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a b s t r a c t

A modelling strategy is proposed to link the meso-scale mechanical response of a solid material to the
macroscopic material behaviour. The model is based on a regular lattice of truncated octahedral cells,
with sites at the cell centres linked by two sets of bonds. The relationship between the macroscopic elas-
tic behaviour of the model and the elastic properties of the bonds is studied numerically. The results dem-
onstrate that, in contrast to previously proposed lattice arrangements, any elastic properties of metallic
or cementitious materials can be obtained by appropriate selection of the axial and the shear stiffness of
the bonds. Discussion of the modelling approach includes the potential of the site-bond model to simu-
late the evolution of damage driven not only by mechanical deformation but also by processes that
involve the interaction of different mechanisms.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Current modelling and simulation practices for engineering
analyses are based on continuum descriptions of material
responses to external driving forces. These may be stresses due to
deformation gradients; heat fluxes due to temperature gradients;
fluid flows in porous media due to pressure gradients; diffusion of
chemical species due to concentration gradients; and electric
current due to potential gradients. The basis of the continuum
approach is to relate the responses to the driving forces by govern-
ing differential equations and formulate appropriate boundary
value problems that can be solved with any number of numerical
schemes, most commonly the finite element method.

A key feature of the continuum approach is the definition of con-
stitutive laws to link the driving forces for particular phenomena
with their evolution. Generally, these laws are phenomenological,
based on accumulated knowledge from macroscopic experiments.
However, the continuum approach may break down in the presence
of discontinuities, such as existing or emerging voids or micro-
cracks which can grow, interact and coalesce. Thanks to advances
in experimental materials science our understanding of the
microscopic mechanisms responsible for the creation and growth
of discontinuities is improving continually. For example, the stress
driven motion of dislocations in metallic materials can lead to

de-cohesion (Argon et al., 1975; Xu and Needleman, 1993) or
rupture (Curry and Knott, 1979; Chen and Wang, 1992) of sec-
ond-phase particles. Similarly, localised cavitations, nucleation of
micro-cracks, enlargement or shrinkage of existing voids in man-
made or natural materials can occur due to diffusion of species
(Chen and Argon, 1981; Cocks and Ashby, 1982), electrochemical
processes (Lo et al., 2009; Jain et al., 2010), and even bacterial
effects (Taylor and Jaffe, 1990; Lo et al., 2009).

Advances in engineering design and assessment will require
increasing accuracy in accounting for the effects of microscopic
failures on, for example, macroscopic deformation behaviour; ther-
mal conductivity; hydraulic permeability; diffusivity; or electric
conductivity. One important area is the deformation behaviour of
metallic materials in the fracture process zone in the vicinity of a
macroscopic crack, which is relevant to the energy, automotive,
aerospace and rail industries. This may be coupled with thermal
and corrosion effects on the formation and growth of microscopic
flaws. Another important area is the deformation and conductive
behaviour of porous quasi-brittle materials, such as cements, con-
cretes, geological materials, nuclear graphite, and human bone.
These may also be coupled with thermal, corrosion and bacterial
effects. Micro-failures may also lead to changes in electric conduc-
tivity, which is an important problem for the power generation and
transmission, and electronic industries.

All these industries will continue to use continuum approaches
to modelling materials and components performance for the fore-
seeable future. This is dictated by the vast intellectual effort
invested in the development of its theoretical basis, computational
implementation and developing engineering expertise. One practi-
cal constraint to the continuum approach is the derivation of the
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necessary multi-variable phenomenological constitutive laws.
Such derivation entails unaffordable experimental programmes.

The basis of the work reported in this paper is the premise that
macroscopic constitutive laws may be derived from observing and
modelling the physical processes operating at shorter length
scales. Such macroscopic constitutive laws will therefore be mech-
anism-based as opposed to phenomenological. The immediate aim
is to formulate a framework for modelling solid materials that al-
lows scientists and engineers to bridge the gap between knowl-
edge of microscopic mechanisms of deformation and failure, and
the macroscopic material responses.

The key element to the treatment of microscopic failure mech-
anisms, which unifies all the cases described above, is the presence
of microscopic defects with random spatial and size distributions.
These can be micro-cracks, voids, pores, second-phase particles,
and such like, which act as micro-failure initiators. The continuum
approach is capable of dealing with such defects only if they are
pre-defined in size and spatial arrangements. For example, fracture
mechanics modelling requires the definition of cracked geometries
and ideally the knowledge of crack extension paths if crack
advance is to be analysed. Some recent methods, such as the ex-
tended finite element method (Sukumar et al., 2000), allow for
modelling arbitrary crack paths, according to prescribed macro-
scopic criteria. However, the interaction and the coalescence of
multiple cracks cannot be addressed with these methods without
bringing in additional constitutive assumptions. Further the con-
tinuum approach is inherently incapable of dealing with initiation
phases of failure. The nucleation of micro-failures, their growth,
interaction and coalescence are of fundamental importance in
the assessment of macroscopic behaviour and the derivation of
mechanism-based continuum constitutive laws.

