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Abstract

The unfortunate case of hydrocarbon reservoirs being often too large and filled with

uncertain details in a large range of scales has been the main reason for developments of

upscaling methods to overcome computational expenses. In this field lots of approaches

have been suggested, amongst which the wavelets application has come to our attention.

The wavelets have a mathematically multiscalar nature which is a desirable property

for the reservoir upscaling purposes. While such a property has been previously used

in permeability upscaling, a more recent approach uses the wavelets in an operator-

coarsening-based upscaling approach. We are interested in enhancing the efficiency in

implementation of the second approach. the performance of an wavelet-based oper-

ator coarsening is compared with several other upscaling methods such as the group

renormalization, the pressure solver and local-global upscaling methods.

An issue with upscaling, indifferent to the choice of the method, is encountered while

the saturation is obtained at coarse scale. Due to the scale discrepancy the saturation

profiles are too much averaged out, leading to unreliable production curves. An idea is

to downscale the results of upscaling (that is to keep the computational benefit of the

pressure equation upscaling) and solve the saturation at the original un-upscaled scale.

For the saturation efficient solution on this scale, streamline method can then be used.

Our contribution here is to develop a computationally advantageous downscaling

procedure that saves considerable time compared to the original proposed scheme in the

literature. This is achieved by designing basis functions similar to multiscale methods

used to obtain a velocity distribution.

Application of our upscaling-downscaling method on EOR processes and also com-

paring it with non-uniform quadtree gridding will be further subjects of this study.

2



The publications from this work are:

M. Babaei, P.R. King (2012), “A modified nested-gridding for upscaling-downscaling

in reservoir simulation”, Journal of Transport in Porous Media, 93(3), 753-775

M. Babaei, A. H. Elsheikh, P.R. King, “A comparison study between an adaptive quad-

tree grid and uniform grid upscaling for reservoir simulation” , submitted to Journal of

Transport in Porous Media

M. Babaei, P.R. King, “An Upscaling-Static-Downscaling Scheme for Simulation of

Enhanced Oil Recovery Processes”, submitted to Journal of Transport in Porous Media

Conference proceedings:

M. Babaei, P.R. King, “A modified nested-gridding for upscaling-downscaling in reser-

voir simulation” International Conference on Flows and Mechanics in Natural Porous

Media from Pore to Field Scale - Pore2Field 16-18 November 2011

M. Babaei, P.R. King, “A Comparison between wavelet and renormalization upscaling

methods and iterative upscaling-downscaling scheme” SPE Reservoir Simulation Sym-

posium, 21-23 February 2011, The Woodlands, Texas, USA

M. Babaei, P.R. King, “Upscaling reservoir simulation using multilevel operator coars-

ening” presented at XVIII Conference on Computational Methods in Water Resources,

21-24 June, 2010. Barcelona, Spain

3



Contents

1 Introduction 13

1.1 Geological Fine Scale Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Simulation Upscaled Flow Model . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Non-uniform Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Upscaling Flow in Porous Media 24

2.1 General Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Darcy’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.3 The Finite Difference Discretization . . . . . . . . . . . . . . . . 28

2.2 Review of Upscaling Methods . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Single Phase Upscaling . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.2 Multiphase Upscaling . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Wavelets-based Upscaling 47

3.1 Introduction to Wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Upscaling of the Pressure Equation by Haar Wavelets . . . . . . . . . . 57

3.3 Numerical Results for Wavelet Upscaling . . . . . . . . . . . . . . . . . . 65

3.3.1 Single Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Multiscale and Upscaling-Downscaling 74

4.1 Multiscale Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Multiscale Finite Volume Method (MSFV) . . . . . . . . . . . . 75

4.1.2 Multiscale Mixed Finite Element Method (MSMFE) . . . . . . . 77

4.2 Upscaling-Downscaling Methods . . . . . . . . . . . . . . . . . . . . . . 79

4.2.1 Incompressible Flow with no Capillarity-Gravity . . . . . . . . . 79

4.2.2 Modified Static Downscaling . . . . . . . . . . . . . . . . . . . . 80

4



4.2.3 Developing Frameworks for Inclusion of Capillarity-Gravity and

Compressibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Numerical Results, Comparisons and Discussions . . . . . . . . . . . . . 90

4.3.1 Tracer Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Simulation Runtime for a 3D Case . . . . . . . . . . . . . . . . . 101

4.3.4 Comparison of Upscaling-Static-Downscaling (ALG-MNG–) with

Multiscale Mixed Finite Element (MSMFE) . . . . . . . . . . . . 105

4.3.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 EOR Applications of Upscaling-Static-Downscaling (ALG-MNG−) 109

5.1 Numerical Validation of the Fine Scale Solution . . . . . . . . . . . . . . 110

5.1.1 Example 1: Polymer Flooding . . . . . . . . . . . . . . . . . . . . 110

5.1.2 Example 2: Injection of Polymer at Connate Water Saturation . 119

5.1.3 Example 3: Surfactant Flooding . . . . . . . . . . . . . . . . . . 123

5.1.4 Example 4: Thermal Flooding . . . . . . . . . . . . . . . . . . . 125

5.2 Numerical Assessment of ALG-MNG− . . . . . . . . . . . . . . . . . . . 129

5.2.1 Polymer Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Surfactant and Thermal Flooding . . . . . . . . . . . . . . . . . . 133

5.2.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Quadtree Grid Generation vs. Adaptive Local Global Upscaling 139

6.1 Quadtree Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.1 Wavelet Transformation for Permeability-based Gridding . . . . 141

6.1.2 Flow-based Gridding . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1.3 Pressure Equation Discretization for h-Adaptive Grids . . . . . . 144

6.2 Numerical Results, Comparisons and Discussions . . . . . . . . . . . . . 147

6.2.1 Tracer Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2.2 Multiphase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.2.3 Presence of Shale in Porous Media . . . . . . . . . . . . . . . . . 156

6.2.4 Combined Heterogeneities and Shale . . . . . . . . . . . . . . . . 159

6.2.5 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . 160

7 Conclusions and Future Directions 164

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 171

5



List of Tables

3.1 The results for checkerboard pattern simulations. The reference solutions

are bold-faced. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Statistical properties of of correlated log-normal distributions used for

calculation of outflow in fine and coarse models. µ and σ are the mean

and standard deviation of uncorrelated random normal distributions that

are used as background for correlated field. M and S are the mean and

standard deviation of correlated fields. . . . . . . . . . . . . . . . . . . . 69

4.1 Upscaling-downscaling methods used in comparison study. . . . . . . . . 90

4.2 Comparison of δ(srec) error from different reconstruction schemes for

tracer flow through layers 10, 37, 47 and 68 of SPE10 model. . . . . . . 92

4.3 Comparison of δ(vrec) error from different reconstruction schemes for

tracer flow through layers 10, 37, 47 and 68 of SPE10 model. . . . . . . 93

4.4 Coarse pressure and fine saturation error for directional flow case. . . . 99

4.5 Channel case: coarse pressure and fine saturation error measurements for

directional flow case at 6 PVI. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Time consumption for solution of the pressure equation by different meth-

ods for a 3D case study . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Saturation error, δ(srec), for MSMFE and ALG-MNG−. . . . . . . . . . 106

