tailed. It has been observed 

in the past, and also shown within this study, that in the case 
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of probabilistic small-disturbance stability studies, the result-

ing pdfs of modal damping factors can be extremely skewed. 

The methods proposed in [5]–[10] are therefore unable to pro-

vide sufficiently accurate results and so an alternative efficient 

estimation approach is required. 

The methodology proposed in this paper to resolve the 

above issues is based on the concept of importance sampling. 

Importance sampling has been used in reliability studies [11], 

[12] and in machine learning applications [13], [14] in the past 

to focus sampling effort on the high information content areas 

of search space in order to make decisions about low probabil-

ity events. The approach is analogous to the intensification 

rules utilized within tabu search optimization to bias effort 

towards promising search space regions [15]. For application 

with probabilistic small-disturbance studies, discussed in this 

paper, the importance sampling concept is combined with an 

efficient Latin Hypercube Sampling (LHS) based operational 

search space characterization to initially identify marginally 

stable or unstable conditions. Furthermore, the balance be-

tween efficiency and accuracy of the approach is discussed 

and appropriate threshold parameters introduced. The method-

ology is demonstrated using a multi-area transmission network 

with significant portion of intermittent generation connected 

through a multi-terminal VSC-HVDC network.  

II.  METHODOLOGY 

This section will describe the benchmark approach – the 

traditional Monte Carlo approach – before describing the steps 

of the proposed novel efficient method.  

A. Monte Carlo Approach 

The traditional numerical Monte Carlo (MC) approach, 

which relies on extensive and repeated random sampling of 

system uncertainties [16], provides the benchmark which the 

proposed methodology is (and other similar approaches have 

previously been) assessed against in terms of both accuracy 

and computational burden.   

For each input set, randomly generated using the MC ap-

proach, a deterministic study is performed (consisting of load 

flow, system linearization, eigenvalue analysis, and modal 

identification) in order to calculate the details of critical sys-

tem mode. It is necessary to run very large numbers of full 

deterministic studies to ensure that the distribution of output 

variables accurately represents the true system behavior and 

that all relevant combinations of input variables are taken into 

account. This is a significant limitation with respect to the ap-

plication of the MC method for probabilistic studies of large 

power systems (using standard computational hardware).  

In this work, the stopping rule (1) is used to limit the num-

ber of simulations.  
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In (1),  1   is the inverse Gaussian conditional proba-

bility distribution (cdf) with a mean of zero and standard 

deviation of one,  2   represents the variance of a sample, 

  represents the desired confidence level, and 
N

X  is a sam-

ple of measured outputs consisting of N samples. This rule, 

from [2], is based upon calculating the error of the sample 

mean 
N

X  (compared to the unknown population mean). Sim-

ulations are stopped if the sample mean error
NX

 falls below a 

specified threshold. In this work, 0.01   and MC simula-

tions are stopped when 0.01
NX

  to ensure 99% confidence 

that the difference between the true and sampled mean values 

is less than 1% of the true mean value. 

B. Overview of the Proposed Methodology 

Whilst the traditional numerical MC approach could pro-

vide sufficiently accurate results, the number of simulations 

required may be extremely high. The aim of this research is to   

focus the analysis on conditions which lead to marginally sta-

ble or unstable system behavior and avoid wasting 

computational effort on large numbers of stable conditions. 

This approach is loosely termed importance sampling – an 

MC variance reduction technique in which the sampling pro-

cess is re-oriented towards a desired region of the search space 

[11]–[14]. The proposed methodology can be summarized as 

follows: 

1. Identify and bound conditions leading to unstable or 

marginally stable system oscillations. 

2. Simulate conditions within these bounds only to collect 

samples of unstable and marginally stable scenarios. 

3. Fit a probability distribution to these sampled points. 

4. Determine the probability of instability from the gath-

ered data. 

Each step of this methodology is subsequently described 

fully using theoretical examples for clarity. 

C. Establishing Conditions Resulting in Poor Performance 

Each uncertain system parameter  represents an additional 

dimension in the operational search space. Initial deterministic 

simulations are required to characterize this operational search 

space and establish which conditions result in poor system 

performance. The simplest approach is to divide this n-

dimensional search space into a number of smaller hypercubes 

and test the performance in each one [11], [14]. This approach 

is easily implemented and results in a very thorough character-

ization of the search space. However, for m subdivisions of 

each dimension, a total of mn simulations are required, and the 

technique quickly becomes unsuitable as n rises. The novel 

methodology proposed in this paper makes use of efficient 

search space sampling techniques to quickly identify the re-

gions of poor performance. 

