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Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was
performed by 1H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spec-
trometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was
competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity
and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to
individual pathways). Among fingerprint techniques, 1H-nuclear magnetic resonance discriminated the most mutant
phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from
fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been
confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms,
namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support
vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs
estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical
clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These
scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual
information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another,
were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible
software for use of ML in plant physiology is highlighted.

Functional genomics extends Johannsen’s 1909 con-
cept of the phenotype as the total of an organism’s
expressed characters (Nachtomy et al., 2007). In prac-
tice, nonetheless, phenotype data inevitably remain
partial, contextual, and subject to acquisition methods.
These complexities are very evident in metabolomics,
whose phenotyping opportunities, while exciting, are
fraught with technical and conceptual challenges.
Some of these issues are explored in this paper, along
with practical guidance on relevant strategic ap-
proaches that have emerged in recent years.

One challenge in metabolomics is the extent to
which its ambition to define global metabolic pheno-
types is constrained by lack of technologies encom-
passing metabolite diversity (Hall, 2006). This has
caused more proliferation of methods than in other
functional genomics. We examine how the apparent
metabolic phenotype depends on the analytical frame
of reference, an obvious theoretical issue but infre-
quently evaluated in practice.

The progenitor of metabolomics, metabolite “pro-
filing” by gas chromatography-mass spectrometry
(GC-MS), is unsurpassed for identifying multiple me-
tabolites (Lisec et al., 2006), and its phenotyping ap-
plications increase. Examples are association of tomato
(Solanum lycopersicum) quantitative trait loci for yield
and metabolism (Schauer et al., 2006), growth rate
prediction from metabolite composition (Meyer et al.,
2007), and starch mutant classification (Messerli et al.,
2007). These GC-MS studies quantified 43 to 181
known or unidentified compounds.

While progress in metabolic phenotyping is impres-
sive, its acceleration is desirable. The AraCyc database,
for example, is contextualizing Arabidopsis (Arabidop-
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sis thaliana) genes in metabolic pathways but still
has many “pathway holes,” or functional annotations
lacking evidence (Zhang et al., 2005). Metabolomic
knowledge deficits may expand as genomes are se-
quenced.
For such reasons, optimization of time and resources

is a theme in metabolomics (Hall, 2006). Time-con-
suming chromatography in “hyphenated” technolo-
gies such as GC-MS can impede progress, while
chromatographic deconvolution (Lisec et al., 2006) is
an extra interpretive complexity. An alternative that
prioritizes speed over metabolite identification is me-
tabolite (or metabolic) “fingerprinting,” whose mini-
malist versions have little sample preparation and no
chromatography (Hall, 2006). We compared three pri-
mary spectroscopies in analyses of unfractionated
plant extracts. First, NMR is less sensitive than GC-
MS (Lisec et al., 2006) but is a dominant biomedical
technique with proven utility for plants (Ward et al.,
2007). Then, an MS approach was tested in the form of
flow injection electrospray (FIE)-MS (Beckmann et al.,
2008), where bioextracts are infused without liquid
chromatography (LC). Finally, the vibrational spec-
troscopy Fourier transform infrared (FTIR) gives
the option of analyzing whole-tissue preparations
(Gidman et al., 2006), although with less molecular
information. These technologies were compared for
phenotyping in parallel analyses of replicate Arabi-
dopsis plants grown simultaneously in a single envi-
ronment. Metabolic distinctiveness from the Columbia
(Col-0) wild type, and its consistency, were gauged in
known or predicted mutants with little morphological
impact.
A key question was whether loss of information or

precision in fingerprinting diminished phenotype dis-
crimination relative to conventional, targeted profil-
ing, which monitors metabolite groups by selective
methods (Hall, 2006). Therefore, we also produced LC
and GC profiles of more than 100 amino acids, iso-
prenoids, fatty acids, and acyl-CoAs. This number of
metabolites was typical for profiling studies (see
above) but 1 order of magnitude less than the finger-
prints (901–1,852 spectral values) with which they
were compared.
This numerical comparison illustrates a primary

challenge in functional genomics: how to deal with
so-called high-dimensional data spaces, where hun-
dreds of variables define samples (Clarke et al., 2008).
Data modeling is a complex, evolving field, often
unfamiliar to plant biologists. Therefore, we present
ways in which it might be employed in metabolic
phenotyping and compare methodologies. We mini-
mize technical description but provide a glossary in
Supplemental Table S1.
Effectively, the standard data-modeling tool in plant

metabolomics is principal component analysis (PCA).
The rationale behind a PC is that it captures a global
pattern in the data by weighting variables (here,
metabolome signals) with high covariance. PCA is
conceptually suited to systems biology, where such

global patterns may reflect some coordinated cellular
network (Janes and Yaffe, 2006). It should be cau-
tioned, however, that some data analysts regard PCs as
artificial mathematical entities and too often uncriti-
cally “reified” as biologically meaningful (Mahoney
and Drineas, 2009).

If a PC encapsulates differences between sample
classes, these may separate by their coordinates in PC
space, or “scores.” Two-dimensional (2D) scatterplots
of PC scores are consequently a vivid and ubiquitous
form of data exploration and were a benchmark in our
evaluations. If data variance is dominated by factors
irrelevant to one’s biological hypothesis, on the other
hand, PCA is limited and more may be gained from
“supervised” methods using knowledge of sample
classes (Tarca et al., 2007). One of the latter is partial
least squares-discriminant analysis (PLS-DA), which
like PCA produces a series of multivariate compo-
nents. Whereas PCA encapsulates only data variance
in the PCs, however, PLS-DA also seeks to discrimi-
nate classes (Janes and Yaffe, 2006).

Reputedly yet more powerful supervised tools are
machine learning (ML) classifiers, a generic term for
algorithms that “learn” from class-labeled training
data to predict classes among test data (Tarca et al.,
2007). We evaluated two approaches ranking among
the most important ML developments in recent years
(Friedman, 2006). One was the support vector machine
(SVM), highly regarded for its roots in statistical
learning theory and often unsurpassed performance
(Ben-Hur et al., 2008). The other came from the deci-
sion tree category of ML (Tarca et al., 2007) in the form
of random forest (RF), whose capabilities for metab-
olomics have been examined by Enot et al. (2006).

Importantly, we used widely available software,
mostly open source (Table I), so the data-modeling
strategies illustrated in this paper could be widely
adopted. Software accessibility has been recognized
for several years as a limiting factor for metabolomics.
Sweetlove et al. (2003), referring to ML, remarked:
“Although suchmethods are extremely powerful, they
are not readily approachable.... Software interfaces
will be required that allow the user to input and define
their data while the algorithms are applied automat-
ically and the results displayed in a readily interpret-
able format. The display of multidimensional data
brings its own challenges.” In the interim, ML has been
underexploited in plant metabolomics, given its theo-
retical fitness for high-dimensional data.

This situation may change, however, with the pro-
liferation of software packages such as those in Table I.
Among the newest is the MetaboAnalyst Web server
(Xia et al., 2009), whose online data analysis tools
include those just outlined. The open-source software
we used came from two major projects of the data-
mining community, Weka and R (Table I). Weka has
a well-developed graphical user interface (GUI) by
which a renowned suite of ML algorithms can be
accessed in basic form. R has greater functionality and
processing speed but primarily requires command-
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line interaction with modular “packages” created by
the statistical computing community.