5.1 Properties used for Example 1 . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 Properties used for Example 2 . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Thermal properties and densities of rock and fluids used for Example 4 . 127

5.4 Temperature dependent parameters (fluid viscosity) used for Example 4 127

5.5 Thermal properties and densities of rock and fluids used for numerical

assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Temperature dependent parameters (fluid viscosity) used for numerical

assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.1 The saturation and velocity errors for layer 37 tracer flow simulation. . . 150

6.2 The saturation and velocity errors for layer 47 tracer flow simulation. . . 151

6



6.3 The saturation error for layer 37 multiphase flow simulation. . . . . . . 155

6.4 The saturation errors for layer 47 multiphase flow simulation. . . . . . . 155

6.5 The saturation and velocity errors for shale tracer flow simulation. . . . 158

7



List of Figures

2.1 Illustration of calculating k∗ for directional PSM for a coarse grid block

and boundary conditions imposed. . . . . . . . . . . . . . . . . . . . . . 34

2.2 Bond renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Illustration of compartmentalization by assuming no flow between points

5 and 6. This leads equivalent permeability to be kAH and kHA respec-

tively in configurations a and b. The variables pi and po refer, respec-

tively, to the input and output pressures prescribed on the boundaries. . 37

2.4 Typical coarse grid blocks where local upscaling methods may fail. . . . 39

2.5 An illustration of ALG upscaling . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Haar scaling φ and wavelet ψ functions . . . . . . . . . . . . . . . . . . . 49

3.2 The pyramid tree for hierarchical forward transformation. . . . . . . . . 51

3.3 The pyramid tree for hierarchical inverse transformation. . . . . . . . . 51

3.4 A transformation of transmissibility matrix by Haar wavelet . . . . . . . 61

3.5 A schematic representation of the relation between cell and block perme-

abilities and transmissibilities . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Three levels of multiscale projection of transmissibility matrix of a one-

dimensional Nx = 256 system. The red boxes show C submatrices while

blue boxes are B and BT. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Checkerboard patterns used in comparison studies. . . . . . . . . . . . . 66

3.8 The outflux of fluid in-place in tracer flow computed by different upscaling

method and the fine reference solution. . . . . . . . . . . . . . . . . . . . 68

3.9 The logarithm of permeability for a random realization for the sets σ = 5. 68

3.10 The relative error in outflows in four sets of 50 realizations of porous media. 70

3.11 Fine scale compared to the coarse scale results for SPE10 layers, the

closer the marks to the 45o line, the more accurate results for upscaling. 71

3.12 The logarithm of 32× 32 subset permeability fields (left a, and right b)

from SPE10 model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 The outflux of fluid in-place in multiphase flow computed by different

upscaling methods and the fine reference solution . . . . . . . . . . . . . 73

8



4.1 An illustration of MSFV basis functions’ domain . . . . . . . . . . . . . 76

4.2 An illustration of downscaling . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Illustration of the decomposition of nested-gridding problem in two-

dimensions into four equations that determine velocity distribution basis

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 Switching the scales via upscaling-downscaling algorithm compared with

the reference algorithm used in the numerical section. . . . . . . . . . . 86

4.5 Logarithm of permeability fields for layers 10, 37, 47 and 68, from Model

2 from the 10th SPE Comparative Solution Project . . . . . . . . . . . . 92

4.6 Tracer cut curves for tracer flow simulations on layers of 10, 37, 47 and 68

for reference fine model and different upscaling and upscaling-downscaling

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Comparison of ζ(srec) from different reconstruction schemes for multi-

phase flow (M = 10) through layers 10, 37, 47 and 68 of SPE10 model. . 95

4.8 Water cut curves for multiphase flow simulations (M = 0.1) on layers of

10, 37, 47 and 68 for reference fine model and different upscaling and

upscaling-downscaling methods. . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Water cut curves for multiphase flow simulations (M = 10) on layers of

10, 37, 47 and 68 for reference fine model and different upscaling and

upscaling-downscaling methods. . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Fine scale saturation profiles obtained by different method for corner-to-

corner flow, layer 47, at 1.5 PVI (M = 10). . . . . . . . . . . . . . . . . 97

4.11 The absolute saturation error at 1.5 PVI (M = 10). . . . . . . . . . . . 98

4.12 Comparison of various upscaling-downscaling techniques for directional

flow case through Qo/∆P . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.13 Logarithm of absolute permeability for synthetic channelized model. . . 100

4.14 Improvement in saturation absolute error by modifications in reconstruc-

tion of velocity at 2 PVI. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.15 Effect of upscaling factor on performance of basis functions for downscaling.101

4.16 Channel case: comparison of various upscaling-downscaling techniques

for directional flow case through Qo/∆P . . . . . . . . . . . . . . . . . . 102

4.17 Left is ζ(srec) vs. time, right is the curves for oil production rate with

different methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.18 Logarithm of permeability and Saturation profiles at 0.4 PVI for different

models under comparison for the 3D case. . . . . . . . . . . . . . . . . . 104

4.19 Water cut curves obtained by ALG-MNG− and MSMFE for multiphase

flow simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9



4.20 Saturation profiles for different models at 1.2 PVI, layer 68 of SPE10. . 107

5.1 Fractional flow curves for water and polymer fluid and The graphical

technique of finding the polymer shock front . . . . . . . . . . . . . . . . 114

5.2 Time/Distance diagram for polymer fluid injection until tD = 0.7 PV

after a conventional waterflood that has been in operation until

tD0 = 0.06 PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 An illustration of evolution of the polymer shock . . . . . . . . . . . . . 117

5.4 The improvements of numerical simulation by SEG scheme for saturation

and concentration profiles for Example 1 at tD = 0.15 PVI. . . . . . . . 119

5.5 The profiles for water saturation. The solid lines are calculated from nu-

merical simulator while the rectangular markers are the results of frontal

advance theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 (a): The polymer shock front (at Spf , fpf ) and oil bank water satura-

tion (at Sw1, fw1) for Example 2. (b): The time/distance diagram for

Example 2 from beginning to tD=0.3 PV injected. . . . . . . . . . . . . 121

5.7 The fractional flow curves for water, the polymer fluid and the mixed

phase by IFM and SEG schemes and water saturation velocities induced

by the polymer fluid injection obtained by the two schemes . . . . . . . 122

5.8 The improvements of numerical simulation by SEG scheme for saturation

and concentration profiles for Example 2 at tD = 0.15 PVI. . . . . . . . 122

5.9 Construction procedure to determine fsf and Ssf for when adsorption

occurs, Example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.10 Saturation profile for surfactant flood of Example 3 at tD = 0.15. Solid

line is based on the numerical simulation and rectangles are based on the

frontal-advance theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.11 Construction procedure to determine fthf and Sthf for thermal flood,