1) Search Space Characterization 

It is proposed that search space characterization is per-

formed using only a small number of samples. This limited 

number of samples is selected across the entire search space 

(with variations in all dimensions) and the system perfor-

mance is assessed at each point. This results in a set of system 
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operational scenarios and their corresponding measures of sys-

tem performance. For this work concerned with small-

disturbance stability, the critical mode damping factor ζ  

serves as an ideal measure of system performance – describing 

the dominant post-disturbance oscillatory nature of the power 

system. Full deterministic studies are performed for each op-

erational scenario to determine ζ. 

2) Linear Regression Model 

A simple linear regression model is produced from the set 

of operational scenarios and observed ζ values [17]. This 

model can subsequently be used to provide an estimate of the 

critical mode damping ̂  for any set of uncertain system pa-

rameters  1 .
n

    This linear regression model is 

determined by finding the set of coefficients  that satisfy the 

equation   Γ , in which Γ is a matrix whose rows contain 

the uncertain parameters Γ corresponding to the observed val-

ues in ζ. 

It should be noted that it is not being suggested that ̂  will 

be an extremely accurate estimation of ζ, this is not the pur-

pose of the model, nor can the system complexities and 

nonlinearities be captured using such a simple model. This 

linear regression model is used to point towards the regions of 

the search space which are likely to result in poor perfor-

mance. These regions will then become the focus of more 

sampling, ensuring the computational effort is directed at the 

areas of the search space with high information content. 

3) Latin Hypercube Sampling 

The generation of the sampling points is completed using 

Latin Hypercube Sampling (LHS) to ensure that the whole 

search space is evenly sampled. For LHS, each dimension is 

subdivided and sample points are selected so that each subdi-

vision of each parameter is selected once. Furthermore, 

samples are selected which maximize the minimum distance 

between sampled points in the multidimensional hyperplane – 

further improving the search space coverage. 

The difference between random sampling and LHS within 

the same intervals is shown in Fig. 1. It is clear that random 

sampling may result in large areas of the search space not be-

ing sampled. It is highly important that all areas are evenly 

sampled to capture the low probability unstable conditions. In 

this research, equidistant (as opposed to equiprobable) points 

are used to ensure sampling of the tail regions of distributions. 

It should be noted that other methods such as low discrepancy 

sequences or ΛΠ  sequence-based sampling which also ensure 

even search space sampling could be used if desired [18], [19]. 

 
Fig. 1: Comparison of random and Latin hypercube sampling examples 

in two dimensions (every row and column is sampled with LHS). 

 

Care must be taken when scaling this approach to applica-

tions with very large numbers of uncertainties as, like many 

sampling processes, LHS suffers from the curse of dimension-

ality. Optimizing designs to ensure good space filling 

properties as n increases becomes increasingly difficult. One 

possible solution is to identify and focus on the uncertainties 

which are most critical in determining system performance 

and therefore reducing n. However, this is a non-trivial task, 

requiring a global sensitivity analysis across all uncertainties 

and the entire search space. In many instances, a brute force 

approach to such a study would be far more computationally 

expensive than the probabilistic study itself. 

D. Importance Sampling 

The linear regression model can be used to identify the re-

gions of the operational search space that should be sampled. 

Importance sampling describes a variety of techniques which 

aim to redirect the sampling process to regions of distributions 

that are of greater importance [11]–[14] . In this work, this is 

achieved by scaling the multivariate pdf.  

The degree of pdf region scaling can be variable and is used 

at its extreme in this work so that only samples which fall in-

side the identified boundaries are sampled. An example of this 

is illustrated (in two dimensions) in Fig. 2 in which it is as-

sumed that the boundaries of the generic uncertainties 
1  and 

2  have been determined (as described in the following sec-

tion). It is important to note that the shape of the probability 

distribution within the boundary region is retained. 

 
Fig. 2: Example of the extreme importance sampling used (in two dimen-

sions) – only the highlighted region is sampled. 

 

The linear regression model can be used to map the esti-

mated multi-dimensional boundaries that enclose a given level 

of system performance. The system performance is bounded 

using a damping estimate threshold ˆ thresh , below which per-

formance is deemed poor (and sampling is required). The 

multivariate pdf describing the entire system operational 

search space can be subsequently scaled so that regions out-

side these boundaries have a probability density of zero, and 

so that the multidimensional integral of the retained pdf equals 

one. The resulting pdf will have discontinuities at boundaries 

and will require a complex mathematical description. 