Progress in using the mechanistic understanding of microscopic
phenomena for macroscopic constitutive laws or failure predic-
tions has been made in the area of fracture mechanics of metallic
materials. For the case of ductile fracture, the understanding of
the void growth and coalescence mechanism has led to a number
of ductile-damage models (Rice and Tracey, 1969; Gurson, 1977;
Tvergaard and Needleman, 1984; Thomason, 1985; Rousselier,
1987), where material damage due to void enlargement is repre-
sented by pressure-dependent terms in the constitutive material
response. Thus, the void network is ‘‘smeared’’ in the continuum,
which does not allow for proper treatment of their interaction
and coalescence. Additional phenomenological assumptions have
to be made to account for these processes. For the case of cleavage
fracture, the understanding of the role of plastic strain, principal
stress and stress triaxiality on the rupture of second-phase parti-
cles has lead to a number of probabilistic models for brittle failure
(Beremin et al., 1983; Mudry, 1987; Ruggieri and Dodds, 1996;
Bordet et al., 2005). However, the common assumption for all these
models is that the global failure is a weakest-link event; the micro-
scopic failure events are assumed to be isolated and independent.
While this may be a good approximation for cases with a very low
density of micro-failures, at very low plastic strain levels for
instance, the interactions between micro-failures becomes suffi-
ciently influential at higher micro-failure densities to invalidate
the weakest-link statistics (Jivkov et al., 2011).

The constitutive laws for the behaviour of porous quasi-brittle
materials, concretes, rocks and clays, are based on a number of
cohesion and pressure dependent brittle- or ductile-damage mod-
els. These rely on curve fitting to macroscopic experimental data to
identify and calibrate the parameters (de Borst, 2002; Jing, 2003;
Hofstetter and Meschke, 2011). Failure analysis of such materials
is generally based on weakest-link statistics, similar to the
cleavage failure of metals, although its validity has been repeatedly
questioned, particularly on the grounds of failing to account for
interaction and coalescence of micro-failures (Bazant and Pang,

2007). To date, there is no general framework for studying the
effects of micro-failures on the thermal conductivity, hydraulic
conductivity or diffusivity of these materials.

These observations suggest that there is advantage in creating a
material representation that allows for micro-failure initiation,
growth, interaction and coalescence and yet is suitable for analys-
ing changes in the macroscopic properties. A promising approach
for constructing such a representation is use of the discrete particle
methods. The origin of these methods can be found in fluid
mechanics, with smoothed particle hydrodynamics being a notable
modern flavour (Monaghan, 2005). Recent developments for solid
mechanics are the smoothed particle applied mechanics (Hoover
and Hoover, 2001) and the peridynamics (Silling, 2000). These
methods, however, have been developed from a continuum mate-
rial perspective; without explicit account being taken of the under-
lying microstructure and micro-mechanisms of failure. This makes
it difficult to incorporate some of the complexity, particularly in
terms of coupled mechanisms, that may be involved in the nucle-
ation and growth of micro-failures. Furthermore, investigating the
influence of micro-failures on other macroscopic properties, such
as permeability and electrical conductivity, becomes intractable
without a sound mechanistic framework. Models developed from
a microstructure and micro-mechanistic basis would be more
advantageous in this respect.

Material representations that can incorporate variable behav-
iours at a microstructural scale can be constructed from lattices
of space-filling polyhedra. Each polyhedron is an individual cell
that represents a particular microstructural feature; usually a
grain, but it may be the environs of the largest defects. Computa-
tionally, the solid is represented by a framework of linear struc-
tural elements with nodes at the centres of the cells and
elements linking neighbouring nodes. The macroscopic mechanical
behaviour of the solid is obtained by the assignment of deforma-
tion and failure properties to the elements. The basic prerequisite
for such models is that they must be able to generate the macroscopic
elastic properties of the material. This requirement should be met
before any failure characteristics are assigned for studying micro-
cracking effects on the macroscopic mechanical behaviour.

The lattice approach has been used previously for modelling
cementitious materials. Early works, based on 2D regular hexago-
nal lattice (Schlangen and van Mier, 1992; Chang et al., 2002),
provide a good illustration that the non-linearity in the macro-
scopic stress–strain curve for such materials is an emergent
property from the underlying micro-cracking events. It has been
analytically derived, however, that this lattice cannot be used for
materials with Poisson’s ratio larger than 0.25 in plane strain and
0.33 in plane stress (Griffiths and Mustoe, 2001). Moreover, the
number of cases where a 2D representation of a solid is appropriate
is limited. Micro-crack growth and coalescence is a truly three-
dimensional phenomenon. A 3D model has been proposed based
on the simplest regular lattice with cubic cells (Schlangen, 2008).
One problem with this lattice is that it is not physically realistic
in terms of the shape of the represented grains; the shapes of the
formed grain boundaries; or the coordination with neighbouring
grains. Moreover, this lattice is unable to provide a linear elastic re-
sponse with an appropriate elastic modulus and Poisson’s ratio.
Two more complex 3D lattices, based on face-centred cubic and
hexagonal closely-packed arrangements have also been analysed
(Wang and Mora, 2008). It has been shown that these lattices
can represent an isotropic homogeneous linear elastic material
only when the Poisson’s ratio equals zero, which is precisely the re-
sult for a cubic lattice. It is worth mentioning that modelling with
irregular lattices, such as those formed from Delaunay triangula-
tions of 3D material volumes, has also been suggested (Cusatis
et al., 2006). Such lattices, however, are specific to the material
domains being represented and analysis of the link between the
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elastic properties of the elements and the elastic behaviour of the
assembly is not straightforward.