Example 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.12 Saturation profile for thermal flood of Example 4 at tD = 0.25. Solid

line is based on the numerical simulation and rectangles are based on the

frontal-advance theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.13 Recovery factor and water cut curves for layer 37 and layer 47 of SPE10

model for polymer flooding case. . . . . . . . . . . . . . . . . . . . . . . 130

5.14 Polymer flood water cut curves with fluid properties of Example 2 on

a homogeneous system (a). Saturation profiles at 0.35 PVI by three

methods (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.15 Saturation profiles for polymer flooding with three methods for layer 37

(a) and for layer 47 (b) at 0.25 PVI. . . . . . . . . . . . . . . . . . . . . 132

10



5.16 Water cut curves for polymer flooding with three methods for layer 37

and for layer 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.17 The water cut curves obtained by 3D cases for the polymer flooding. . . 133

5.18 Recovery factor and water cut curves for layer 37 and layer 47 of SPE10

model for surfactant flooding case. . . . . . . . . . . . . . . . . . . . . . 135

5.19 Recovery factor and water cut curves for layer 37 and layer 47 of SPE10

model for thermal flooding case. . . . . . . . . . . . . . . . . . . . . . . 136

5.20 The water cut curves obtained by 3D cases for the surfactant flooding. . 136

5.21 The water cut curves obtained by 3D cases for thermal flooding. . . . . 137

5.22 The logarithm of absolute permeability and saturation profiles for the

surfactant flooding, heterogeneous 3D case at 1 PVI. . . . . . . . . . . . 137

6.1 Step by step construction of flow-based and permeability-based grids for

layer 37 of SPE10 model from an 8× 32 uniform coarse grid (not shown)

to the last non-uniform quadtree grid. We imposed the layer with two

wells at the lower left and upper right corners. We note that for the

permeability-based gridding, we added the position of wells to the criteria

of refinements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 An illustration of fine/coarse grid interface. . . . . . . . . . . . . . . . . 145

6.3 The profiles and gridding models for Layer 10 tracer flow simulation . . 149

6.4 Water cut curves obtained by different models for layer 10 tracer flow

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.5 The profiles and gridding models for Layer 37 tracer flow simulation . . 151

6.6 The profiles and gridding models for Layer 47 tracer flow simulation . . 152

6.7 Water cut curves obtained by different models for layers 37 and 47 tracer

flow simulation at coarsening level 1. . . . . . . . . . . . . . . . . . . . . 153

6.8 Water cut curves obtained by different models for layers 37 and 47 tracer

flow simulation at coarsening level 2. . . . . . . . . . . . . . . . . . . . . 153

6.9 Qo/∆P obtained by different models for layers 37 and 47 tracer flow

simulation at coarsening level 1. . . . . . . . . . . . . . . . . . . . . . . . 154

6.10 Qo/∆P obtained by different models for layers 37 and 47 tracer flow

simulation at coarsening level 2. . . . . . . . . . . . . . . . . . . . . . . . 155

6.11 Comparisons of water cut curves measured at production cell by different

models for layers 37 and 47, coarsening level 1, for multiphase simulation. 156

6.12 Comparisons of Qo/∆P for multiphase simulation for layer 37, coarsening

level 1, left M = 0.1 and right M = 10. . . . . . . . . . . . . . . . . . . 157

6.13 The gridding models for shale tracer flow simulation . . . . . . . . . . . 158

11



6.14 Water cut curves obtained by different models for shale system. Left is

comparison of curves at coarsening level 1 with the fine scale reference

model, while right is for the coarsening level 2. . . . . . . . . . . . . . . 159

6.15 The saturation profiles obtained by downscaling of q-QG, k -QG, RM and

ALG modelsat t=1.2 PVI. Water is shown in white and oil in black. . . 160

6.16 The profiles and gridding models for layer 37 combined with few streaks

of shale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.17 The water cut curves for layer 37 with shale at two coarsening levels,

tracer flow simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.18 The water cut curves for layer 37 with shale at two viscosity ratios, mul-

tiphase flow simulation. Left figure shows the result for coarsening level

1 and right figure shows the results is for the coarsening level 2. . . . . . 162

12



1 Introduction

The work flow of reservoir studies is an integration of interdisciplinary works by the

geophysicists, reservoir geologists, petrophysicists and reservoir engineers. The reservoir

studies can be outlined as follows:

The objectives of reservoir simulation are to estimate oil and gas reserves, predict

reservoir performance, make decision regarding reservoir management for process design

and strategic planning.

Reservoir simulation can be used to estimate recovery factor alongside analogy or

analytical methods. Recovery factor, in its turn, is used in the estimation of reserves

(see e.g. Demirmen, 2007; Rietz & Usmani, 2009).

To obtain maximum net present value from a field the engineer or the engineering

team must identify and define all individual reservoirs and their physical properties

and deduce each reservoir’s performance. Such reservoir performance studies lead to

estimation of expected production rates of oil, water and gas or prediction of recovery,

estimation of water/gas breakthrough time for water/gas injection, design of facilities,

plan for the safe drilling of additional wells, prevention of drilling of unnecessary wells,

identification of the number of wells required, plan for the optimal placement, spac-

ing and completion of wells, representation of highly deviated or horizontal wells and

determination of the present and future needs for artificial lift.

Moreover reservoir simulation helps to determine initiation of operating controls at the

proper time, and to consider all important economic factors. Future improvement in oil

recovery with pressure maintenance by re-injection of produced gas or by water injection

into an aquifer can also be evaluated. Early and accurate identification and definition

of the reservoir system is essential to effective engineering (Essley, 1965). The various

predictions using different production, well and injection scenarios are interpreted and

ranked according to acceptability.

Additionally, the application of enhanced oil recovery (EOR) processes requires that

the field possesses the necessary characteristics to make application successful. Model

studies can assist in this evaluation. Reservoir simulations can take into account detailed

areal variations in reservoir properties to design a sound enhanced recovery process

(Carlson, 2003).

Uncertainty is an important factor in reservoir engineering that is conjoined with
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reservoir simulations. There is a need to run multiple realisations to assess uncertainty

of the models in oil recovery and future production. Uncertainty in reservoir data can be

classified into uncertainty in geophysical, geological, dynamic and reservoir fluids data

(Schulze-Riegert & Ghedan, 2007) and is usually investigated by constructing several

different realisations of the sets of attribute values. The behaviour of the resulting

simulation models can indicate the associated level of economic uncertainty.

For example consider the situation that we wish to build a reservoir simulation model

to investigate what parameters our model is sensitive to and also to obtain an estimated

range of values of some objective function (e.g. total oil production or gas in place).

Rather than running just one instance of the simulation model with just one set of

parameter values, we would really like to run as many simulation model instances as

possible (given time and budget constraints), each simulation run having its own set of

parameter values and resulting in a new estimated objective function value (e.g. total

oil production). Hence, the multiple number of models are produced. Some models will

be optimistic, some pessimistic, but all are designed to characterise the reservoir and

the uncertainty about the reservoir (Farmer, 2005). There is a definite trend toward

ensemble reservoir forecasting, where a wide range of models are developed that sample

probability distributions of reservoir parameters. Running all of these simulation models

helps us to quantify the range of uncertainty in our objective function and we should

be able to pull out forecast values.