For practical implementation, it is far simpler to generate 

samples from the whole distribution (i.e. the wireframe pdf in 

Fig. 2), determine ̂  using the linear regression model, and 

discard sample points which result in modal damping esti-

mates above ˆ thresh  (i.e. the samples that are outside the 

boundaries of 2

boundaries of 1

region of multivariate 

probability distribution 

from which samples 

are drawn
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highlighted region in Fig. 2). The computational burden of 

generating points from the whole pdf and testing them with the 

regression model is negligible compared to the full determinis-

tic studies. This practical implementation, therefore, does not 

reduce the improved efficiency of the proposed methodology.  

For each retained sample (from the shaded area in Fig. 2), a 

full deterministic simulation is performed and the critical 

mode damping recorded. The aim is to collect samples which 

result in system performance below the damping exceedance 

threshold thresh

exc
 . In this work where performance degrades 

with decreasing damping, the term exceedance is used to de-

scribe values below the threshold. Only the exceedance 

samples below this threshold will be used when fitting the fi-

nal distribution and determining the probability of instability. 

This threshold value is set close to the stability boundary. The 

exceedance region of the search space must be enclosed by the 

importance sampling region – therefore ˆ thresh  should be set 

greater than thresh

exc
  to allow for the errors introduced by the 

linear regression model. In this work, ˆ thresh  is set as three 

times the standard deviation of the regression model residuals. 

Assuming an approximately Gaussian residual error distribu-

tion, this 3  value will ensure that the vast majority of 

measured ζ values below zero are captured. This sampling 

must continue until a sufficient number of exceedance samples 
req

exc
n  are collected to accurately fit a distribution.  

E. Fitting a Distribution 

Once the required number req

exc
n  is obtained, distribution fit-

ting can be completed. The ultimate purpose of the previous 

steps (identifying regions of poor performance, and im-

portance sampling) is to generate samples which populate the 

tail region of the whole pdf of critical mode damping. By us-

ing only the exceedance values it is possible to fit a 

Generalized Pareto (GP) tail distribution from which the final 

probability of instability can be determined. A GP distribution 

is described by (2) for exceedance values 
exc

 . 

1
1

1
1

k
exc

k
y


 

 
  

   
  

 (2) 

In (2), k represents the shape parameter and  is the scale 

parameter (commonly , but called  here to avoid confusion 

with standard deviation). Distribution fitting can be completed 

using a wide variety of software programs. The GP distribu-

tion is often used to represent the tail regions of pdfs [20]. 

F. Determining the Probability of Instability 

The final probability of instability  0%P    can be ap-

proximated using (3). Each term in (3) is determined during a 

different stage of this proposed methodology and all are re-

quired to produce an accurate estimation of the probability of 

instability. Note that this is only an approximation (as are all 

sample-based methodologies including the full MC approach). 

In the following sections, the terms sampling and sampled 

points refer to the importance sampling stage and not the ini-

tial LHS used to generate the linear regression model. 

   
 
 

ˆ ˆ0%

ˆ ˆ|

ˆ ˆ0% | ,

thresh

thresh thresh

exc

thresh thresh

exc exc

P P

P

P

  

   

    

  

  

   

 (3) 

1)  ˆ ˆ thresh
P    

The first term in (3) is the probability that the estimated 

damping is less than ˆ thresh . This represents the proportion of 

the whole search space which is sampled. It can be determined 

empirically from the number of sampled points 
s

n  and the 

number of discarded points 
d

n  as  s s d
n n n . However, this 

may be subject to errors caused by the relatively small values 

of 
s

n  and 
d

n . Instead, it is advised that an additional analysis 

is completed using a large number of generated candidate in-

put sets Γ to determine  ˆ ˆ thresh
P    more accurately, as the 

computational burden is negligible.   

2)  ˆ ˆ|thresh thresh

exc
P       

The second term in (3) is the probability of sampling a 

point with a modal damping value below the exceedance 

threshold thresh

exc
  (conditional on the point having been sam-

pled). As sampling is completed until req

exc
n  exceedance points 

are obtained, this probability can be calculated empirically as 
req

exc s
n n . However, this is again likely to be subject to errors 

caused by the small sample sizes. It is not possible to run an 

additional large sample size as the process requires full deter-

ministic studies which are the source of the computational 

burden. Rather, a kernel smoothing density estimate can be 

used to produce a pdf for all sampled points [21]. This can 

subsequently be used to determine the probability of exceed-

ing the threshold. The use of a smoothing density estimate 

reduces the error introduced by the small sample size. 