A lattice built from truncated octahedrons has been used in
studies of intergranular stress corrosion cracking (Jivkov et al.,
2006). However, the wider capabilities of this lattice model have
not been addressed; in particular its ability to reproduce any mac-
roscopic elastic behaviour of practical interest. In this work we
demonstrate that this lattice provides a useful and physically real-
istic representation of a solid material at a meso-scale, the scale
dictated by the microscopic mechanisms of failure. We show that
the computational model of nodes and elements corresponding
to the lattice, which we call the site-bond model, can be tuned to
represent any pre-defined macroscopic elastic behaviour. An
attraction of the proposed model is the ability to vary indepen-
dently the elastic properties of the two types of bonds present in
the lattice. Our demonstration is based on numerical experiments.
Finally, we discuss the potential of such a discrete model to derive
constitutive relationships for continuum models from the knowl-
edge of underlying microscopic mechanisms.

2. Solids at meso-scale

We consider the meso-scale to be a length scale relevant to a
particular mechanism of microscopic failure or micro-crack forma-
tion. The mechanism is related to the presence of micro-defects
which act as failure initiators. In porous quasi-brittle materials
micro-defects are present in the form of pores residing at the inter-
faces between solid-phase grains. The mechanical deformation of
the material leads to failure of such interfaces forming micro-
cracks which may grow, interact and coalesce. The meso-scale
for these materials is dictated naturally by the size of the solid-
phase grains. In metallic materials micro-defects are present in
the form of second-phase particles, typically harder than the
surrounding matrix. The mechanical deformation of the material
may cause rupture of such particles, resulting in micro-crack
nucleation, or de-cohesion of particles from the matrix, resulting
in void formation. The meso-scale in such cases is dictated by
the spacing between characteristic, sufficiently large, initiators. If
these initiators are found predominantly at the grain boundaries,
the meso-scale would be determined by the size of the crystals
in the polycrystalline assembly. Otherwise, one can reformulate
the notion of a grain so that it stands for a domain free of charac-
teristic initiators, whilst the initiators are allowed to reside at the
domain boundaries. This position allows the development of a
common approach to a wide class of engineering and geological
materials.

In our method, a physical region is tessellated into cells free of
micro-defects. The failure initiators are allowed to be distributed
on the interfaces between the cells. As we aim to construct a
simple regular model of the microstructure, it is important to
select the cell shape and coordination which is a reasonable repre-
sentation of real materials. Tessellating a domain of a real material
into cells with micro-defects residing at interfaces would produce
a Voronoi diagram of the point set determined by the grain, or
reformulated grain, centres. Monte Carlo studies with 3D Voronoi
tessellations of space (Kumar et al., 1992) have shown that: the
average number of cell faces (F), or the average cell coordination,
is 15.54; the average number of cell edges (E) is 40.63; the average
number of cell vertices (V) is 27.09; and the mean number of edges
per face (S) is 5.23. This provides an insight into the selection of a
regular cell shape. Four geometric solids can fill space compactly
using a single solid cell. These are: the cube with F = 6, E = 12,
V = 8, S = 4; the regular hexagonal prism with F = 8, E = 18, V = 12,
S = 4.5; the rhombic dodecahedron, a solid bounded by 12 equal
rhombuses, with F = 12, E = 24, V = 14, S = 4; and the truncated

octahedron, a solid bounded by six equal squares and eight equal
regular hexagons, with F = 14, E = 36, V = 24, S = 5.14. This suggests
that the best choice for a regular representation of the microstruc-
ture is the truncated octahedron. Fig. 1 shows an illustration of this
solid, as well as an assembly of cells in a 3D lattice.

The next step of model abstraction is to consider the cell centres
as geometric points or sites, with neighbouring sites connected by
one-dimensional links or bonds. The deformation behaviour of a
bond has to account for all possible relative deformations between
the two adjacent cells. In other words, the bond must be able to de-
scribe all relative displacements and rotations between the coordi-
nated sites. Furthermore, the bonds intersect the interfaces
between cells where micro-defects may reside. Correspondingly,
the bonds may be attributed failure properties dictated by a partic-
ular failure micro-mechanism.

A single site-bond model, as described, may well be sufficient to
investigate macroscopic responses that are only governed by mi-
cro-failures mechanisms driven by the deformation of the material.
In cases of micro-failure mechanisms driven by other phenomena,
such as electrochemical or bacterial corrosion, or diffusion, or
investigations of other macroscopic properties, such as hydraulic
permeability, or species diffusivity, the proposed site-bond model
can be complemented by a dual site-bond model. In such cases,
the primary sites characterise the solid phase, and the secondary
sites characterise an additional phase, such as a system of voids
or pores. The sites of the secondary model are the centres of the
bonds in the primary model and the bonds of the secondary model
link adjacent interfaces of the primary model. Examples of this
methodology are discussed in more detail in Section 5.