There are various methods for quantifying uncertainties in reservoir simulations (see

e.g. Floris et al., 2001; Barker et al., 2000). One obvious observation is that, quantifi-

cation of geological uncertainty relies on having high-quality upscaled reservoir model

that honours the geological model details, because while we are quantifying uncertain-

ties based on such details we are not able to do so on the geological model itself. In this

case the workflow to generate such an upscaled model is as follows:

Firstly, a high resolution geological model for the reservoir is provided through the

application of an integrated workflow that includes robust seismic and petrophysical

analysis. The objective is to design a static model that includes reservoir heterogeneities

and internal baffles and barriers to flow and account for inherent degree of uncertainty

that is related to the partial knowledge of the reservoir and the limitations of the

techniques that are commonly utilised.

The static description of the reservoir, both in terms of geometry and petrophysical

properties, is one of the main controlling factors in determining the field production

performance (Cosentino, 2001).

Once a detailed reservoir model has been constructed, the next step is to build a

reservoir simulation model by upscaling of the geological model and run reservoir sim-
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ulations. The results of actual production analysis obtained from field are used for

comparison to reservoir simulations, in a process called history-matching, using param-

eters representative of the field. The idea is to match gas oil ratios, water cuts, and

pressures predicted by the model to actual real-time performance data. In general, some

previously unknown aspects of the reservoir (uncertainties) will become apparent by the

analysis of production performance. The objective is to determine why the reservoir

performance is not matching our production. This knowledge is used to correct our

conceptual model of reservoir and devise plans to improve reservoir performance (Carl-

son, 2003). At this stage the application of Bayes’ rule can be used to update our prior

probability assessment performed previously and to produce the posterior probability

distribution (see e.g. Busby et al., 2007).

Reservoir monitoring to study the changes that occur in a reservoir during production

is performed. The monitoring can include renewed seismic surveys or log and core

data designed to detect changes that occur during production. These dynamic data

are integrated into the geological model and subsequently into the reservoir simulation

model in order to assess changes and to edit input data for the simulator. The data is

used to manage the reservoir, and to make or revise decisions that will drive production

plans for the future.

The above-mentioned stages of reservoir engineering studies should be tightly inte-

grated in order to foster more effective, less expensive reservoir engineering projects

(Cosentino, 2001).

In the sections that follow, we describe the geological and reservoir simulation models

and the upscaling/gridding process that links up these models.

1.1 Geological Fine Scale Model

Flow processes occur in reservoirs involving large gaps in scales. The extent of scale is

so wide that we have kilometre scale of reservoirs on one hand and micrometre scale of

the pore channels on the other. In between these scales, we may have centimetre scale

of the wells. In order to model the reservoir, we attempt to recreate the true geological

heterogeneity in the reservoir rock by static geological models which are commonly

referred to as geomodels.

The geomodels typically have several components. The first component of is the struc-

tural framework that incorporates the spatial positions of the major boundaries of the

formations, including the effects of rock uncorformities such as faulting, folding, and ero-

sion. The information for this stage comes from different sources. For example, seismic

surveys can be used to obtain a description of the geological structure of the reservoir at
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a resolution of metres. Exploratory wells can be drilled to collect further data at specific

locations. The major stratigraphic divisions obtained are further subdivided into layers

of cells with geometries with relation to the bounding surfaces. Subsequently, maximum

cell dimensions are dictated by the minimum sizes of the features to be resolved.

Next, for each cell in the model we assign a rock type. Rock type probability maps

control the distribution of the rock types within the model. Also we can emplace

statistical distributions of rock type based on well data that are spaced sufficiently

closely. Subsequently, the reservoir petrophysical parameters including porosity and

permeability must be assigned for each cell.

Different sources at different scales are used to obtain information for porosity and

permeability. Seismic surveys provide distributed but low resolution information about

the reservoir whilst data from wells (logs and tests) is only describing the reservoir

around the well. The wells can be separated by 100 m or 1 km. Consequently the

sources present separate and small contributions with their limited data at limited

resolutions and at relatively high cost of acquirement.

In summary, the process of making a geological model is generally strongly under-

determined (Aarnes et al., 2007). To resolve the issue, spatial statistics, often called

geostatistics that is concerned with problems of interpolation under conditions of un-

certainty, are used to populate the cells with porosity and permeability values that are

appropriate for the rock type of each cell. Using geostatistical techniques one builds

petrophysical realisations in the form of grid models that both honour measured data

and satisfy petrophysical trends and heterogeneity.

Having built a geological model with values for the rock properties that are averaged

and interpolated from the microscopic physics of flow in pores, the resulting geomodel,

subsequently, can barely reflect all pertinent scales that impact fluid flow. Small scale

features such as flow through narrow high permeable channels, radiant flow around the

well or important detailed geological features are not properly resolved by a geomodel.

One important aspect, however, is that at this coarse scale, Darcy’s law applies.

1.2 Simulation Upscaled Flow Model

Unfortunately, after all averaging, interpolation and data populating, from a simulation

point of view, geological models are ironically too complex and too large, i.e., they

contain more information than we can handle in simulation studies. Therefore, we

usually use a coarsened grid model, or a simulation flow model. The model consists

of grid blocks with their petrophysical properties replaced by averaged or upscaled

quantities based on variations of underlying geomodel quantities that occur at length
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scales below the simulation grid block. The main reason for using the upscaled models

is computational limitations since it is usually impossible to perform flow simulations on

the geomodel. However it is worth mentioning that, the advent of new computers with

high computational capabilities gives a hope that the fine scale geological models will

be directly used for flow simulation. To this hope one must notice that the sizes and

complexity of geomodels have been increasing continuously and simultaneously with

the enhancement of computer memory and processing power. Therefore, considering

this current trend, the upscaling of geomodels seems an unavoidable stage of reservoir

studies.

The computational justifications of using a coarse upscaled model for flow simulation

is more emphasized once we acknowledge the fact that in the geostatistical interpolation

of data to create a fine geomodel, most of the information obtained is of a statistical kind

and should be treated as such. To account for the uncertainty in our knowledge of the

reservoir, multiple models should be produced (Farmer, 2005). Consequently it is more

desirable to use a simulation model with less computational expenses for multiple runs

that provides a reliable trend and are easier to history-match than using a geomodel for

a single run that provides a detailed yet uncertain result.

In the upscaling techniques that coarsen the geomodels to simulation models, the

effective petrophysical properties are calculated in each cell of the simulation grids based

on properties of the underlying geomodels. In this process, the aim is to preserve as

much as possible the small scale effects in the large scale computations. Systematic small

scale variations in permeability and porosity can have a significant effect on a larger

scale, and this should be captured in the upscaled model. The quality of upscaling is

usually assessed by comparing upscaled production characteristics with those obtained

from a reference solution computed on an underlying fine grid (Aarnes et al., 2007).