3)  ˆ ˆ0% | ,thresh thresh

exc exc
P         

The final term in (3) is the probability that an exceedance 

sample will be unstable. This probability is conditional on the 

fact that the point must be sampled, and the measured damp-

ing must be less than thresh

exc
 . This probability is calculated 

from the exceedance value GP distribution. It is also possible 

to calculate confidence intervals on this probability (based on 

the confidence intervals of the GP fit). A summary of the full 

proposed methodology to efficiently estimate the probability 

of small-disturbance instability in uncertain power systems is 

presented in Fig. 3. 

G. Methodology Generalization 

It should be noted that determining the probability of insta-

bility is simply a special case of determining the probability of 

damping to be less than a given boundary (in this case zero). It 

is also possible to use the same methodology to determine the 

probability of poorly damped oscillations by simply selecting 

boundary greater than damping equal to zero. The methodolo-

gy will be valid provided the tail region of the true damping 
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pdf is being sampled. Provided that the probability of poorly 

damped oscillations is low, we can be confident that sampling 

is occurring from the distribution tails. Therefore the applica-

bility of the methodology extends beyond instability 

determination, improving its practicality further. 

 

 
Fig. 3: Flow chart summary of the proposed efficient methodology.  

III.  TEST NETWORK & SYSTEM UNCERTAINTIES 

The methods described within this paper are illustrated us-

ing a heavily modified version of the 16 machine, 68 bus 

reduced order representation of the New England Test System 

and the New York Power System (NETS & NYPS). The net-

work (including modifications) is shown in Fig. 4. System 

analysis and simulations are all performed within the 

MATLAB/Simulink environment making use of modified 

MATPOWER [22] functions to perform optimal power flows. 

A. System Details 

Generators G1–13 are modeled and controlled as detailed in 

[23] with G1–8 under slow DC excitation (IEEE-DC1A), G9 

equipped with a fast acting static exciter (IEEE-ST1A) and a 

Power System Stabilizer (PSS), and G10–13 under constant 

manual excitation. All generators are represented by full sixth 

order models. System loads are modeled as constant imped-

ance. Full system details, generator and exciter parameters are 

given in [23] with PSS settings for G9 taken from [24]. 

The standard test network in [23] also contains three large 

generators representing external networks which import ap-

proximately 2.1 GW into the NYPS area under nominal 

loading. In the modified network, the generators, buses, and 

lines composing these external networks have been replaced 

with a five line, six terminal VSC-based multi-terminal HVDC 

(VSC-MTDC) network connected to five 450 MW wind farms 

(GWF-A–E).  

 
Fig. 4: 16 machine, 68 bus reduced order model of NETS & NYPS. 

1) VSC-MTDC System Details 

The VSC-MTDC system enables power transfer from the 

wind farms into the AC network. Each converter station is 

modeled as an injection of active and reactive power neglect-

ing device switching operations [25]. Converter station 

controllers and DC lines are modeled as presented in [26]. 

All converter stations connected to the NYPS region (VSC-

2–4) regulate active power injection into the AC system using 

a DC voltage droop characteristic [27]. Additionally, VSC-2–4 

support the local AC voltage at the connection bus through 

reactive power injection. These converters, therefore, operate 

in Active Power Voltage Droop–AC Voltage control mode. 

The active power injected into the MTDC system at each 

converter station connected to a wind farm (VSC-1,5,6) is de-

termined by the output of the renewable energy sources. 

Reactive power is supplied as required to support the renewa-

ble generation. These converters operate in AC Frequency–AC 

Voltage control mode.  

2) Wind Farm System Details 

Five 450 MW wind farms (GWF-A–E) are connected to the 

test network through the VSC-MTDC system. As the convert-

§ Generate set of candidate inputs Γ. 

§ Calculate     using regression model.̂
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ˆ ˆ ?thresh 

?
req

exc exc
n n

Set            value as 3  of regression model residual values.ˆ thresh

 ˆ ˆ thresh

P  Calculate                            independently 

using large sample size.

Run full deterministic study and 

calculate .
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§ Perform deterministic studies and record ζ .

§ Create linear regression model.

Save data and calculate number of 

exceedances nexc.
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 ˆ ˆ| .thresh thresh
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P     
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ers connected to the wind farms operate in AC Frequency–AC 

Voltage control, all power produced by the wind farm is trans-

ferred to the VSC-MTDC system.  

3) Operational Constraints 

An optimal power flow solution is used within this work to 

more accurately generate representative system operating 

points. All voltages are constrained within the range 0.9–1.1 

pu. Generator cost data, and active and reactive power limits 

can be found in [28].  