The critical point for this concept to be accepted is whether the
site-bond model of the solid phase is able to reproduce any desired
macroscopic elastic response. In the next two sections we will
describe a computational implementation of the site-bond model
and will demonstrate that the model is capable of reproducing
any required macroscopic elastic properties of practical interest.

3. Model and method

The construction of the site-bond model begins with the seeding
of sites. This uses a mapping from integer triplets ( i, j, k) into the
physical space. Only triplets with three even indices (even triplets)
and three odd indices (odd triplets) are mapped into sites. For the
mapping, we assume equal spacing between the sites of the assem-
bly in the three principal directions, i.e. the directions normal to the
square faces of the solid cell in Fig. 1, and denote this spacing by L.
This assumption yields a site-bond model corresponding to the cell
assembly of Fig. 1, with L giving the size of the unit cell in any of the
principal directions. Generally, unequal spacing in the principal
directions could be considered if one wishes to obtain grains with
distorted shapes to mimic texture, for example. This possibility is
beyond the scope of the current work. With equal spacing in the
principal directions, L, the sites of the assembly are seeded at points
with coordinates (i L/2, j L/2, k L/2) in the physical space. The sites
mapped from even triplets and from odd triplets form two sets of
sites in the physical space. The sites from each set are connected
by bonds to the neighbouring six sites of the same set and to the
neighbouring eight sites of the other set.

Fig. 2 illustrates the site-bond assembly so formed. The sites are
depicted by small spheres, and the bonds by cylindrical links with
two different colours. The bonds connecting sites belonging to the
same set are denoted by B1. They have length L1 = L and are normal
to the square faces of the cellular representation in Fig. 1. The
bonds connecting sites belonging to two different site sets are
denoted by B2. They have length L2 =

p
3L/2 and are normal to

the hexagonal faces of the truncated octahedron.
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The bonds of the site-bond assembly are modelled with struc-
tural beam elements in order to reflect all possible relative
displacements between coordinated sites. Thus the sites have six
independent degrees of freedom: three translational and three
rotational. Correspondingly, the bonds are capable of transferring
axial and shear forces, and torsion and bending moments. This is
a principal feature that distinguishes the proposed site-bond
model from other discrete methods, such as the discrete element
method (Cundall and Hart, 1992).

There are several geometric and material properties associated
with the bonds in the assembly. The selection of these properties
allows one to model material anisotropy and inhomogeneity. For
example, to achieve a particular anisotropic macroscopic response,
the bonds in various directions can be assigned different elastic or
inelastic deformation and failure behaviours. To represent material
inhomogeneity, the bonds belonging to various regions of the
assembly can be assigned specific deformation or failure behav-
iours, common to that region but differing between regions. The
latter approach can be used, for example, to represent solid-phase
particles of various sizes whilst leaving the simple underlying
lattice in place. For this purpose, no failure properties will be at-
tached to the bonds within a region corresponding to a solid-phase
grain. Section 5 provides further details on the generality of the
model in this respect. We shall now focus on the elastic properties
and the geometric characteristics of the bonds needed to produce
elastic responses.

Firstly, in this work we assume local material isotropy, hence
the bonds should not have any preferential directions for shear

and bending. Therefore, the beams are selected to be of circular
cross section and the geometric parameters that can be varied
are the radii of the cross sections. All beams of length L1, those con-
necting sites of one and the same set, are assigned a radius R1. All
beams of length L2, those connecting sites of the two different sets,
are assigned a radius R2. Secondly, in this work we assume material
homogeneity, hence the bonds should not exhibit different elastic
behaviour. Therefore, all beams have identical elastic modulus, Eb,
and identical modulus of rigidity Gb. The modulus of rigidity dic-
tates the shear and torsional stiffness of the beam, which may
affect the macroscopic response of the assembly.

With these settings, the relation between the displacements
and rotations, a vector D, and the reaction forces and moments, a
vector F, at two coordinated sites p and q is given by a standard
symmetric 12 � 12 beam stiffness matrix, K, so that F = KD.
The structure of this system is given here for completeness. With
respect to a local coordinate system (x1,x2,x3) with x1 along
the bond extension, D = (u1,p,u2,p,u3,p,/1,p,/2,p,/3,p,u1,q,u2,q,u3,q,
/1,q,/2,q,/3,q)T and F = (F1,p,F2,p,F3,p,M1,p,M2,p,M3,p,F1,q,F2,q,F3,q,
M1,q,M2,q,M3,q)T. The non-zero coefficients on and above the
diagonal of K are given by:

k1;1 ¼ k7;7 ¼ �k1;7 ¼
pR2

aEb

Lb
; ð1aÞ

k2;2 ¼ k3;3 ¼ �k8;8 ¼ k9;9 ¼ �k2;8 ¼ �k3;9 ¼
3pR4

bEb

Lb

3

; ð1bÞ

k4;4 ¼ k10;10 ¼ �k4;10 ¼
pR4

bGb

2Lb
; ð1cÞ

k5;5 ¼ k6;6 ¼ �k11;11 ¼ k12;12 ¼ 2k5;11 ¼ 2k6;12 ¼
pR4

bEb

Lb
; ð1dÞ

k2;6 ¼ k2;12 ¼ �k3;5 ¼ �k3;11 ¼ k5;9 ¼ �k6;8 ¼ �k8;12 ¼ k9;11 ¼
3pR4

bEb

2Lb

2

;