We sought to benchmark the power and, if possible,
the mode of operation of newer data-modeling tools
relative to established ones. We examined how the
scope and strategies of hypothesis interrogation can be
extended by ML. The distinctiveness and consistency
of mutant phenotypes, as defined by different metab-
olomic techniques, were thereby explored.

RESULTS AND DISCUSSION

Phenotyping Strategies: Unsupervised versus Supervised

Two generic strategies were used for phenotyping
metabolome data of Arabidopsis wild type (Col-0) and
mutants. One, unsupervised phenotyping (Fig. 1A),
involved PCA in SIMCA-P, a commercial software
widely used in metabolomics (Xia et al., 2009). Unsu-
pervised methods such as PCA may reveal natural
groupings of data objects, without reference to prede-
fined classes (Tarca et al., 2007).

An initial decision in PCA is whether data should be
scaled for analysis. By default in SIMCA-P, each var-
iable is scaled by dividing by its SD. Scaling Arabidop-
sis NMR and FIE-MS fingerprints in this way reduced
the influence of larger spectral peaks, and this made
PCA less interpretable. When interpreting a single PC,
consideration should be given to the proportion of
overall data variance it encapsulates. Successive PCs
are ranked by this criterion, PC[1] representing the
most prominent pattern in the data, and so on. Scaling
NMR or FIE-MS fingerprints resulted in more PCs,
each representing less of the data variance. We saw

this as increasing the danger of reification (i.e. imput-
ing unmerited biological meaning to PCs; Mahoney
and Drineas, 2009). Therefore, we analyzed these
fingerprints without scaling, although we did use the
standard practice of mean centering each variable (by
subtracting its average in the data).

These PCA routines were compared with phenotyp-
ing by supervised classifiers (Fig. 1B). These algo-
rithms are “supervised” by being provided with the
desired outcomes for training examples (Tarca et al.,
2007). In our context, their task was to find mathe-
matical transformations (“models”) to consistently as-
sociate metabolome data patterns with specified
phenotype “classes.” We trained classifiers to recog-
nize mutant versus Col-0 samples and validated the
resultant models by blind testing for prediction of a
different set of mutant and Col-0 samples. A central
point here is that the supervised-training and blind-
validation routine is ideal for phenotyping. The
classifier is trained with multivariate examples of
biological characters and directed to find a model
relating these to hypothetical phenotypes. The resul-
tant classifier models are phenotype models, and the
blind validation is a pattern-recognition scenario to
test the phenotype hypothesis. Consequently, while
ML algorithms are internally complex, their concep-
tual employment as classifiers for phenotyping should
be second nature to an experimental biologist.

The flow chart illustrates two validation designs we
used (Fig. 1B). In 9-fold cross-validation (93CV), we
trained classifiers on eight of nine of the plant repli-
cates from one or more experiments and validated on
the held-out one of nine replicates. This procedure was
repeated for all nine subsets in turn to get overall
classification accuracies. In an alternative, physiolog-

Table I. Open-source classification and feature selection software for high-dimensional biodata

Resource (URL) Reference Functionality

Weka project
Weka (www.cs.waikato.ac.nz/ml/weka) Frank et al. (2004) Extensive ML suite with Java GUI
BioWeka (www.bioweka.org) Gewehr et al. (2007) Bioinformatics extensions for Weka

R project
Bioconductor project (www.

bioconductor.org):
Gentleman et al. (2004) Growing assemblage of biodata tools in R

(e.g. MLInterfaces, CMA) Tarca et al. (2007), Slawski et al. (2008) Command line R packages with advanced ML
FIEmspro (users.aber.ac.uk/jhd) Enot et al. (2008) FIE-MS-oriented command line R package
Metabonomic (cran.r-project.org) Izquierdo-Garcia et al. (2009) R GUI with ML for proprietary NMR data

Online metabolomics data analysis
MetaboAnalyst (www.metaboanalyst.ca) Xia et al. (2009) RF, SVM, PLS-DA, PCA, HCA online
MetaGeneAlyse (metagenealyse.

mpimp-golm.mpg.de)
Daub et al. (2003) PCA, ICA, HCA online

MeltDB (meltdb.cebitec.uni-bielefeld.de) Neuweger et al. (2008) PCA, ICA, HCA online
MetNet (metnet.vrac.iastate.edu) Wurtele et al. (2003) Arabidopsis functional genomics software

Further resources
Automics (code.google.com/p/automics) Wang et al. (2009) C++ GUI for proprietary NMR data
MetaFIND (mlg.ucd.ie/metafind) Bryan et al. (2008) Java GUI with feature analysis tools
Additional ML, feature selection,

metabolomics, and bioinformatics
software

Arita (2004), Stajich and Lapp (2006),
Saeys et al. (2007)

Reviews listing over 60 relevant resources
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ically more stringent “interexperiment classification,”
we used a test set that did not comprise plant repli-
cates of those in the training data but rather plants
grown in a different experiment. Of these two valida-
tion designs, CV is more common due to the paucity of
biological data (Tarca et al., 2007).
Intuitive front ends for basic ML are today available

in open-source software (Table I). Both validation
designs (Fig. 1B) were readily implemented via the
Weka GUI (Frank et al., 2004). The main familiariza-
tion needed to use Weka is in preparation of input files
in a specific format called ARFF, a specimen of which
is shown in Supplemental Protocol S1. For supervised
classification with PLS-DA, we used SIMCA-P.
It should be stressed that appropriate training/

validation relations are crucial for supervised classi-
fiers (Broadhurst and Kell, 2006). The power of the ML
classifiers was such that predictions were meaningless

unless different samples were used for training and
testing. Classifiers were always 100% accurate (n =
114) in predicting genotype classes of the same sam-
ples on which they were trained. Even for training
data with randomized class labels, accuracies were
99.9%. When these random data classifiers were blind
tested on different samples, predictions were, of
course, no better than chance. This was an extreme
demonstration of “overfitting,” whereby fortuitous
data noise is used to classify training samples, so
that the resultant overoptimistic model is destined to
perform poorly when validated on new samples lack-
ing the noise “pattern” (Broadhurst and Kell, 2006).

We next describe how these basic strategies (Fig. 1)
were used in different aspects of phenotyping. (1)
Discrimination. Could the mutant be distinguished
from Col-0? (2) Distance. How different was the mu-
tant from Col-0 and other phenotypes? (3) Consis-

Figure 1. Flow charts for unsupervised phenotyping (A) versus phenotyping by supervised classifiers (B). Blue dashed lines and
boxes depict 93CV, and blue solid lines and boxes depict classification using different experiments for training and testing.
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tency. Did the mutant have a characteristic phenotype
in different experiments? (4) Features. What metabo-
lomic characteristics of the mutant were distinctive?

Discrimination: Fingerprinting and Modeling

Methods Benchmarked

We first evaluated methods for simply discriminat-
ing Col-0 from each of 19 mutants that had experi-
mental evidence for primary lesions in metabolism
(but without major growth abnormalities). These le-
sions were in starch (adg1, adg2, pgm, sex1), lipid (ats1/
act1, fad2, fad3, fad4, fad5, fad7, fae1, tag1), amino acid
(trp1, trp5/asa1, val1), and ascorbate (vtc1, vtc2, vtc3,
vtc4) metabolism. (Mutants in this paper are detailed
in Supplemental Table S2.) We tallied the numbers of
these mutants discriminated by the alternative strate-
gies (Fig. 1) of unsupervised PCA or supervised clas-
sifiers (Table II).