B. System Uncertainties 

A primary aim of having an efficient accurate method to 

determine  0%P    is to incorporate it into probabilistic 

studies incorporating uncertainty. A wide variety of uncertain-

ties are present in power systems, including (but not limited 

to) electricity demand forecasts, generation output from re-

newable energy resources, failures and faults on the system, 

the material properties of equipment, and the composition of 

system loads connected at any time. In this study the uncer-

tainty surrounding operational forecasts (particularly for 

intermittent generation) has been considered as an illustrative 

example in order to study the resulting variations in the damp-

ing of critical system oscillations. Appropriate modelling of all 

uncertainties in the system would yield the most accurate rep-

resentation of true system performance; however this will also 

increase the problem complexity and initial data requirements.  

1) Modeling Loading Uncertainty 

Variations in the loading values at each AC system bus rep-

resent uncertainty in loading forecasts. The correlation of 

different load types is also considered with loads categorized 

as residential or industrial based on their nominal power fac-

tor (values over 0.9 are classed as residential). Correlation 

coefficients ρ between different loads are 0.8   between 

residential loads, 0.4   between industrial loads, and 

0.2   between residential and industrial loads [29]. All 

loads follow a Gaussian distribution with mean values equal to 

nominal loading scaled by the forecast loading factor, and 

standard deviation derived from the forecast uncertainty. 

2) Modeling Wind Generation Uncertainty 

Variations in wind power generation around the forecast 

value are also modeled as following a Gaussian distribution 

(though any distribution can be used if required). Correlation 

is modeled between the power generated at the wind farms. It 

is assumed that wind farms connected to the same converter 

station are 50 km apart, and wind farms connected to different 

converter stations are 200 km apart. The correlation coeffi-

cients used are sourced from [30] resulting in 0.73   and 

0.58   for 50 km and 200 km separation respectively. Mean 

values are selected as the forecast generation value, with 

standard deviation based on the level of forecast uncertainty. 

3) Forecast Uncertainty 

The uncertainty associated with forecasts (of loading and of 

wind generation) can be modeled based on typical forecast er-

rors. Fig. 5 displays the relationship between the forecast error 

and the forecast horizon for system loading and for offshore 

wind generation, sourced from [30] and [31] respectively. 

MAPE refers to the mean absolute percentage error relative to 

the forecast value. NAME refers to the normalized absolute 

mean error relative to the maximum rated generation capacity 

of the wind farm. These are both derivatives of the mean abso-

lute deviation (MAD). It is clear that there is far greater 

uncertainty surrounding the forecast of wind generation.  

 
Fig. 5: Typical forecast errors for system loading and wind generation, 

adopted from [30] and [31]. 

 

For any forecast point, the error can be translated from 

MAD to a standard deviation  using the scaling relationship 

(4) for Gaussian distributions. 

 2MAD    (4) 

It should be noted that the long-term uncertainty of wind 

speed is, in this illustrative example, negated by the fact that a 

forecast value exists. Variation around the forecast value is 

modelled but the longer-term distribution is not. Over long 

time scales (when the full range of possible operating scenari-

os may occur), a Weibull distribution may more accurately 

represents the variation in wind speed at locations. However, 

this is not a valid representation for short time scales. Since 

the focus of this study is on a short time scale, it is not neces-

sary to include the uncertainty of fluctuations over longer 

periods of time and to describe it by appropriate distributions. 

Instead the uncertainty in the forecasted value can be modeled 

by Gaussian distribution in piece-wise manner for each short 

period of time of interest. If the focus involves longer periods 

of time then variation in forecasted values can be additionally 

described using appropriate probability distributions.  

4) VSC-MTDC Operational Uncertainty 

The VSC-MTDC grid operates to deliver all power from 

the intermittent wind resources to the AC network and there-

fore the uncertainty surrounding its operation is tied to the 

wind farm power output. A power sharing strategy is utilized 

within this study wherein VSC-2 delivers 40% of the total 

wind power production, VSC-3 delivers 20%, and VSC-4 acts 

as a slack to account for the losses within the VSC-MTDC 

system (approximately 2.5% of total power transmission). 

This slack behavior only occurs during the DC load flow solu-

tion. For dynamic studies the droop characteristic ensures that 

active power variations are shared by all converters. 
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Fig. 6: Load and wind generation data for the UK network (17-Sep-13). 