ð1eÞ
where b = 1, 2, indexes the two types of bonds. The global stiffness of
a site-bond model can be assembled from the beam stiffness matri-
ces with appropriate transformations and the linear elastic response
determined with any linear solver. We have used ABAQUS (2007) as
a solver with its existing provision for beam elements. In this case
the modulus of rigidity of the beams is calculated internally from
a user defined Poisson’s ratio for beams, mb, by Gb = Eb/2(1 + mb).

Simulations have been performed with variable parameters
R1/L, R2/L, Gb/Eb. The ratios R1/L and R2/L have been assigned

Fig. 1. Unit cell (truncated octahedron) and 3D regular cellular assembly representing material microstructure.

Fig. 2. Site-bond assembly of a 3D solid-phase model.
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independently 22 values: 0.01, 0.02, and all the numbers between
0.05 and 1.0 inclusive with step 0.05. Note that the, not included,
limiting case, R2/L = 0, corresponds to the simple cubic lattice. Sim-
ilarly, the, also not included, limiting case, R1/L = 0, corresponds to
a lattice formed by the body diagonals only. The ratio Gb/Eb has
been assigned independently 24 values in the range 1/3 to 19/3
inclusive with variable step. These correspond to 24 values for
Poisson’s ratio of the bonds between mb = 0.5 and mb = �0.92, which
will be identifiable in the results.

A site-bond model of a cubic region (20L,20L,20L) defined with
respect to a coordinate system (X1,X2,X3), oriented along the three
principal directions of the unit cell, has been used for simulations.
This represents a cellular lattice with 20 cells in each principal
direction. The model has been subjected to uniaxial tension and
simple shear external loads to determine the macroscopic modulus
of elasticity, Poisson’s ratio and shear modulus of rigidity indepen-
dently. Let (U1,U2,U3) are the displacements of sites with respect to
(X1,X2,X3).

The applied boundary conditions for uniaxial tension are: U1 = 0
for sites on X1 = 0; U2 = 0 for sites on X2 = 0; U3 = 0 for sites on
X3 = 0; free sites on X1 = 20L; free sites on X2 = 20L; U3 = 2L for sites
on X3 = 20L. This gives an applied macroscopic tensile strain
et = U3/20L = 0.1. The resulting displacements U1 of sites on plane
X1 = 20L and U2 of sites on plane X2 = 20L are averaged to give mean
displacements D1 and D2, respectively. The macroscopic Poisson’s
ratio for tension and compression is determined by mt = �D1/L, or
mt = �D2/L. The two values are identical for this model. The macro-
scopic stress in the direction of the applied macroscopic strain, rt,
is determined from the reaction forces F3 at sites on plane X3 = 20L
(or X3 = 0) and the area of this boundary. The macroscopic modulus
of elasticity is then calculated by E = rt/et.

The applied boundary conditions for simple shear are: U1 = 0 for
sites on X1 = 0 and on X1 = 20L; free sites on X2 = 0 and on X2 = 20L;
U2 = U3 = 0 for sites on X3 = 0; U2 = 2L and U3 = 0 for sites on

X3 = 20L. This gives an applied macroscopic shear strain
es = U2/20L = 0.1. The macroscopic stress in the direction of the
applied macroscopic strain, rs, is determined from the reaction
forces F2 at sites on plane X3 = 20L (or X3 = 0) and the area of this
boundary. The macroscopic modulus of rigidity is then calculated
by G = rs/es.

For a given choice of R1/L, R2/L, and Gb/Eb, the macroscopic elas-
tic modulus, E, is linearly dependent on the bonds elastic modulus,
Eb, which is clear from the structure of the stiffness matrix, Eq. (1).
Therefore a fixed Eb has been used throughout the simulations and
results are presented for the ratios E/Eb and G/Eb. These can be used
to select Eb for obtaining required E and G. A second value of the
Poisson’s ratio is also calculated from the results for elastic and
shear moduli as ms = E/2G � 1. The relation mt = ms represents elastic
isotropy, while mt – ms represents anisotropic behaviour.

4. Results

The parametric studies performed depend on three parameters.
Three cases are selected to illustrate their effects on the macro-
scopic elastic properties of the model. In the first case, the ratio
Gb/Eb is fixed at 0.5, that is, the Poisson’s ratio of the bonds is
mb = 0, while the two ratios R1/L and R2/L vary within their
prescribed intervals. The results for this case are shown in Fig. 3.
Plots (a) and (b) show the macroscopic modulus of elasticity, E,
and the Poisson’s ratio, mt, respectively, obtained from the tensile
loading of the model. Plot (c) shows the macroscopic modulus of
rigidity, G, obtained from the shear loading of the model. In the
second case, the ratio R1/L is fixed at 0.5, while mb and R2/L vary
within their prescribed intervals. The results for this case are
shown in Fig. 4. In the third case, the ratio R2/L is fixed at 1.0, while
mb and R1/L vary within their prescribed intervals. The results for
this case are shown in Fig. 5. The macroscopic elastic properties
in the plots (a–c) in Figs. 4 and 5 are same as those in Fig. 3.