2D scatterplots of PC scores showed differential
separation from Col-0 of fingerprint data for the var-
ious mutants (Fig. 2). To use these ubiquitous plots as a
benchmark to compare classifiers, we adopted two
metrics. To quantify a simple visual interpretation, we
counted the partitioning of samples across the zero
axis of the best PC for phenotype separation in pair-
wise analyses of Col-0 with each mutant. When the
significance of these distributions was assessed as the
binomial probabilities of their occurrence by random
chance, up to 12 mutants (using NMR) were discrim-
inated at P , 0.01 (Table II). Mann-Whitney compar-
isons of scores on the same PC discriminated slightly
more (Table II).

In 79% of these cases, optimal separation of Col-0
and mutant occurred on PC[1], which represented a

mean 63% (SD 13%) of variance. This confirmed that
fingerprint variation was phenotype dominated but
also that some variance was neglected if only one PC
was used. Therefore, we explored whether incorpora-
tion of additional PCs enhanced the phenotyping
process. This necessitated a means of identifying the
number of PCs to retain for further investigation, an
issue for which alternative solutions have been pro-
posed over the years. For this purpose, the SIMCA-P
software includes a CV routine (Eastment and
Krzanowski, 1982) in which data elements are pre-
dicted by PCA models from which they were ex-
cluded. The CV is performed using models composed
of varying numbers of the PCs. PCs are informative
(“significant” in the manufacturer’s terminology) if
their inclusion in a model reduces predictive error in
CV; otherwise, they may be noise. We used this
SIMCA-P procedure to identify which PCs to use in
phenotyping.

The mean numbers of informative PCs found by the
SIMCA-P CV were 3.7 (for NMR data), 4.2 (FIE-MS),
and 6.8 (FTIR). Phenotyping was then performed by
multivariate comparison of Col-0 and mutant scores
on all these PCs using a nonparametric significance
test in the freeware package PAST (Hammer et al.,
2001). This procedure did extend the numbers of
mutants discriminated with FIE-MS or FTIR data
(Table II) and indeed was competitive with supervised
classifiers (Table II). Wewould again, however, caution
about reification (Mahoney and Drineas, 2009): is it
biologically plausible that PCA is finding up to seven
genuine patterns in the cellular systems analyzed?

Table II. Phenotyping performances of data-mining and
fingerprinting methods

NMR, FIE-MS, and FTIR fingerprints of 19 mutants (see text) were
each compared with Col-0 by several methods, and the numbers of
mutants significantly discriminated in these binary comparisons are
shown. PCA scores of the classes (Col-0, mutant) were compared
several ways. Score plots counted data on each side of the zero axis of
the PC that best partitioned classes. Univariate tests were Mann-
Whitney analyses of single PCs on which classes were most signifi-
cantly different. Multivariate tests compared Mahalanobis distances
between multivariate means of class scores on all PCs found informa-
tive by CV. Supervised classifiers were tested for Col-0 or mutant class
prediction in 93CV.

Variable
No. of Mutants Discriminated (P , 0.01)

NMR FIE-MS FTIR Cumulative

Col-0 and mutant PCA scores compared
Score plots 12 10 7 29
Univariate tests 14 10 7 31
Multivariate tests 14 12 11 37

Supervised binary (Col-0, mutant) classifiers
PLS-DA 13 12 8 33
RF 15 13 9 37
SVM 17 15 11 43

Figure 2. PCA of NMR fingerprints of Col-0 and mutants (adg1, adg2,
pgm, sex1, ats1, fad2, fad3, fad7, fae1, trp1, val1, vtc1, vtc2, vtc3,
vtc4). Amino acid and lipid mutant labels are omitted for clarity.
Variance encompassed by PCs is shown on axes. Metabolic phenotypes
are color coded by lesion: starch (red), lipid (blue), amino acid (yellow),
ascorbate (green).
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Supervised classifiers were evaluated for discrimi-
nation of each mutant from Col-0 in 93CV. (Validation
strategies were employed here only for supervised
classifiers, as they are not standard practice for PCA.)
As depicted in Figure 1B, 93CV involved predicting
the full set of fingerprints from each spectroscopy, over
nine rounds of model building on eight of nine of the
replicates and testing on the held-out one of nine. The
overall accuracies of these predictions were assessed
as the binomial probabilities of their chance occur-
rence. Table II shows the numbers of mutants (out of
19) for which these predictions were significant (P ,
0.01). PLS-DA did better than analyses of single PCs,
but the best classifiers were SVMs. Overall, ML (RF
and SVM) matched all other methods. In fact, analysis
confined to PC score plots might have overlooked one-
third of mutants discriminated by SVM (Table II).
Classifier results are commonly displayed in a “con-

fusion matrix,” whose rows are the true classes and
columns are those predicted (Tarca et al., 2007). This
format is used in Supplemental Figure S1 to show full
details of the classifications of each mutant relative to
Col-0, for each supervised classifier, and our PC score
plot metric, applied to each fingerprinting technique.
A summary comparison of the three spectroscopies,

using SVM as the best-performing classifier (Fig. 3),
shows that NMR discriminated most mutants, despite
using solvent favoring polar metabolites. For FIE-MS,
we used solvents for both lipids and polar metabolites,
obtaining 100% accuracy for the lipid-related mutants
ats1, fad2, and fad5. FTIR of dried whole shoots dis-
criminated vtc, amino acid, fae1, and strong starch
mutants, but fewer than NMR or FIE-MS. Eight mu-
tants were discriminated by all spectroscopies, and
two lipid mutants (fad4, tag1) by none (Fig. 3).
A common device to enhance supervised classifica-

tion of high-dimensional data is a “filter” algorithm
that preselects promising features to reduce dimen-
sionality and hence the danger of overfitting (Tarca
et al., 2007). We found, however, that reducing finger-
print dimensionality to 100 to 150 features preselected
by Relief (a well-known algorithm in data mining) had
no consistent effects on SVM or RF performances. This
was not unexpected, as RF in particular was conceived
to be resistant to overfitting (Enot et al., 2008).

Discrimination: Fingerprints versus

Chromatographic Profiles

The strategic case for fingerprinting was evident
from the fact that we analyzed a total of 2,268 plants by
FIE-MS, while only 441 were concurrently processed
by chromatographic profiling. Therefore, we were
interested to know how much extra discrimination
was achievable by the more conventional approaches.
Using replicate plants grown alongside those taken for
fingerprinting, we obtained amino acid, fatty acid,
acyl-CoA, and isoprenoid chromatographic profiles
for 15 amino acid (trp1, trp5, val1), starch (adg1, adg2,
pgm, sex1), lipid (ats1, fad2, fad3, fad4, fae1, tag1), and

ascorbate (vtc1, vtc3) mutants. The metabolite data and
SVM classification rates are shown in Supplemental
Table S3.