C. Operating Scenario 

An operating scenario is selected to represent forecast con-

ditions and illustrate the efficiency of the proposed method. 

As the test system being used is a modified version of a re-

duced order equivalent, no true forecast data is available for 

such a study. To overcome this limitation in this study, histor-

ical data for the loading level and wind generation in the UK 

network [32] is used to represent forecasts which are scaled to 

the operating point of the test system. This data is representa-

tive of expected loading and wind generation patterns seen in 

other similar transmission systems. Data for the 17 September 

2013 (an arbitrary selection) is used, shown in Fig. 6. It is as-

sumed that this small-disturbance stability assessment is made 

at a time of 00:00 for the forecast conditions at 17:00 (an arbi-

trary forecast horizon of 17 hours). Forecast values are 

97.74% for the system load factor, with wind generation of 

17.29% (of installed capacity). Based on this forecast horizon, 

standard deviations  for the modeled uncertainty of loading 

and wind generation are equal to 1.53% and 16.00% respec-

tively – scaled from Fig. 5 using (4).  

It should be noted that a shorter time horizon would im-

prove the accuracy of the forecast, reduce output (i.e. modal 

damping) variation, and therefore reduce the number of MC 

samples required if using a full MC-based methodology. Con-

sequently, this would potentially reduce the efficiency gains of 

the proposed methodology. However, reduced output variation 

would at the same time improve the accuracy of the regression 

model, and improve the success rate when sampling exceed-

ance values, therefore improving the efficiency of this 

proposed methodology. Establishing the appropriate balance 

between these two factors is an interesting area for further in-

vestigation in particular in the case of large system studies. 

IV.  APPLICATION & RESULTS 

A. Traditional Monte Carlo Approach 

A traditional MC approach is completed first to establish 

the benchmark for comparison with the proposed methodolo-

gy. The simulations are terminated using the stopping rule (1), 

resulting in a total of 11,586 simulations. The probability of 

instability clearly could be calculated empirically from this 

data set. However, errors will be introduced when calculating 

this probability due to the low number of occurrences of insta-

bility sampled.  0%P    is therefore determined by fitting 

a GP distribution to the exceedance samples (as for the pro-

posed efficient methodology).  

An exceedance threshold of 0.5thresh

exc
  % has been select-

ed for this study and is shown to give good results. Other 

values near to the stability boundary could also be selected. 

Note that lower values will increase the total number of de-

terministic studies required when completing the efficient 

methodology in order to obtain sufficient number of exceed-

ance samples and will reduce the efficiency of this proposed 

technique. Higher values of thresh

exc
  will increase the range of 

the determined confidence interval and will therefore reduce 

the accuracy of the methodology. These two aspects must be 

balanced according to the requirements of the analysis. 

 
Fig. 7: Results from full MC simulation and GP distribution fit. 

 

The results from the MC study are presented in Fig. 7 in-

cluding the GP distribution. An additional benefit of using the 

GP fit is that it enables the derivation of a confidence interval 

for  0%P   . The obtained results are  0%P   = 3.34% 

with a 95% confidence range of 3.12–3.54%. It is also very 

evident from Fig. 7 that the GP distribution is a very good fit 

to the tail of the damping factor histogram. The GP distribu-

tion has been tested against a number of alternative 

distributions (including Weibull, exponential, lognormal, and 

generalized extreme value) and it was found to provide the 

most likely (i.e. the lowest log-likelihood) distribution fit. 
 

B. Proposed Efficient Methodology 

In total, the sources of uncertainties within the test system 

consist of the 32 load buses and the wind farms. As the wind 

power is transmitted through the VSC-MTDC grid and shared 

amongst the AC grid injection points, it is possible to consider 

the wind generation as a single uncertain parameter. The oper-

ational search space is therefore described in 33 dimensions. 

These 33 uncertainties considered are the loading values for 

each bus and the total power generated from the wind farms, 

all of which are variable due to the uncertainty in the forecast 

values. 

For this illustrative example, an OPF solution is used with 

non-varying cost functions. Therefore, the same values of 

loading and wind generation will always result in the same 

generator dispatch. In practical situations it may be necessary 

to also model the variations in OPF cost function parameters 

to capture the variations in power flow direction and magni-

tude that may occur for identical loading scenarios. If 

modelled, such variations will require close scrutiny to ensure 

the modelled conditions are representative of the true system 

variation. This can be included in this methodology, though it 

will increase the number of dimensions in the operational 

search space. 
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1) Creating the Linear Regression Model 

The linear regression model was created using 100 LHS 

points and the full set of 33 uncertainties. Each input parame-

ter was sampled evenly in the range of ±3 , encompassing 

99.7% of the distribution of each parameter. It was found that 

trimming the obtained data set of samples to remove those re-

sulting in high critical mode damping improved the accuracy 

of the regression model at predicting poor performance. A 

sensitivity analysis and discussion on the number of points re-

quired to create the linear regression model is can be found in 

Section IV.D. 