Fig. 3. Macroscopic elastic properties derived with Gb/Eb = 0.5 (mb = 0) and variable bond radii: modulus of elasticity (a); Poisson’s ratio (b); and modulus of rigidity (c).
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The results presented in plots (a) of Figs. 3–5 show that increas-
ing bond cross section, equivalent to increasing bond stiffness, and
increasing bond shear modulus, or decrease of bond Poisson’s ratio,
results in increasing macroscopic elastic modulus. Whilst this
trend is expected, its analytical treatment may be challenging for
the model proposed. The results presented in plots (c) of Figs.
3–5 show a similar trend for the macroscopic shear modulus. Its
variation however shows a different complex dependence on the
parameters, which is not proportional to the variation of the elastic
modulus. The numerical results presented will therefore be useful
for calibrating the bond properties of this model.

The results presented in plots (b) of Figs. 3–5 show that elastic
materials with Poisson’s ratio less than �0.7 and more than 0.5 can
be modelled, provided that this is determined as the ratio between
the transversal and normal strains from uniaxial tension-compres-
sion tests. In fact, for the set of simulations performed, the two
limiting values obtained are mt,min = �0.722 and mt,max = 0.564.
Values outside this range can be obtained with higher ratios
R2/R1 and Gb/Eb than those used here. It is instructive to note that
a range of bond properties can be used to obtain a desired
macroscopic Poisson’s ratio mt. For any selection of bond cross
sections and Poisson’s ratio that provide a prescribed mt, the bond
elastic modulus, Eb, can be determined from the results in plots
(a) of Figs. 3–5.

It is important to analyse which isotropic elastic materials can
be modelled by our site-bond method. These can be extracted from
the data as the points where the macroscopic Poisson’s ratio, mt,
equals the Poisson’s ratio that would be obtained from the elastic
and shear moduli, ms = E/2G � 1. An illustration of this process is gi-
ven in Fig. 6 for the three cases shown in Figs. 3–5. The mt-surfaces,
identical to the plots (b) from Figs. 3–5, are combined with the cor-
responding ms-surfaces. The latter are shown in grey, and are only
presented in the range where they intersect the mt-surfaces. The

intersection of the two surfaces is a curve, or curves, representing
an isotropic elastic material. Some values of the Poisson’s ratio at
the end points of these curves are depicted for illustration.
Fig. 6(a) shows that for mb = 0 the ms-surface intersects the mt-sur-
face along a single curve and any isotropic material with 0.26 < m
< 0.38 can be represented. Fig. 6(b) shows that for R1/L = 0.5 the
ms-surface intersects the mt-surface along two curves, one of which
is very short in the neighbourhood of m = 0.29. The other intersec-
tion shows that any isotropic material with �0.12 < m < 0.01 can be
represented. Fig. 6(c) shows that for R2/L = 1.0 the ms-surface inter-
sects the mt-surface along one curve and any isotropic material
with 0.24 < m < 0.29 can be represented.

Fig. 7 shows the full range of isotropic elastic materials that can
be represented by the model. The three plots give the values of the
macroscopic Poisson’s ratio for variable mb, R2/L, and R1/L, respec-
tively, with solid spheres. Projections of these points on the coor-
dinate planes are also shown with small squares. In Fig. 7(a) the
limiting values of the Poisson’s ratio are depicted. This shows that
there are two regions in which materials can be represented as
isotropic by the model.

The first class are materials with �0.20 < m < 0.02. Here, the
model can represent isotropic cellular foams, which have typically
m < 0, and rocks which have typically m � 0. The second class are
materials with 0.24 < m < 0.38. Here, the model can represent as
isotropic practically all structural metallic materials, for which
the typical range is 0.25 < m < 0.38. The model can also represent
glass and ceramic materials, for which the typical range is
0.24 < m < 0.29. These results depend on the intervals of the bond
parameters used in the analysis. In principle, extending these
intervals beyond the current values may increase slightly the re-
gions of available Poisson’s ratio for isotropic materials. It should
be noted that the assumption of local isotropy, leading to the beam
representation of the relative deformations between grains, places

Fig. 4. Macroscopic elastic properties derived with R1/L = 0.5 and variable mb and R2/L: modulus of elasticity (a); Poisson’s ratio (b); and modulus of rigidity (c).
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Fig. 5. Macroscopic elastic properties derived with R2/L = 1.0 and variable mb and R1/L: modulus of elasticity (a); Poisson’s ratio (b); and modulus of rigidity (c).

Fig. 6. Macroscopic Poisson’s ratios obtained from tensile (coloured surfaces) and shear (grey surfaces) tests for fixed mb = 0 (a); fixed R1/L = 0.5 (b); and fixed R2/L = 1.0 (c).
The intersection curves of the two surfaces represent homogeneous isotropic materials.
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some restrictions on the model parameters that can be varied. A
more general description can be used, where the tensile and shear
behaviours are decoupled, to attempt a wider applicability of the
model for isotropic materials if necessary.