SVM classifiers using amino or fatty acid profiles
discriminated 13 mutants from Col-0 (P , 0.01) com-
pared with 12 or 13 using FIE-MS or NMR finger-
prints. All but fad4 and tag1 were discriminated by
amino acids, all but trp5 and vtc1 by fatty acids
(Supplemental Table S3). Most notably, the two mu-
tants (fad4 and tag1) for which all fingerprints failed
were discriminated by fatty acids. Sensitivity to minor
metabolites explained this superiority of fatty acid
profiles. Mean quantities in Col-0 of individual fatty
acids that were different in mutants (by ANOVA, P ,
0.001) were 20 to 66 mmol g21 dry weight for ats1, fad2,
fad3, or fae1 but only 0.12 or 2.86 mmol g21 for tag1 or
fad4.

SVMs using acyl-CoA profiles discriminated fad2
and fad3 perfectly, but only five mutants in total at P,
0.01. Using isoprenoids, eight mutants were discrim-
inated, from each metabolic category (Supplemental
Table S3). With all four profiles concatenated, SVM
discriminated all 15 mutants. PC score plots of the
various profiles separated only one to eight mutants.

Distance: Visualizing Relations of Multiple Phenotypes

Qualitative discrimination from the wild type is
basic to phenotyping a mutant, but metrics for their
mutual distance, and distances from other pheno-
types, are needed to visualize relations of multiple
phenotypes. Such relations are conventionally seen by
ordination in PC score plots. PCA of NMR fingerprints

Figure 3. Comparison of NMR, FIE-MS, and FTIR fingerprints for
discrimination of mutants from Col-0 by SVMs. Asterisks indicate
binomial significance of predictive accuracies (*** P , 0.001, ** P ,
0.01).
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for Col-0 and 15 mutants (Fig. 2), for example, con-
firmed the proximity of starch-deficient adg1 and pgm
mutants and their separation from the starch-accumu-
lating sex1. The PCA showed notably high dispersion
of replicates of fad7 and the ascorbate-deficient vtc
mutants, whose PC[1] scores had SD values 5.6- to 10.6-
fold greater than sex1.

In contrast to PCA, distance metrics from ML clas-
sifiers have yet to find much use in plant metabolo-
mics. The fact that discrimination was better with ML
than PCA (Table II), however, suggested that ML-
based ordination of multiple phenotypes, as proposed
in Figure 1, could be interesting. In fact, the RF concept
includes an internal mechanism for estimating inter-
class distances. RF classifications are based on “vot-
ing” by a large number of trees, each built using
different subsets of the original variables, in an intri-
cate procedure to avoid overfitting high-dimensional
data (Enot et al., 2008). The difference between correct
and incorrect predictive votes from all trees in the
model is the “margin” between classes.

We used the margins between phenotypes in RF
models for multiphenotype ordinations, using a rou-
tine proposed by Enot et al. (2006). RF classifiers were
built for all pairwise comparisons of the 19 mutants
and Col-0. The resultant matrix of RF margins was
projected onto a 2D map, in which interphenotype
distances were kept as true as possible to the margins,
using an algorithm called Sammon mapping (Fig. 4).
This routine is not currently available within an inte-
grated software but is provided in Supplemental Pro-
tocol S2 as R code with quick-start instructions.

Sammon mapping minimizes distortion using an
error function called “stress,” which tends to preserve
small separations. Stress values for RF margin maps of
each fingerprint type were within the acceptable limit
of 0.1 (Fig. 4). Correlations between RF margins and
map distances for Col-0 versus the mutants were high
(r = 0.95 6 0.01), although the FIE-MS map (Fig. 4B)
somewhat understated the distance from Col-0 of adg1
and pgm (Supplemental Fig. S2).

RF Sammon maps of NMR data showed starch
mutants far from Col-0, with adg1 and pgm together
but separated from sex1 (Fig. 4A), as in the PCA (Fig.
2). The vtc mutants were also far from Col-0, while
lipid mutants were generally closer (Fig. 4A). For
FIE-MS, certain lipid and vtc mutants were farthest
from Col-0 (Fig. 4B). For FTIR, strong starch pheno-
types were most distant (Fig. 4C).

We looked for other methods to corroborate the RF
Sammon map concept. An alternative to 2D plots for
visualizing relations is hierarchical cluster analysis
(HCA), where entities are linked stepwise by relative
proximity. HCA using RF margins as distance metrics
produced clusters (Fig. 5A) transcribable to the Sam-
mon map (Fig. 4B). Comparable clusters were also
found by an established HCA method (Enot et al.,
2008) using PC-linear discriminant analysis (LDA),
another supervised method, which maximizes class
separation by linear combinations of PCs (Fig. 5B).

Consistency: Phenotypes in Different Experiments

A biologically important aspect of a phenotype is
its consistency. To test this, classifiers, trained on one
data set to recognize a pattern in another are concep-
tually ideal. We examined mutant phenotype consis-
tency across different experiments, encompassing
plants grown in the same chamber at different times
or in two chambers with different light levels. FIE-
MS was used for its sensitivity, versatility, and high
throughput.

First, we consider a strong metabolic phenotype
grown in several experiments: the plastid glycerolipid
mutant ats1 (Xu et al., 2006), earlier called act1. In PCA
of 122 Col-0 and ats1 FIE-MS fingerprints from seven
experiments, most variance (58%) was in phenotype
separation on PC[1]. The different experiments sepa-
rated only on various lesser PCs. Thus, by PCA
criteria, interexperiment variation in this strong phe-
notype was minor.

ML classifiers, on the other hand, easily recognized
the experiments whence data derived. RFs trained on
the 122 Col-0 and ats1 fingerprints (labeled by exper-
iment, not genotype) identified all seven experiments
with 99.2% accuracy in 93CV. In pairwise compari-
sons of experiments, moreover, RF margins were very
high, irrespective of the phenotypes. Among 111 RF
experiment classifiers, mean margins were 0.88 6 0.10
(SD; perfect discrimination would be 1.0). We explored
whether the interexperiment variation was innate to
the plant material or due to postharvest analytical
processing. When samples from two growth experi-
ments were processed in random order, margins were
reduced by about one-third, but the experiments were
still discriminated in 93CV.

These incidental findings on the ability of ML to
distinguish sample origins were noteworthy, but our
primary classifier hypothesis was that a mutant phe-
notype should be recognized in plants from different
experiments. As alternative RF classifiers could be
trained on the same FIE-MS data with either “exper-
iment” or “genotype” class labels, we obtained both
interexperiment and interphenotype margins. (Such
analyses can be performed with the R code and
instructions in Supplemental Protocol S2.) We evalu-
ated mutants across different experiments by the ratio
of (1) the “phenotype margin” from Col-0 to (2) the
mean “interexperiment margin.” These ratios were
almost always less than 1.0 (Fig. 6, x axis).

Our other phenotype consistency measure was dis-
crimination by RFs presented with fingerprints from
more than one experiment. (We used Weka for this.)
Fine resolution of phenotype consistencies for 35 mu-
tants in two to seven experiments was obtained by
plots of classification accuracies against the pheno-
type-experiment margins ratio (Fig. 6). These two
measures had high, but nonlinear, correlation. High
classification accuracies had a disproportionate mar-
gin range (Fig. 6), confirming that RF margins rep-
resent class boundaries better than classification
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accuracies alone (Enot et al., 2006). However, statistical
significance was more easily defined for classification
accuracies.