 
Fig. 8: Estimation accuracy of different linear regression models.  
 

This is demonstrated in Fig. 8 where the differences can be 

seen in the estimation accuracy of a linear regression model 

created from the full LHS data set and a reduced LHS data set. 

A trimming threshold of ζ < 4% was found to provide a good 

balance between reducing the residuals and containing suffi-

cient data to characterize the search space. The included 

statistics in Fig. 8 reveal the reduction in the maximum residu-

al value, the increase in the coefficient of determination (R
2
), 

and the decrease in residual standard deviation when the re-

duced data set is used. The results are also revealed visually to 

be more balanced, particularly for low damping estimates. 

This trimming of the LHS data set was performed following 

the collection of all the sample data points. 

The damping estimation threshold is set according to the 

stated methodology as 3  of the regression model residuals. 

This results in a value of ˆ 1.917
thresh  %. 

2) Establishing req

exc
n  

The results from the full MC results are used here to estab-

lish a value for req

exc
n  – the number of exceedance samples 

required. The full MC data set (11,586 points) includes 556 

(4.8%) exceedance values. In order to assess the effect that the 

number of exceedance values has on the accuracy of the anal-

ysis, exceedance values were removed from the data set at 

random and the probability of instability (and confidence in-

terval) were recalculated. The results are shown in Fig. 9. 

It is evident that the estimated value for  0%P    re-

mains approximately constant whilst the confidence interval 

steadily increases as exceedance samples are removed from 

the data set. The confidence interval range is plotted separate-

ly in Fig. 10 where it can be seen to display a very steady 

increase and can be used to establish the desired value for 

.req

exc
n  A threshold of 1% (in absolute probability terms) is set 

on this range, suggesting that at least 90 exceedance samples 

are required. This value of req

exc
n  is used when completing the 

efficient estimation of the probability of instability. 

 
Fig. 9: Effect of the number of exceedance values on accuracy. 

 

Fig. 10: Confidence interval range for the probability of instability. 

C. Comparison of Results 

The proposed efficient methodology was completed using 

the thresholds and values established in the previous sections

ˆ( 1.917thresh  %, 0.5thresh

exc
  %, and 90)req

exc
n  . The result-

ing methodology required 308 full deterministic studies in 

order to obtain the required 90 exceedance samples. Including 

the initial 100 LHS simulations performed to construct the lin-

ear regression model, a total of 408 deterministic studies were 

performed. This represents a 96.5% reduction in the number of 

samples used (or only 3.5% of the original number of samples) 

– a very significant improvement in the computational effi-

ciency achieved by the proposed methodology. 

 
Fig. 11: Comparison of GP distributions. 

TABLE 1 

PROBABILITY OF INSTABILITY VALUES AND CONFIDENCE INTERVALS 

Method  0%P    
95%  

Confidence  

Total  

Simulations 

Total Time 

Taken 

Full MC 3.34% 3.12 –  3.54% 11,586 9 hr 39 m 

Efficient 3.30% 2.75 –  3.72% 408 21 m 

The accuracy of the proposed methodology must also be 

assessed. Fig. 11 shows the resulting GP distributions and Ta-

ble 1 displays the results obtained from both the full MC-

based approach and the efficient method. It is evident that the 

efficient method produces an accurate estimate of  0%P    

which has a relative error of just 1.2% compared to full MC-

based approach. However, the confidence interval is larger, 

covering 0.97% (compared to 0.42% for the full MC-based 
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approach). This larger confidence interval is expected though, 

since  req

exc
n  was selected as 90 based on a chosen confidence 

interval threshold of 1% (in Fig. 10). It would be possible to 

set req

exc
n  to a higher value to reduce the range of the 95% con-

fidence interval and improve the accuracy of the method. The 

results from Fig. 10 suggest that more than 400 exceedance 

samples are required to reduce the confidence interval to less 

than 0.5%. This would, however, result in a decrease in the 

efficiency of the approach. This tradeoff between the accuracy 

and confidence level must be appraised in advance depending 

on the needs and scope of the study. The times taken, shown 

in Table 1 to the nearest minute, are based on simulation using 

a PC with 2.66 GHz quad-core CPU and 4 GB RAM. 