An important class of materials that cannot be represented as
isotropic are the cement-based materials, for which 0.18 < m <
0.22 is typically reported. These values, however, are obtained
experimentally by independent determination of the elastic mod-
ulus, E, from tensile or compressive tests, and of the shear modu-
lus, G, from torsion or simple shear tests. A non-destructive way
of determining E and G is from measurements of longitudinal
and transverse wave velocities. In both cases the reported Poisson’s
ratio is evaluated assuming isotropic elasticity, m = E/2G � 1; in our
terminology this represents a ms value. This can be significantly dif-
ferent from the value determined from tensile or compressive tests
as the ratio between transversal and normal strains. Such tests for
a number of cement-based materials have shown that 0.24 < mt <
0.33 (Klink, 1992). This suggests that cementitious materials
should not necessarily need to be represented as isotropic. The
model allows for tuning the parameters so that the behaviours in
tension-compression and shear are sufficiently decoupled to cap-
ture the behaviour of this class of materials. We illustrate this by
selecting mt = 0.3 and studying the set of ms that the model can
represent.

Fig. 8 shows the ranges of ms values that can be obtained for
mt = 0.3 with various selections of the model parameters. The three
plots give the values in the R1 � R2 space, R2 � mb space, and R1 � mb

space, respectively, with solid spheres. Projections of these points
on the coordinate planes are shown with small squares. In
Fig. 8(a) the limiting values of ms are depicted. The results

demonstrate that if a material with mt = 0.3, measured by
tension-compression tests, is to be modelled, then our truncated
octahedral site bond approach allows for a range of Poisson’s ratios
measured by shear or torsion tests of 0.13 < ms < 0.5. This clearly
covers the reported range of ms for cementitious materials. The pro-
cess illustrated in Fig. 8 can be repeated for any structural material
if the tensile and shear behaviour are found to produce distinctly
different Poisson’s ratios.

5. Discussion

The approach taken in this work can be regarded as ‘‘global’’ in
the sense that the strain energy stored in the entire lattice is com-
pared to the strain energy stored in a continuum with correspond-
ing volume. Moreover a specific representation of the bonds with
beams of circular cross-section is used. This was done to illustrate
the ability of the newly proposed lattice to represent a wider range
of elastic materials than other 3D lattice arrangements that also
use beam elements. The approach departs from existing ‘‘local’’ ap-
proaches, such as equilibrating the energy in the bonds to the con-
tinuum energy stored in a unit cell (Wang and Mora, 2008) or
enforcing equilibrium of forces at unit cell level (Cusatis et al.,
2011). The reason for this is that the proposed lattice arrangement
does not permit a simple closed form solution for the relation be-
tween bond properties and continuum elastic constants. In the
general case, the behaviour of the two distinct types of bonds, B1

and B2, needs to be represented by eight parameters – normal,
shear, twisting and bending stiffness for each bond type. With
analysis based on unit cell energy equilibrium it can be shown that

Fig. 7. Values of Poisson’s ratio for homogeneous isotropic elastic materials which can be achieved by the model shown in: R1–R2 space for all mb (a); in R2–mb space for all R1

(b); and in R1–mb space for all R2 (c). Projections on the coordinate planes are shown to illustrate the ranges of parameters used. The full range of Poisson’s ratios is depicted in
plot (a).
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the proposed lattice represents a micropolar material with cubic
elasticity. This is not surprising as the unit cell of the proposed
model is also the Voronoi cell, or the first Brillouin zone, of the
face-centred cubic crystals. For the simple case of homogeneous
deformation, that of no relative rotations between sites, the three
constants of the cubic elasticity can be related to the four normal
and shear linear stiffness coefficients of the bonds. This illustrates
that the model is over-determined and explains why a given set of
macroscopic parameters can be achieved with different combina-
tions of beam properties, as in our results. An analysis of more
complex deformation modes involving relative rotations between
sites can be used to obtain relations between the linear and the
twisting/bending stiffness coefficients. If such analysis is based
on deformation energy function dependent on strains only, the
classical continuum mechanics used by Wang and Mora (2008),
the problem remains over-determined. A possible explanation is
that the proposed lattice arrangement is always ‘‘micropolar’’;
the stiffness coefficients of the bonds cannot be uniquely deter-
mined from classical strain energy potential. This is a subject of
ongoing work and will be reported in a future publication. Never-
theless, the results of this work show that, at the macroscopic
scale, the lattice can represent a wide class of materials with
isotropic and cubic elasticity, with local micropolar behaviour
averaged over the volume.

The presence of micropolar effects at cell level makes it useful
for the intended application of the model to the deformation and
fracture of solids at the meso-scale (Bazant and Jirasek, 2002). In
order to develop the proposed lattice for such studies three imme-
diate areas of future investigation include:

� Derivation of bond properties based on unit cell energy equilib-
rium and recent developments in micropolar elasticity
(Hadjesfandiari and Dargush, 2011).