In applying classifiers to phenotypes from more
than one experiment, two different validations were
used, following the schemes in Figure 1. Figure 6 plots
accuracies for “pooled-experiment” classifiers, where
fingerprints from all relevant experiments were used
in 93CV. Significant accuracy in this validation meant
that the classifier could identify a phenotype for the
mutant in more than one experiment. In the 93CV
process, the classifier was trained on replicates from all
experiments and then tested on other replicates (Fig.
1). In addition, “single-experiment” RF classifiers were
built on one experiment and then tested on others.
This was a more stringent test of the phenotype,
because the training set did not include any replicates
from the test experiment(s). Asterisks in Figure 6
highlight mutants whose single-experiment classifiers
were all significant.

An impressive case was ats1, identified by classifiers
trained on any of seven experiments, in a mean 96.3%
of 104 or more tests on the six held-out ones. Other
generalizable phenotypes were fad2, fad5, adg1, pgm,
and the sinapate ester mutant sng1. On the other hand,
these procedures revealed another type of phenotype,
for mutants such as uge4 and vtc3 (affected in
development or stress physiology), for which pooled-
experiment models had significant accuracies but
single-experiment ones were poorly generalizable
(Fig. 6).

The versatility of FIE-MS allowed us to explore how
the apparent phenotype depended on extraction sol-
vents. Alternative FIE-MS fingerprints were produced
with the aqueous extraction used for NMR (Fig. 6,
white symbols). This improved generalizability for
some mutants (e.g. fae1) but not others (e.g. uge4).

These routines were extended to reverse-genetics
screens of putative metabolism genes from the dSpm
single-copy (SM) collection of insertion mutants (Tissier
et al., 1999). RFs found few SM phenotypes rivaling
well-known ones from classical phenotype screens,
but SM21150 (At1g07720), a putative ketoacyl-CoA
synthase, gave fairly strong, generalizable RF models
(Fig. 6). Its distinctness was probably not due only to
ketoacyl-CoA synthase products, as too many (8%) of
its FIE-MS peaks differed from Col-0 (ANOVA, P ,

Figure 4. 2D ordinations of metabolic phenotypes as Sammon maps of
RF margins between all pairs of Col-0 and mutant fingerprints. Meta-

bolic phenotypes are color coded by lesion: starch (red), lipid (blue),
amino acid (yellow), ascorbate (green). A, NMR fingerprints. Not
separated from Col-0: tag1. B, FIE-MS fingerprints. Not separated: tag1,
val1. Arrowheads and letters refer to clusters in Figure 5. C, FTIR
fingerprints. Not separated: fad2, fad3, fad4, tag1. Maps approximate
RFmargins with stress error (for glossary, see Supplemental Table S1) on
plots. For correlations between map distances and RF margins, see
Supplemental Figure S2. Asterisks indicate significance of 93CV
discrimination of each mutant from Col-0 by RF in Weka (*** P ,
0.001, ** P , 0.01, * P , 0.05).
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0.05), and the best discrimination came from aqueous
extracts. At1g07720 is highly up-regulated in elongat-
ing epidermis (Suh et al., 2005), so abnormal waxes
may have affected physiology. This phenotype was
confirmed by profiling: ML classifiers discriminated it
using amino acid, fatty acid, acyl-CoA, or isoprenoid
profiles.

Another ketoacyl-CoA synthase mutant was the
SM19881 insertion in FAE1. It had a weaker phenotype

than the classical fae1 mutant (mean RF margin from
Col-0 of SM19881 was 0.33 of fae1), but its aqueous
fingerprints were discriminated by pooled-experiment
classifiers (Fig. 6). Boyes et al. (2001) found fae1 altered
in development, but this mutant is enigmatic, as
vegetative expression has not been detected (Suh
et al., 2005).

Another quite distinctive case (Fig. 6) was SM15231
(At4g31970), of the CYP82 cytochrome P450 family,
which has stress-responsive members of uncertain
functions (Nelson et al., 2004). Many peaks (19.9%)
in its aqueous fingerprints differed from Col-0
(ANOVA, P , 0.05), perhaps due to a stress-related
phenotype.

We also used NMR on five UDP-Glc 4-epimerase
(UGE) mutants affected in wall synthesis, whose
metabolomes have been little studied. ML discrimi-
nated uge4/rhd1 (P , 0.001), which has defective root
hairs, and uge2 less strongly (P , 0.05), but it failed
with uge1, uge3, and uge5. This gradation in metabolic
phenotypes reflected the UGE genes’ influences on
growth and wall Gal content (Rösti et al., 2007).

Figure 5. Metabolomic relations of Col-0 and 19 mutants by hierar-
chical cluster analysis. Phenotypes were compared using FIE-MS
fingerprints in clustering by RF margins (A) and 13 discriminant
functions from PC-LDA (B).

Figure 6. Interexperiment generalizability of RF models of 35 mutant
phenotypes. 93CV accuracies of discrimination from Col-0 by RFs,
trained on FIE-MS data pooled from two to seven experiments, are
plotted against ratios of between-phenotype margins to mean between-
experiment margins. Squares indicate that data encompass different
growth conditions. Extractions are shown in white (aqueous) and black
(propan-2-ol:methanol:water) symbols. The dotted line shows the
93CV significance threshold (P , 0.001). Correlation (r) of accuracies
with quadratic function of margins ratios is shown. Asterisks indicate
significance for classifiers trained on one experiment and tested on
others (*** P, 0.001, ** P, 0.01, * P, 0.05). Five-digit labels are SM
mutant identifiers (Supplemental Table S2).
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Features: Ranking Distinctive Metabolome Components

Describing rather than demonstrating a phenotype
requires insights into its features. While fingerprinting
is for speed rather than information richness and
precision, its metabolomic insights may still be valu-
able. Moreover, acceptance of ML in biology would be
helped by demonstration of how it uses data features.
Feature utilization by RFs is accessible as “impor-

tance scores,” obtained from misclassification rates
when each variable is randomized. This enabled us
to compare RF models with well-known statistical
methods like ANOVA and other data-mining mea-
sures (more information on which is found in Supple-
mental Table S1). We used the R package FIEmspro
(Enot et al., 2008) for most of these measures, including
the RF importance scores.
As a mining exercise for data features, we explored

phenotype clusters (a, b, c, d) identifiable in the RF
Sammon map, HCA, and PC-LDA (Figs. 4B and 5).
These were interesting, as among predictable clusters
was a less obvious association of fad7 with vtc2 and
vtc3 (cluster b).
Although these clusters emerged in multivariate

analyses, we evaluated univariate as well as multivar-
iate measures of their distinctive metabolomic fea-
tures. The main univariate tool for high-dimensional
data is ANOVA, although its parametric assumptions
are often ignored (Jafari and Azuaje, 2006). Therefore,
we took F values (in the Welch test ANOVA, which
does not assume equal variances) as a benchmark for
feature selection. Very high rank correlations with
ANOVAwere obtained using the nonparametric Kruskal-
Wallis test and the area under the (receiver operating
characteristic) curve (AUC) measure of true- and false-
positive rates (Table III). Mutual information, a univariate
information theory measure, also correlated highly with
ANOVA (Table III).
We further compared ANOVAwith three multivar-

iate methods, which should be appropriate for inter-
dependent metabolomic features. RF importance
scores and Relief correlated highly with ANOVA,
although somewhat less than the univariate measures
(Table III). Thus, the functioning of the RF algorithm
could be validated in relation to traditional statistics.