Note that the setting of req

exc
n  is critical and will require care-

ful validation for practical applications. It is also possible that 

there could be particular operational scenarios where req

exc
n  will 

exceed the number of exceedance samples (and the methodol-

ogy would continue searching indefinitely). To avoid this, it is 

recommended that the search is limited to a maximum sample 

number. The system operator should be alerted if this is 

reached to highlight the need for more detailed studies, per-

haps using a full MC approach. 

D. LHS-based Regression Model Sensitivity Analysis 

The linear regression model is critical to the success of this 

technique by steering the approach towards regions of the 

search space which contain high levels of information. In this 

example, this is poorly damped or unstable operating condi-

tions. It is therefore required that a linear regression model 

that is suitably accurate can be ensured. To illustrate this part 

of the methodology more clearly, sensitivity analysis has been 

performed investigating the effectiveness of the LHS-based 

linear regression model against the number of sample points 

used to build the model. 

It has been previously stated that guaranteeing a very accu-

rate model is not the objective. What is desired is a model 

which can estimate damping (particularly low damping) with 

reasonable accuracy. The full simulations at these targeted 

points will then determine the true damping values. Fig. 12 

shows the result of the sensitivity analysis, and the improve-

ment made to the regression model by using more sample 

points. 

 
Fig. 12: Effect of increasing LHS samples on accuracy of linear regression 

model. 

 

With respect to Fig. 12, MAD refers to the mean absolute 

deviation of damping estimates from new regression models 

(produced following the method in Section II.B.2) tested 

against true damping values from the data set gathered during 

the full MC-based approach. As the regression models are 

produced using points where damping factor is less than 4%, 

only these points are used to test the models, resulting in 8543 

test points for each model. The MAD is calculated by compar-

ing the true damping with the model estimates and is reported 

as an absolute percentage (in terms of the damping factor). A 

total of 100 regression models have been tested for each num-

ber of sample points shown and the trends for key percentiles 

(2.5%, 25%, 50%, 75%, and 97.5%) plotted on Fig. 12. In to-

tal over 2500 regression models were tested. 

The lower bound for the number of points is dictated by the 

fact that there must be more sample points than uncertainties. 

Furthermore, as some points (with damping factor over 4%) 

are discarded (see Section IV.B.1), the number of points must 

be reasonably larger than the number of uncertainties. In this 

work, it was found that approximately 60 points were required 

with 33 uncertainties. It is therefore desirable to only model 

those uncertainties which have a significant effect on system 

performance. 

It can be seen that using 100 LHS points in the regression 

model will provide a MAD in the range 0.51‒1.45% (with 
95% confidence). It should be noted the maximum value in 

this range is lower than ˆ thresh used in this study (the threshold 

designed to account for regression model inaccuracies). If de-

sired, the number of sample points can be increased. For 

example, using 200 points will provide a MAD in the range 

0.51‒0.94% (95% confidence). Whilst this will reduce the 
methodology efficiency, the overall computational savings 

compared with a full MC-based approach will still be signifi-

cant.  

V.  CONCLUSIONS 

The paper presented a novel methodology for the efficient 

determination of the probability of small-disturbance rotor an-

gle instability in uncertain power systems. Traditional 

numerical approaches are too computationally intensive for 

repeated probabilistic studies and the efficient sampling tech-

niques proposed to date for use with probabilistic power 

system stability analysis – such as point estimate methods, an-

alytical cumulant approaches, and the probabilistic collocation 

method – are unable to accurately reproduce the long-tailed 

distributions which are often associated with modal distribu-

tions. The methodology established within this paper 

addresses this gap and has been shown to accurately determine 

the probability of instability using a small fraction (only 3.5% 

for this illustrative test system) of the samples required by the 

traditional MC-based approach. Comprehensive numerical 

justifications have been provided for the threshold limits used. 

Furthermore, the effect of altering these thresholds has been 

discussed, acknowledging the balance between efficiency and 

accuracy that this method permits.  

The combination of efficient Latin hypercube sampling-

based search space characterization and importance sampling 

could also be utilized in other aspects of power system analy-
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sis to improve the efficiency of probabilistic analysis. Logical 

extensions include applications in other areas of stability anal-

ysis – particularly transient stability analysis where a 

reduction in the computational burden associated with multi-

ple time-based simulations would be welcome. It is hoped that 

this method may enable online probabilistic analysis, or opti-

mization based upon repeated probabilistic studies, for 

example for stability-related damping controller designs.  
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