� Analysis of the relation between micro-crack in a continuum
and a micro-crack represented with bond failure in the
proposed lattice (see, for example, Yavari et al., 2002).
� Development of inelastic bond model for representing

macroscopic elastic–plastic behaviour based on micropolar
elasto-plasticity (such as Ristinmaa and Vecchi, 1996).

It has been shown previously that regular lattices lead to bias in
fracture paths (Bazant and Jirasek, 2002). This conclusion, how-
ever, is made for lattices which are not intrinsically micropolar at
the cell level. That is, those lattices with bond properties uniquely
related to the constants of classical continuum elasticity. Consider-
ing the above discussion, we expect the lattice proposed in this
work to overcome this limitation when detailed further analysis
is accomplished.

The success of the proposed developments will open two major
areas of opportunities. The first is related to problems with
mechanically-driven damage, where the micro-cracking is not af-
fected by phenomena other than the local deformation. In this case
the micro-failure events are based on a simple criterion, such as
failure stress, failure strain or failure strain energy density. Within
this class the model can be used to study the effects of material
damage on a number of macroscopic material properties. For some
macroscopic properties, the solid-phase model will be sufficient:
the evolution of the macroscopic stress and strain; changes of ther-
mal conductivity or electrical conductivity of the solid phase. For
the former, mechanical solutions will provide the required evolu-
tion of the macroscopic stresses and strains for any given boundary
conditions. For the later, the discrete model can be solved with
appropriate temperature or electric potential boundary conditions
after each micro-failure event. In both cases, one can derive a
mechanism-based constitutive law for the macroscopic parameter
evolution with damage.

Fig. 8. Values of Poisson’s ratio ms for materials with mt = 0.3 shown in: R1–R2 space for all mb (a); in R2–mb space for all R1 (b); and in R1–mb space for all R2 (c). Projections on the
coordinate planes illustrate the ranges of parameters used. The full range of possible ms is depicted in plot (a).
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For other macroscopic properties, such as diffusivity along grain
boundaries or fluid flow through a pore system, a dual site-bond
model to supplement the solid-phase model can be constructed.
In a dual-phase model the secondary sites are located at the cen-
tres of the boundaries of the solid-phase primary model, that is,
in the middle of the solid-phase model bonds. These sites represent
micro-defects, such as cavities, voids, or pores. The secondary
bonds represent links between the micro-defects: perhaps easy
pathways for diffusion along boundaries, or throats between pores.
There is no requirement that all sites and bonds in the secondary
part of the dual-phase model are present initially. This may depend
on the size distribution of micro-defects for the particular problem.
The problem in the secondary lattice can be solved after each fail-
ure event in the primary solid-phase model, so that the evolution
of the particular macroscopic property with micro-cracking can
be derived to produce a mechanism-based constitutive law.

The second class is related to problems with damage or micro-
cracking affected by other phenomena, such as cavity, void, or pore
enlargement due to diffusion, corrosion, or internal gas pressure,
which may be uncoupled or coupled with mechanical deformation.
Within this class of problems a dual-phase model must be used to
represent the development of the phenomenon affecting damage.
Some examples are:

� Diffusion along the bonds of the secondary model, where the
bonds represent grain boundary pathways. The diffusion can
be stress-driven taking information from the solid-phase model,
concentration-driven from the boundary conditions of the dual
model, or a combination of the two. The effects of the diffusion
process in terms of micro-defect growth can be communicated
back to the solid-phase model to change the bond deformation
and failure properties accordingly.
� Corrosion along the bonds and at sites of the secondary model,

where bonds represent either grain boundary pathways or
throats between pores in a pore system. The corrosion can be
driven by electrochemical processes or bacterial attack with
appropriate formulation of the dual-phase problem. The effects
of the corrosion in terms of micro-defect evolution or internal
pore pressure due to gas generation can be communicated back
to the solid-phase model for corresponding changes in bond
properties.

Multiple parallel models can be developed and linked to a
primary solid-phase model if several coupled phenomena need to
be accounted for. One attractive opportunity that the proposed
approach offers is the study of mechanisms operating at different
time scales and their effect on the material performance. Examples
would include fatigue crack initiation, delayed hydride fracture,
irradiation effects, and the evolution of cementitious or geological
materials.

6. Conclusions

� We have conceptualised the meso-scale structure of a wide
class of solids with a simple regular cellular lattice based on a
truncated octahedron. The key feature of the concept is that
the meso-scale behaviour is governed by the microscopic mech-
anisms of failure.
� We have presented a discrete idealisation of the cellular lattice

and have demonstrated that it can be used to describe the elas-
tic behaviour of all materials of practical interest. The discrete
system is called a site-bond model of the solid.
� We have shown that a large class of materials can be modelled

as macroscopically isotropic; with tension-compression and
shear behaviour governed by the same Poisson’s ratio. This class

includes all structural metallic materials, glasses and ceramics,
rocks and porous foams.
� We have shown that materials that are not macroscopically iso-

tropic can also be modelled with tension-compression and
shear or torsion behaviour governed by different Poisson’s
ratios. This class includes cement-based materials.
� We have outlined the most important areas of future research

which will develop the site-bond model into a computational
tool for investigating deformation and fracture phenomena at
meso-scale.
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