The closer the production predictions of an upscaling technique for a reservoir model is

to those obtained by the fine scale reference model, the better the upscaling technique

is rendered.

Upscaling techniques are mainly classified into single phase and multiphase flow up-

scaling methods. In multiphase flow upscaling, the problem is to upscale relative per-

meabilities and capillary pressure, that exist only for multiphase flow, in addition to

absolute permeability and porosity. Reviews on single phase flow upscaling can be found

for example in Renard & de Marsily (1997) and Farmer (2002). Reviews on multiphase

flow upscaling can be found in Barker & Thibeau (1997) and Das & Hassanizadeh

(2005).

There are numerous upscaling techniques developed for the absolute permeability, as

the main property to upscale in reservoir engineering. On one hand, we have absolute
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permeability upscaling techniques, e.g. Journel et al. (1986), that yield upscaled values

close to simple averaging where important information about the subgrid flow (flow

from the underlying fine geomodel) are more or less discarded. On the other hand, we

have more advanced techniques, e.g. Begg et al. (1989) and Durlofsky (1991), that deal

with solving flow problems over local heterogeneous regions of a geomodel to provide

better upscaled values. More complicated upscaling techniques such as Chen & Durlof-

sky (2006) are generally proved to be robust and reliable for a range of heterogeneity

patterns, nevertheless, they require considerable computational efforts compared to the

simple techniques.

Alternatively or alongside the absolute permeability and porosity upscaling, for ad-

justing the grid cells sizes and shapes to the reservoir features, non-uniform and flexible

grids can be implemented. Non-uniformity helps to adjust the resolution of a simulation

model, avoid averaging for scale-sensitive areas and preserve the effects of these areas

on flow. We will describe non-uniform gridding in the next section.

Further to aforementioned averaging issues that arise form upscaling, the coarsening

of scale can inflict considerable impact on flow predictions by introducing numerical

diffusion error1. This error smears the sharp flow fronts which consequently leads to

incorrect production forecasts particularly where the number of grid blocks between

wells is small (Carr & Christie, 1983; Lantz, 1971). Inaccuracy is in the form of earlier

breakthrough times of production or lower water cut productions at later times for

an upscaled model compared to a realistic geomodel. The sensitivity of an upscaling

technique to the coarsening of geomodel, can be analysed and solutions can be proposed

by downscaling techniques. In downscaling, the resolution of solution is restored, and

it means that at some stage, for a part of flow solution, the original fine scale geomodel

is used. The implementation of downscaling, however, must align with the benefits of

upscaling.

An upscaling-downscaling procedure is dual-mesh approach (Ramé & Killough, 1992;

Guérillot & Verdière, 1995; Gautier et al., 1999; Audigane & Blunt, 2004). In the

dual-mesh approach, the pressure equation is upscaled to reduce computational effort

whereas the saturation is solved at the fine scale to minimize the discretization error.

The switch from the coarse scale of pressure to the fine scale of saturation requires

a downscaling procedure. The decisive factor here is to produce fine scale inputs for

the saturation solver derived from the upscaled model that produces accurate results

compared to use of inputs provided by the geomodel.

The procedures to add fine scale solutions adaptively to the upscaling, or set up

algorithms that enhance the upscaling altogether are referred to as multiscale methods

1Numerical diffusion is the first order truncation error form discretization of partial differential equa-
tions whereas numerical dispersion describes the higher order errors.
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where both the geomodel and the coarse flow model are interactively employed.

The single phase flow upscaling techniques, that we will review in the next chapter,

Section 2.2, each has particular inherent deficiencies. Such deficiencies can be broadly

attributed to other currently available upscaling techniques, in particular, the problem

is discarding the heterogeneities and averaging out the subgrid flows (the homogeniza-

tion/upscaling error). This is very serious, for heterogeneous permeability fields, for

two techniques that we chose: the renormalization and the pressure solver methods.

However more recent method of adaptive local global upscaling resolves this issue to a

satisfying degree. Nevertheless, in our experiments we could not resolve the diffusion

error for this technique that affect the well production curves. This is due to the fact

that the flow pattern is no longer uniform around a well and the pressure gradient typ-

ically increases close to the well and becomes highly sensitive to the spatial variation of

permeability (Desbarats, 1992). One solution to the problem could be adding near-well

upscaling techniques (see e.g. Ding, 1995; Durlofsky et al., 1999; Mascarenhas & Durlof-

sky, 2000; Muggeridge et al., 2002), however, we used downscaling to address diffusion

error instead.

1.3 Non-uniform Grid Generation

Alongside the implementation of computationally complicated upscaling techniques to

better capture the fine scale heterogeneity of geomodel, one can look at the potential of

non-uniform gridding. An alternative to regular grid upscaling is to design irregular and

unstructured grids that include fewer degrees of freedom and save computations. This

approach is favoured bearing in mind that the use of uniform regular coarse grids intro-

duces errors which can be avoided if the grid lines are designed to follow the streamlines

or at least the regions of flow. The impact of a uniform upscaling for high flow regions

appears in the form of errors in the coarse scale velocity field and incorrect saturation

profiles. As a result, unreliable predictions (e.g. exaggerated sweep and inaccurate

breakthrough times) are often observed from uniform upscaling of highly heterogeneous

geological models.

The design of a non-uniform grid involves adaptive adjustment of the mesh resolution

for physical processes that occur at a wide range of spatial and temporal scales. Non-

uniform grid generation can be thought of as a grid coarsening problem, where grid

blocks are merged without compromising the simulation accuracy. Also, it can be

thought of as a grid refinement problem where additional grid resolution is locally added

throughout the simulation domain to increase the solution quality. For the resulting

grid a multilevel upscaling procedure is needed. The procedure depends on the coarse
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grid type which can be unstructured or structured, regular Cartesian or geometrically

irregular.

In unstructured gridding, the coarse grid blocks can be misaligned with the fine grid

so that flow features can be captured more efficiently. One of the most commonly

used unstructured grid is Voronoi tessellations or Perpendicular Bisector (PEBI) grid

and their dual Delaunay tessellation (see e.g. Mahani & Evazi, 2010; Heinemann et al.,

1991; Mlacnik et al., 2006; Palagi, 1992). Delaunay forms the triangles in such a way

that circle circumscribing vertices of each triangle does not contain any of the other

grid points. Voronoi grid block vertices are obtained from the centre of circles circum-

scribing the triangle’s vertices. Such flexibility can also be achieved by constructing

non-uniform Cartesian grids or structured curvilinear or elliptic grids. Non-uniform

Cartesian grids are constructed by patch-based refinement or by merging a collection

of fine scale Cartesian cells. Curvilinear grid is a grid with the same structure as a

regular grid, in which the cells are quadrilaterals or cuboids rather than rectangles or

rectangular parallelepipeds.