Similarities between F values and RF importance
scores for spectral peaks were evident, as were the
distinctive features of each phenotype cluster (Sup-
plemental Fig. S3).

PCs loadings gave different feature rankings than
other methods (Table III). This reflected the distinct
operation of PCA. Single PCs generally encompass
only part of the data variance. PCA also differs from
the other methods in weighting variables for contri-
bution to data variance. This means that (without data
scaling) abundant metabolites can be more important
than minor ones even if the latter show greater pro-
portional differences.

These alternative perspectives are both useful to
understand metabolomes. For interpretation of NMR
fingerprints, in fact, we found PCA particularly ame-
nable. PC[1] loadings clearly reflected NMR spectral
peaks (Supplemental Fig. S4) and corresponded
closely to difference spectra between phenotypes,
confirming their biological relevance.

Phenotypes: Metabolomic Insights

One vision for fingerprinting is in “hierarchical
metabolomics” (Catchpole et al., 2005), where rapid
preliminary identification of distinct phenotypes
could guide authoritative profiling. We found that
the metabolomic inclusiveness of fingerprints also
gave some striking global perspectives. One was the
broad consequences of single primary lesions in me-
tabolism. While alternative methods detected meta-
bolic phenotypes differently, a given method was
sometimes more informative than expected for a par-
ticular class of mutant.

Another perspective was the proportions of metab-
olites differing in phenotypes. Figure 7 is a global
ranking of F values of FIE-MS features for the pheno-
type clusters from Figure 5. We show F values, from
among several correlated measures (Table III), for their
wide acceptance (Jafari and Azuaje, 2006). F values for
most clusters were skewed to a few high values, less
than 10% of peaks being different (at P , 0.05) in
intensity to Col-0 (Fig. 7).

Cluster b (fad7, vtc2, vtc3) FIE-MS fingerprints had
atypically large numbers (24%) of significantly differ-

Table III. Feature selection tools for data mining in plant metabolomics

Comparison of selection methods for features of FIE-MS fingerprints that discriminated Col-0 from mutant clusters in Figure 5. Correlations are
shown between F values, from univariate ANOVAs of each spectral variable, and diverse measures, including loadings on the main PC (representing
56%–72% of data variance) separating each cluster from Col-0.

Mutant Cluster

Rank Correlation (rs) with ANOVA

Univariate Measures Multivariate Measures

Kruskal-Wallis AUC Mutual Information RF Relief PC Loadings

a 0.92 0.92 0.80 0.78 0.66 0.61
b 0.97 0.97 0.92 0.87 0.83 0.35
c 0.98 0.98 0.98 0.95 0.93 0.67
d 0.95 0.95 0.87 0.82 0.93 0.09
Mean 6 SD 0.96 6 0.03 0.96 6 0.03 0.89 6 0.08 0.85 6 0.07 0.84 6 0.13 0.43 6 0.27
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ent peaks (Fig. 7). These mutants are all implicated in
stress responses (Kachroo et al., 2005; Conklin et al.,
2006), so their extensively modified metabolism may
have reflected aberrant physiology. Possibly consistent
with altered cell signaling were Suc and Pro loadings
in vtc mutant NMR fingerprints (Supplemental Fig.
S4). These metabolites are influenced by abscisic acid
(Verslues and Bray, 2006), which is up-regulated in
vtc1 (Pastori et al., 2003). Amino acid profiles con-
firmed that Pro was elevated 4-fold in vtc3 (Supple-
mental Table S3).

For cluster a (ats1 and fad5), the highest F values
were for plastid glycerolipids, such as the monogalac-
tosyldiacylglycerols (MGDGs) 18:3-18:3-MGDG [M+K]+

(F = 83.5) and 18:3-16:3-MGDG [M+K]+ (F = 38.8).
Galactolipids with 16-carbon fatty acids form in plas-
tids, those with only 18-carbon fatty acids form partly
in the endoplasmic reticulum (Mekhedov et al., 2000).
Mutants affected in these compartments had distinc-
tive galactolipid spectra (Supplemental Fig. S5). The
main positive ion in Col-0 spectra was 18:3-16:3-
MGDG (Supplemental Fig. S5). In spectra of ats1,
where plastid glycerolipid biosynthesis is disrupted
at the first reaction, 18:3-18:3-MGDG was the main
positive ion. The fad5 mutant, deficient in plastid
desaturation of MGDG 16:0, was distinguished by an
18:3-16:0-MGDG peak. In fad2, defective in micro-
somal 18:1 desaturation, 18:3-18:3-MGDG was dimin-
ished (Supplemental Fig. S5).

Galactolipids contributed up to 21% of the FIE-MS
positive-ion current, explaining the utility of these
fingerprints for lipid mutants. Therefore, the fact that
FIE-MS also discriminated so many nonlipid mutants
(Fig. 3), as did fatty acid profiles, indicated the perva-

siveness of processes where lipids function (Beisson
et al., 2003). The same applied to the converse situa-
tion, where NMR discriminated mutants such as ats1
and fad2, despite using solvents unsuited to metabo-
lites directly affected by these lesions. The spectra
confirmed that NMRwas detecting effects on the polar
metabolome.

For cluster c (adg1 and pgm), the top F values (Fig. 7)
in FIE-MS were for Suc ions, such as [M-H]2 (F = 231).
Sugars also dominated NMR PC loadings for these
starch-deficient mutants and the starch-excess sex1
mutant (Supplemental Fig. S4). In the diurnal light
period (when we sampled), both phenotypes have
high soluble sugars due to lack of conversion to starch
(Caspar et al., 1991; Gibon et al., 2006). FTIR finger-
prints of unfractionated shoots were particularly dis-
tinct for these mutants, with differences from Col-0 at
1,200 to 800 cm21 (Supplemental Fig. S6). This region
included vibrational frequencies of polysaccharide
ring and glycosidic bonds, interpretable as starch
and wall absorbances. PC loadings, or ANOVA F
values, from comparisons of sex1 and adg1 (or pgm)
FTIR fingerprints with Col-0 resembled pure starch
spectra.

Malate, which has pivotal metabolic roles and is
an important form of fixed carbon in Arabidopsis
(Fahnenstich et al., 2007), was prominent in the NMR
PC loadings of diverse mutants, particularly val1 and
uge4 (Supplemental Fig. S4). Val, which accumulated
in val1 (Supplemental Fig. S4; Supplemental Table S3),
is made from pyruvate, for whichmalate is a precursor
(Fahnenstich et al., 2007). Malate is also important in
nitrogen assimilation (Stitt et al., 2002), which could be
affected in val1, and also in uge4, in view of the latter’s
altered root morphology.

Extensive phenotypic variation in amino acids was
also seen in NMR PC loadings (Supplemental Fig. S4)
as well as in amino acid profiles (Supplemental Table
S3). The metabolic centrality of amino acids (Stitt et al.,
2002) was confirmed by the ability of amino acid
profiles to discriminate not only amino acid (trp1, trp5,
val1) but starch (adg1, adg2, pgm, sex1), lipid (ats1, fad2,
fad3, fae1), and vtc (vtc1, vtc3) mutants (Supplemental
Table S3).