Different criteria can be used for adapting the grid. For example, geometrical or

geological information of reservoirs such as high permeability areas, fractures, faults

or boundaries can be used (see e.g. Farmer et al., 1991; Li et al., 1995). Also, the

grid can be adjusted non-uniformly based on information obtained by the solution of

a flow problem (see e.g. Durlofsky et al., 1996, 1997; Darman et al., 2001; Wen et al.,

2003; Prevost et al., 2005). This presents a possibility where grids can be constructed

based on streamlines where areas with high density of streamlines are candidates for

refinement. Furthermore, the grid can be aligned with streamlines to capture the flow

paths efficiently.

In permeability grid adaptation, generally, the heterogeneous areas of the domain were

left at the finer scales and the homogeneous regions were coarsened. For example Qi

et al. (2001) refined a grid block if the permeability variance is higher than a pre-specified

threshold. Flow-based gridding or streamline-based gridding requires the solution of a

fine scale problem. It is assumed that flow field will not undergo severe changes in

later times of the simulation (Castellini et al., 2000). The requirement of initial fine

scale solution imposes a fairly small computational cost relative to the simulation of the

multiphase system (Durlofsky, 2005a).

Both criteria of flow and permeability variations can be combined for adapting the

grid. Wen & Gómez-Hernández (1996) introduced an iterative procedure to add velocity

variations to the grid constructed by Garcia et al. (1992). Elliptic Jacobian-based

gridding was also proposed by He (2005) and He & Durlofsky (2006). It involves deriving

the solution of a set of nonlinear elliptic equations and obtaining a transformation
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operator to map from physical to logical Cartesian space. A grid was constructed using

both the obtained map and streamline information. This method is fast and simple to

apply. However, in some cases, the convergence is slow and there is no guarantee the

grid will have non-intersecting coordinate lines (Durlofsky, 2005a).

Under any circumstances and geometries of the resulting constructed grid, a proper

upscaling must assign coarse properties to the new grid. There are numerous com-

binations using both gridding and upscaling in reservoir simulations. Acquiring the

advantages from unstructured grid depends directly on how well the upscaled values

are assigned from the overlaid geomodel cells to each geometrically shape-variant grid

blocks. Due to such variation of geometry of grid blocks, upscaling is more difficult

and less straight forward than for the structured grid. To compound difficulties of

unstructured gridding, one must account for the computational overheads caused by

extra bookkeeping for different shaped grids and loss of uniformity that is enjoyed for

the structured grid. Nonetheless, unstructured grid means more flexibility at resolving

features of the geomodel.

1.4 Aims and Objectives

For our studies on upscaling, three separate subjects related to the topic will dominate

this thesis. First is the application of wavelet transformation in upscaling. Second, is

the issue of discretization error and unavoidable loss of resolution in upscaling of the

geomodels. The third subject is non-uniform coarse gridding.

The wavelets were applied in the framework of operator coarsening approach. The

approach aims at solving the Darcy’s law in a coarse wavelet-transformed space and

constraining the upscaled solution to the fine scale solution. Consequently, a coarse

operator acting on the coarse space substitutes the fine scale differential operator. The

wavelets are very desirable for this purpose because they have natural multiscale fea-

tures.

The operator in this work is derived from transforming the pressure into its spatial

averages by wavelets. Trying to preserve the structure of Darcy’s law, certain parameters

within the fine operator are grouped together to form a representative coarse parameter

within the upscaled operator. This grouping shares methodological similarities with the

renormalization procedure which consists of a progressive and hierarchical coarsening

of a fine scale field. Therefore, we will overview the renormalization concept and its

upscaling use based on resistor analogy alongside the wavelets.

As we discussed in the previous section, the upscaling results may suffer from numer-

ical diffusion error. The second subject of interest related to upscaling is about this
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issue. To reduce the error a suggestion is to use dual-mesh approach. For the down-

scaling stage required, we will propose and test the idea of construction of special basis

functions that can be used throughout the simulation. This is the major contribution

of this thesis. The method is computationally beneficial in change of scales. The ap-

plicability of static downscaling is very similar to application of streamline simulators

that take advantage of incompressibility of flow and slow changes in velocity field and

hence the streamlines.

Finally, the third subject covered in this thesis is an application of non-uniform

quadtree grid generation. The generated grid captures the details of flow by preserving

the resolution in areas where the fine scale information are significant for the global

solution, elsewhere the grid is upscaled. There are different criteria for the detecting

the regions that should be refined. The regular options are guides provided by variation

in permeability and flow. Either of these criteria will be attempted in this thesis.

Putting the three subjects together, the aim of this research is to extend the wavelet

operator coarsening approach, to describe and apply a state-of-the-art static downscal-

ing for reservoir simulation and to build a non-uniform quadtree grid generation based

on permeability and flow solution.

The objectives are:

1. To evaluate the performance of wavelet-based operator coarsening in comparison

with several existing upscaling methods for single phase and multiphase flow in

terms of accuracy.

2. To evaluate the performance of the proposed upscaling-static-downscaling method,

in terms of accuracy and computational efficiency in comparison with fine scale

reference solution, for different boundary conditions, various flooding cases and

under fine scale heterogeneities that are difficult to upscale.

3. To evaluate the performance of the proposed non-uniform quadtree grid model,

in terms of accuracy, in comparison with a computationally demanding upscaling

technique for uniform grid.
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1.5 Thesis Outline

This thesis is laid out as follows.

In Chapter 2, we will briefly overview general equations of flow in porous media at

Darcy’s scale. A requirement to better explain dual-mesh approach, downscaling and

multiscale methods is to describe the pressure and saturation equations which will be

presented in this chapter. Also we review upscaling methods including the renormaliza-

tion method, the pressure-solver method and the adaptive local-global method. These

methods are hoped to cover a range of technically simple-to-advanced and computa-

tionally fast-to-slow range of upscaling methods.

Chapter 3 is dedicated to the wavelets. First we introduce the wavelet transformation

and then we will present the method of operator coarsening based on Haar wavelets.

Finally in this chapter we will investigate the performance of the method compared to

those introduced in Chapter 2.

In Chapter 4, we investigate the methods that are designed to solve the equations in

a scale-adaptive fashion to reduce the discretization error. The methods of interest are

multiscale and upscaling-downscaling. For the former we only review two approaches

from literature. For the latter, we present a new method of static downscaling. A

results section follows showing the application of static downscaling for two and three

dimensional heterogeneous cases of reservoirs. The results are compared to upscaling

without downscaling, upscaling with dynamic downscaling and a multiscale method.

In Chapter 5, we use the static downscaling presented in Chapter 4 for a number

of enhanced oil recovery processes. The processes are polymer, surfactant and thermal

flooding. For each we validate the numerical simulation at the fine scale with Buckley-

Leverett analysis. Moreover for increasing the accuracy of numerical simulation in the

presence of solutes, we use the scheme of segregation-in-flow.

In Chapter 6, we will describe a quad-tree grid generation based on criteria of per-

meability and flow. We will compare the results of differently constructed non-uniform

grids with uniform upscaling. However, in order to separate the errors of upscaling and

discretization, we will apply downscaling on all the uniform and non-uniform methods

used in this chapter.

Finally, in Chapter 7, conclusions will be summarized and recommendations for the

future works will be given.
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2 Upscaling Flow in Porous Media

This chapter presents a brief overview of the literature on upscaling approaches. First,

a brief account of the physics and equations for flow in porous media will be provided

in Section 2.1, followed by an overview of the literature on upscaling, Section 2.2. The

methodologies introduced will be investigated and applied in the next chapters. Most

importantly renormalization upscaling, wavelet upscaling and adaptive local-global up-

scaling are our objectives for comparisons and assessments.
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2.1 General Flow Equations

2.1.1 Darcy’s Law

Darcy’s law originates from experiments conducted by Henry Darcy in 1856 with the flow

of water in vertical sand beds (Darcy, 1856). He observed that the velocity of filtration

of a fluid through porous media is proportional to a combination of the gradient of the

fluid pressure and pull-down effects due to gravity. More precisely, the volumetric flow

density v is related to pressure p and gravity forces through the following gradient law:

v = −K

µ
(∇p+ ρg∇z). (2.1)

where K is the tensorial permeability, µ is the viscosity, g is the gravitational accelera-

tion and z is the spatial coordinate in the upward vertical direction.

The continuity (flow) equation for the process of filtration states mass conservation:

∂ϕρ

∂t
+∇ · (ρv) = Q, (2.2)

where ρv is the mass flow per unit area per unit time, ρϕ is the accumulation of mass

per volume due to compressibility, ϕ the porosity, and Q models sources and sinks, that

is, outflow and inflow per volume at designated well locations. By combining Darcy’s

law with the conservation of flow for an incompressible fluid, that is constant density,

with no gravity and unit viscosity, we get:

∇ · v = −∇ · [K
µ

(∇p+ ρg∇z)] =
Q

ρ
(2.3)

In the case of a homogeneous medium, where K
µ is a constant, this reduces to Laplace’s

equation for pressure and a solution can be found just by specifying the required bound-

ary conditions. In the general case, however, approximate numerical methods can be

employed to find a solution, such as finite difference or finite element schemes.

2.1.2 Multiphase Flow

For single phase flow, permeability is assumed to be a rock property and independent

of the fluids present. This is only true in the case where the rock is completely sat-

urated with a specific fluid. In the case where two fluids are present, it is necessary

to define phase specific permeabilities which are defined as the product of the absolute

permeability of the rock and a function of saturation of the phase considered:

kl = Kkrl (Sl) , (2.4)
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where the subscript l stands for one of three possible phases, oil water or gas, and kl

is the specific permeability of phase l, K is the rock permeability that was defined for

single-phase, and krl (Sl) is relative permeability of phase l. Relative permeabilities are

functions of saturation, implying that in the presence of more than one phase in the

rock, an equation for saturation will also be needed.

Assuming that a generalization of Darcy’s law to multiphase flow is valid (Bear,

1972), we need to formulate equations for the flow of each phase (l) using relative

permeabilities:

vl = −Kkrl (Sl)

µl
(∇pl + ρlg∇z). (2.5)

Following Aziz & Settari (1979), we can also generalize the continuity equation to

more than one phase:
∂ml

∂t
+∇ · ṁl = Ql, (2.6)

where ml is the mass of component l in the unit volume and ṁl is the corresponding

mass flux. We will limit the discussion to “black-oil” models. The model refers to

the assumption that the hydrocarbons may be described as two components: a heavy

hydrocarbon component called “oil” and a light hydrocarbon component called “gas”.

The two components can be partially or completely dissolved in each other depending

on the pressure and the temperature, forming either one or two phases (liquid and

gaseous). In general black-oil models, the hydrocarbon components are also allowed to

be dissolved in the water phase and the water component may be dissolved in the two

hydrocarbon phases. However, for further simplifications we assume immiscibility that

enforces no mixing between phases. Moreover, the thermodynamic equilibrium between

the hydrocarbon phases is modeled via the solubility of the gas in the oil phase.

By introducing saturation Sl as the fraction of the pore volume occupied by phase l,

the mass conservation equations for three-phase black-oil model are:

∂

∂t
[ϕρwSw] +∇ · (ρwvw) = Qw, (2.7a)

∂

∂t
[ϕρoSo] +∇ · (ρovo) = Qo, (2.7b)

∂

∂t
[ϕ(RsρoSo + ρgSg)] +∇ · (Rsρovo + ρgug) = Qfg +RsQo, (2.7c)

where the subscript fg in the first source term of Equation 2.7c stands for free gas,

and Rs represents the solubility of gas in oil. Expressions of the following form can be

obtained by substituting Darcy’s law for each phase in Equation 2.7b:

∂

∂t
[ϕρoSo]−∇ · [ρoλo(∇po + ρog∇z)] = Qo, (2.8)
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where we have defined mobility as λl = kkrl/µl.

Additional relationships are provided besides the the fluid flow equations to equate

numbers of equations with number of unknown properties. These relationships include:

So + Sw + Sg = 1, (2.9a)

Pcwo = po − pw = f(Sw, So), (2.9b)

Pcog = pg − po = f(So, Sg), (2.9c)

where Pcwo and Pcog are capillary pressures arising from immiscibility between phases.

For increasing readability, the flow equations are usually rewritten into a pressure

equation and a saturation equation.

The pressure equation

The pressure equation is derived by using Equation 2.8 and substituting Equation 2.9a

in the time derivatives and introducing the rock and phase compressibilities. Assuming

only oil and water, and summing up Equation 2.8 with its water counterpart:

crϕ
∂pt
∂t
−
∑
l=o,w

∇ · [Kλl∇(pl + ρlg∇z)]

−
∑
l=o,w

cl

[
∇pl ·Kλl∇(pl + ρlg∇z)− ϕSl

∂pl
∂t

]
= Qt, (2.10)

where cr = − (∂ϕ/∂pt) /ϕ and cl = − (∂ρl/∂pl) /ρl are rock and phase compressibilities

respectively. Other variables, pt and Qt = Qw/ρw +Qo/ρo are total pressure and total

volumetric flow rates respectively. In the case of incompressible rock and fluid phases,

that is, cr = cw = co = 0, Equation 2.10 reduces to:

vt =
∑
l=o,w

vl = −
∑
l=o,w

[Kλl∇(pl + ρlg∇z)] ,

∇.vt = Qt. (2.11)

In this equation, to eliminate pw to have only po as unknown, we use the relationship

for Pcwo (Equation 2.9b). This elimination leads to:

vt = −K(λo + λw)∇po − λwK∇Pcwo + (λoρo + λwρw)gK∇z, (2.12)

where by introducing λt = λo + λw and λG = λoρo + λwρw, the final form of pressure
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equation for two-phase incompressible black-oil model is:

−∇ · [Kλt∇po − λwK∇Pcwo + λGgK∇z] = Qt. (2.13)

This equation is completed by prescribing some boundary conditions, e.g. no-flow

boundary conditions.