Evaluation: Phenotyping by Supervised ML Classifiers

This benchmarking study identified several merits
of supervised ML classifiers for phenotyping. Their
power of discrimination exceeded standard PCA,
suggesting that studies confined to PCA may miss
opportunities. The familiarity and vividness of PCA
mean that it is perceived as simple, but this is decep-
tive unless the primary PCs capture most data varia-
tion. For example, only 26% of the correlations
between 81 variables are explained by the 2D PC score
plots in an impressive recent mutant-screening paper
(Lu et al., 2008). Conversely, supervised classifiers,
despite reputed complexity, proved straightforward
for interrogation of hypothetical phenotypes. Exam-

Figure 7. Data mining of FIE-MS fingerprints to compare metabolic
phenotypes. Ranked F values (P , 0.05) are from ANOVAs of features
(normalized intensity at each m/z) of Col-0 with mutant clusters in
Figure 5.
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ples were our routines of graded stringency for phe-
notype consistency in different experiments (Fig. 1).
Open-source ML algorithms were more powerful

than another major supervised approach, PLS-DA.
Supervised classification is developing, and there are
further methodologies. Bayesian modeling was re-
cently used in phenotyping starch mutants, for exam-
ple, although the programs are not released (Messerli
et al., 2007; Davison, 2008). We have emphasized
public software, which is likely to be the future trend
in the interests of transparency, reproducibility, and
methodological efficiency (Gentleman et al., 2004).
ML classifiers are sometimes seen as “black boxes”

(Davison, 2008), but importance scores for data fea-
tures in RF models were accessible (in R, but not in
Weka, at the time of this study). Indeed, RF has been
advocated for feature ranking (Enot et al., 2008).
Importance scores confirmed that feature utilization
by RFs was consistent with other measures, such as
ANOVA. This differed from loadings of PCA (on
unscaled data), where features were weighted by the
proportion of overall data variance they represented.
In consequence, RF and PCA can provide comple-
mentary perspectives, particularly for comparing mul-
tiple phenotypes. To be attractive for this, RF needs a
visualization format to rival PC score plots, and the 2D
mapping of RF margins has potential.

CONCLUSION

The potential of metabolite fingerprinting will be
enhanced by new data-modeling methods for high-
dimensional data (including, but not limited to, ML).
We have tried to show that ML methods are further
suited to the biological concept of phenotyping and do
not need to be technically inaccessible black boxes. We
believe the open-source resources emerging for me-
tabolomics will vindicate this vision in the not-too-
distant future.

MATERIALS AND METHODS

Plant Material

Supplemental Table S2 details all mutants of Arabidopsis (Arabidopsis

thaliana) Col-0. SM single-copy transposon-insertion lines were selected via a

TIGR.5 genome annotation in Excel, with insertions hyperlinked to the ATIDB

database (Pan et al., 2003). ATIDB entries were matched to MAPMAN for

Gene Ontology Consortium categorization (Thimm et al., 2004). SM lines used

were homozygosity tested (Tissier et al., 1999).

Plants were grown in 7-cm pots of Levington M2 compost with Intercept

insecticide (Scotts) in nine random blocks in one environment of 23�C/18�C,
16-/8-h day/night photoperiods of 250 to 270 mmol m22 s21, and 70% relative

humidity. Where mentioned, other conditions were 23�C, 16/8 h of 100 to 150

mmol m22 s21, and 60% relative humidity. Aerial tissues from stage 6.00 plants

(Boyes et al., 2001) were harvested into liquid N2 in mid light period, freeze

dried, and powdered. Replicate plants from each block were allocated to each

analytical method. Shipment and laboratory processing entailed a few days

at ambient temperature; otherwise, storage was at 280�C. Metadata were

recorded in software compliant with the ArMet plant metabolomics data

model (Jenkins et al., 2005).

NMR Fingerprinting

Samples (15 mg) were extracted (50�C, 10 min) in 1 mL of 80:20 2H2O:

C2H3O
2H with 0.05% (w/v) [2H4]TSP (for sodium trimethylsilylpropionate).

After cooling and centrifugation, supernatants (850 mL) were reheated (90�C,
2 min), refrigerated 45 min, and recentrifuged. 1H-NMR spectra of superna-

tants (750 mL) were acquired at 300 K on a Bruker Biospin Avance at 600 MHz

with a 5-mm inverse probe. A water-suppression pulse sequence with 5-s

relaxation delay was used. Spectra were acquired in 128 scans of width 7,310

Hz and Fourier transformed with an exponential window (0.5-Hz line

broadening). Chemical shifts were referenced to d4-TSP (d0.0). Spectra were

binned to 0.01 ppm, and intensities were scaled to d4-TSP (d0.05 to 20.05).

Signals removed were residual water (d4.865–4.775), d4-methanol (d3.335–

3.285), d4-TSP, and fumarate (d6.525–6.515), which showed particular diurnal

fluctuation. Analytical replicates (three) were averaged. Final fingerprints had

901 bins ($669 nonzero).

FIE-MS Fingerprinting

For speed, we used one-tube extractions with no solvent partitions. Five

milligrams was extracted in 0.5 mL of propan-2-ol (4�C, 1 h), and 0.5 mL of

80:20 methanol:water was added for another 1 h at 4�C. (Including propan-2-

ol yielded 29% more ions of above-average intensity at mass-to-charge ratio

[m/z] . 750 than methanol:water alone.) RF margins were superior (P , 0.05,

Wilcoxon tests) or similar to chloroform:methanol:water (1:2.5:1) extracts.

Where stated, 20:80 methanol:water was used as for NMR.

Samples, diluted 1:1 with 60:40 methanol:water (salts were avoided to aid

throughput), were loaded in the autosampler of a Waters Alliance 2690 LC

system delivering this solvent at 0.5 mL min21 (with no LC column), and 10

mL was introduced by split flow of 75 mL min21 to the Z-spray source of a

Waters Micromass LCTMS device. Source and desolvation temperatures were

120�C and 250�C; capillary was at 3 kV; sample and extraction cones were at 30

and 5 V; nebulizer and desolvation N2 gas flows were 70 and 470 L h21. Spectra

(m/z 65–990) scanned in 1-s cycles for 2 min were binned to unit m/z and

normalized to total ion current infused. Concatenated positive- and negative-

ion spectra had 1,852 variables (all nonzero).

Tandem MS was done on a Waters Micromass nanospray Q-Tof apparatus

with 0.8-kV capillary voltage, cone voltages as above, and argon collision gas

at 3.1 3 1025 mbar.

FTIR Fingerprinting

Samples (5mg)weremixedwith 200mL ofwater, and 5mLwas slurry loaded

on duplicate 400-well aluminum plates. These were dried (50�C, 45 min) and

loaded on a motorized stage of a reflectance thin-layer chromatography acces-

sory of an IFS28 FTIR spectrometer with an MCT detector (Bruker Optics).

Absorbance spectra were recorded over 4,000 to 600 cm21 at 4 cm21 resolution,

and 256 were averaged per sample. Averaged duplicate plate spectra (1,764

variables, all nonzero) were normalized to zero mean and unit SD.

Chromatographic Profiling

Twenty-six amino acids weremeasured, with norleucine internal standard,

on a Thermo LCQ Classic LC-MS device (Thermo Scientific). Samples (2 mg)

extracted in 700 mL of 80:20 ethanol:water (4�C, 30 min) were analyzed as

isobutyl chloroformate derivatives (Husek, 1998) on a 100-mm (3 mm i.d.)

porous graphitic column (5 mmHypercarb; Thermo Scientific) at 0.4 mLmin21

with a 15-min gradient of 100% solvent A (10 mM ammonium trifluoroacetate,

10 mM trifluoroacetic acid in 50:50 ethanol:water) to 100% B (10 mM trifluoro-

acetic acid in tetrahydrofuran). Amino acids were measured by positive-ion

atmospheric pressure chemical ionization-tandem MS, with capillary at 4 V

and 150�C, vaporizer at 550�C, and discharge current of 6 mA.

Nineteen acyl-CoAs were measured in 5-mg samples, as etheno deriva-

tives by LC fluorescence, and 38 fatty acids were measured by GC after

methylation of lipids from this protocol (Larson and Graham, 2001).

Twenty-nine isoprenoids (carotenes, xanthophylls, tocopherols, ubiqui-

nones, chlorophylls) were analyzed by modifications of Fraser et al. (2000),

with a-tocopherol internal standard. Samples (5 mg) on ice were extracted in

200 mL of methanol (5 min), 200 mL of 50 mM Tris-HCl (pH 7.5) was added (10

min), followed by 800 mL of chloroform (10 min). Dried chloroform layers

were analyzed on a 250-mm (4.6 mm i.d.) C30 column (5 mmYMC30; YMC), at

1 mL min21, with 0.2% formic acid/1 mM ammonium formate in methanol or
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methyl tertiary-butyl ether (solvent B). Solvent B program was as follows: 0%,

6 min; 15%, 5 min; to 90% in 30 min; 90%, 5 min. Isoprenoids were quantified

by positive-ion atmospheric pressure chemical ionization-MS, with capillary

at 15 V and 150�C, vaporizer at 500�C, and discharge current of 5 mA.

PLS-DA and PCA

PLS-DA and PCAwere done in SIMCA-P version 11.0 (Umetrics) on mean-

centered unscaled data. PLS-DAmodels were built for eight of nine replicates,

labeled by genotype class (Col-0 and a mutant), and tested in class prediction

of the held-out one of nine (in which the two classes were equally repre-

sented). Test data were excluded from all model-building stages (Westerhuis

et al., 2008). This process, repeated for all nine subsets in turn to get overall

classification accuracies, is termed 93CV. P values were binomial probabilities

of classifications by chance.

As a comparable metric for PCA, we used partition of replicates across the

zero axis of the PC best separating Col-0 andmutant data. Scores on single PCs

were also compared by Mann-Whitney tests. Furthermore, Mahalanobis

distances (Tarca et al., 2007) between multivariate means of scores for all

PCs found to be informative by CV (Eastment and Krzanowski, 1982) were

compared using a permutation test in PAST version 1.66 (Hammer et al., 2001).

This nonparametric test was used as multivariate normality (Mardia test), and

equivalent covariances (Box’s M test) were often not confirmed. For LDA of

PC scores, the R package FIEmspro was used (Enot et al., 2008). HCA (by

Ward’s method) of discriminant functions from PC-LDAwas done in PAST.

ML Classifiers

ML classifications used Weka version 3.4.5 (Frank et al., 2004). A specimen

input file in the ARFF format for Weka is shown in Supplemental Protocol S1.

SMO (sequential minimal optimization) classifiers with linear kernels (and

default parameters) were used for the SVM results shown. We also tested

polynomial (exponents 2, 3, 4) and radial basis function (with parameters

optimized for each spectroscopy) kernels, but these were poorer or not

significantly different from linear kernels, which are often best for high-

dimensional data with few samples (Ben-Hur et al., 2008). Weka RF classifers

had 2,000 trees and nodes split on Öm of the m variables. Accuracies were

from 93CV or a defined test set. P values were binomial probabilities.

RF margins and Sammon maps were obtained in the R randomForest and

MASS packages: R code is shown in Supplemental Protocol S2. HCA (by

Ward’s method) of RF margins was done in PAST. RF margins were estimated

on complete data sets (i.e. without CV or test sets).

Feature Selection

Loadings of the PC that best separated classes were obtained in SIMCA-P.

Feature selection used the Weka ReliefF attribute evaluator (Frank et al., 2004)

and FIEmspro for all other measures (Enot et al., 2008). RF importance scores

were derived for 100 10-fold replicated bootstrap data sets to maximize

consistency of the heuristic algorithm. Mutual information was obtained with

Shannon entropies estimated using binned kernel densities. Univariate mea-

sures were ANOVA (Welch F test, with no assumption of equal variances),

AUC of receiver operating characteristic curves, and Kruskal-Wallis tests.

Position P values (Zhang et al., 2006) were found in 100 10-fold replicated

bootstrap sets; these proved more conservative than conventional parametric

estimates.

Other Statistics

Correlation, Kruskal-Wallis, Mann-Whitney, Wilcoxon, Mardia, and Box’s

M tests on small data sets used PAST.
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learning and its applications to biology. PLoS Comput Biol 3: e116

Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J,

Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to

display genomics data sets onto diagrams of metabolic pathways and

other biological processes. Plant J 37: 914–939

Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G,

Jones JDG (1999) Multiple independent defective Suppressor-mutator

transposon insertions in Arabidopsis: a tool for functional genomics.

Plant Cell 11: 1841–1852

Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis

thaliana ABA-insensitive loci in low water potential-induced ABA and

proline accumulation. J Exp Bot 57: 201–212

Wang T, Shao K, Chu Q, Ren Y, Mu Y, Qu L, He J, Jin C, Xia B (2009)

Automics: an integrated platform for NMR-based metabonomics spec-

tral processing and data analysis. BMC Bioinformatics 10: 83

Ward JL, Baker JM, Beale MH (2007) Recent applications of NMR spec-

troscopy in plant metabolomics. FEBS J 274: 1126–1131

Metabolite Fingerprinting with Machine Learning

Plant Physiol. Vol. 153, 2010 1519



Westerhuis JA, Hoefsloot HCJ, Smit S, Vis DJ, Smilde AK, van Velzen

EJJ, van Duijnhoven JPM, van Dorsten FA (2008) Assessment of

PLSDA cross validation. Metabolomics 4: 81–89

Wurtele ES, Li J, Diao LX, Zhang HL, Foster CM, Fatland B, Dickerson U,

Brown A, Cox Z, Cook D, et al (2003) MetNet: software to build and

model the biogenetic lattice of Arabidopsis. Comp Funct Genomics 4:

239–245

Xia JG, Psychogios N, Young N, Wishart DS (2009) MetaboAnalyst: a Web

server for metabolomic data analysis and interpretation. Nucleic Acids

Res 37: W652–W660

Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidyl-

glycerol biosynthesis in chloroplasts of Arabidopsis mutants defi-

cient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47:

296–309

Zhang C, Lu X, Zhang X (2006) Significance of gene ranking for classifi-

cation of microarray samples. IEEE/ACM Trans Comput Biol Bioinfor-

matics 3: 312–320

Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY

(2005) MetaCyc and AraCyc: metabolic pathway databases for plant

research. Plant Physiol 138: 27–37

Scott et al.

1520 Plant Physiol. Vol. 153, 2010