The saturation equation

The saturation of each phase is calculated by deriving phase velocity from total velocity

and substituting it into the corresponding phase flow equation. For example, for our

two-phase flow case, one can derive water phase velocity as:

vw =
λw

λo + λw
vt −

λwλo
λo + λw

K∇Pcwo +
λwλo
λo + λw

K(ρw − ρo)g∇z, (2.14)

introducing the fractional flow function, fw = λw/(λw + λo), that measures the water

fraction of the total flow, for water saturation we have:

ϕ
∂Sw
∂t

+∇ · (fw [vt − λoK∇Pcwo + λoK(ρw − ρo)g∇z]) =
Qw
ρw

. (2.15)

This equation is completed by assuming boundary conditions, e.g., no-flow conditions,

and initial conditions Sw(x, 0) = S0
w(x).

2.1.3 The Finite Difference Discretization

The pressure and saturation equations, in this work, are solved on a Cartesian structured

grid using a finite-difference discretization scheme and an IMPES (IMplicit Pressure,

Explicit Saturation) solution strategy. A very brief description of this algorithm is given

here. More details can be found in References such as Aziz & Settari (1979). For the

discretization of the pressure equation, we start with a two-point flux approximation.

This approximates the flow between two grid cells, i and j over interface of two cells,

namely γij = ∂Ωi ∩ ∂Ωj , where Ωi and Ωj represent the volume of gridcells in the domain

of reservoir Ω.

In finite difference and finite volume schemes, pressures are considered cell-wise con-

stant, so if we rewrite Equation 2.13 as:

−∇ · λ∇p = r, (2.16)

where for notational simplification p = po, λ = Kλt(S) and

r = Qt −∇ · [λwK∇Pcwo] +∇ · [λGgK∇z], then the flux over interface γij by
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two-point flux approximation is:

vij = −
∫
γij

(λ∇p) · ndν, (2.17)

where n denoted the outward-pointing unit normal on ∂Ωi defined as the the side of

gridcell i. In a Cartesian grid layout, with grid sizes of cells i and j denoted by ∆xi and

∆xj , we can use the gradient approximation: ∇pij ≈ δpij =
2(pi−pj)
∆xi+∆xj

. This leads to:

vij =
2(pi − pj)
∆xi + ∆xj

∫
γij

λ · ndν. (2.18)

Regarding the fact that λ is a function of saturation,
∫
γij

λ · ndν is replaced by a

distance-weighted harmonic average of λi and λj :

λij =
∆xi + ∆xj

∆xi

λj
+

∆xj

λj

. (2.19)

Hence vij = −|γij |λijδpij = 2|γij |(∆xi
λi

+
∆xj
λj

)−1, where |γij | is the length (in 2D) or

area (in 3D) of the interface. To simplify, transmissibility between cells i and j are

defined as:

tij = 2|γij |(
∆xi
λi

+
∆xj
λj

)−1, (2.20)

where tij relates the flow from one block, i to an adjacent block j , in terms of the

pressure difference between the blocks.

Integrating Equation 2.17 and summing up the fluxes over all interfaces of cell i, we

can write: ∑
j

tij(pi − pj) =

∫
Ωi

rdx, ∀Ωi ⊂ Ω. (2.21)

The sum is taken over all non-degenerate interfaces. i.e., over all i such that ∂Ωj ∩ ∂Ωi

has a positive measure. This gives rise to a system of equation for determining P = {pi}
as:

TP = R, (2.22)

where T = {tij} is a symmetric, positive definite matrix of coefficients containing trans-

missibilities and R = {ri} is the right hand side vector containing contributions from

boundary conditions, wells and capillary and gravity effects.

Equation 2.22 is solved implicitly at time step n+ 1 from T and R calculated at time

step n. The total fluxes like vij are then computed in a straight forward substitution

from measured pressures. Next, phase saturations can be calculated from a discretized
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saturation equation, for example for water we have:

ϕi
∆t

(Sn+1
wi − S

n
wi) +

1

|Ωi|
∑
j 6=i

Fij(S
n
w) =

Qi(S
n
wi)

ρi
, (2.23)

where ϕi is the porosity in Ωi, ∆t is the time step, Snwi is the cell-average of the water

saturation at time n and Fij is a numerical approximation of the water flux over edge

γij ,

Fij(Sw) ≈
∫
γij

(
fw(S)ij

[
vt − λoK∇Pcwo + λoK(ρw − ρo)g∇z

]
ij

)
· nijdν. (2.24)

For calculation of the integrand in the above equation, an upstream weighting is used

for fractional flow fw(S)ij .

The solution of the pressure equation for geological fine-scale models imposes com-

putational difficulties for reservoir simulators. For example in a finite difference model,

a model with N gridcells leads to a matrix of size N ×N . Inversion of such matrix

can be time consuming. This fact has led to the development of upscaling methods for

the pressure equation to gain computational savings. These methods will be reviewed

in the next section. We also note that the solution of the saturation equation for the

detailed geological model is computationally costly and numerous methods have been

designed to reduce computations for this equation. We only suffice to name some of

these methods, as they are not objectives of this work. Numerical approaches to solve

the saturation equation at fine scale efficiently are namely a block-based overlapping

Schwartz technique (Lee et al., 2008) and streamline solvers (Batycky et al., 1997).
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2.2 Review of Upscaling Methods

For the pressure equation upscaling one approach is to upscale λ and r in Equation

2.16 to have a coarse-scale version of this equation to solve. For single–phase this

involves assigning coarse absolute permeability to each coarse grid block where λ = K

and averaging r simply over the domain of coarse grid block. For multiphase, flow

upscaling involves assigning the coarse Kλt , Pcwo and λGK to each coarse grid block.

The first property includes absolute permeability and total mobility. For the second

and third properties, we need to upscale capillary pressure and relative permeability

curves as functions of saturation. In the following subsections we briefly review single

phase and multiphase upscaling.

2.2.1 Single Phase Upscaling

For single phase permeability upscaling, the problem can be seen as a single stage

averaging of absolute permeability. Other properties like density and porosity of each

coarse grid block are upscaled by volume-averaging. The permeability however can

not be simply volume-averaged. The coarsening process averages out features that are

important for capturing the flow paths, thus a correct upscaling method must be able

to preserve the connectivity of the reservoir. In upscaling of absolute permeability, two

terminologies are used dominantly to refer to the upscaled or averaged permeability:

one is effective permeability and the other is equivalent permeability.

The difference comes from a mathematical point of view. The upscaled permeability

is an effective property of the medium when it doesn’t vary with the flow conditions to

which the medium is subjected. By contrast, if the larger scale does not encompass all

the scales of variation of the permeability field, then the averaged permeability is re-

ferred to as an equivalent permeability (Durlofsky, 1991). Unlike effective permeability,

equivalent permeability is not a constant property of the medium and under different

flow conditions is typically expected to vary.

Basically if heterogeneity is on a scale small compared with size of the system, bound-

ary conditions are unimportant and the two concepts are the same. In other words, the

equivalent permeability is the same as effective permeability when the region repre-

sented by the upscaled permeability is a valid representative elementary volume (REV),

or when there exist two distinct length scales of heterogeneity. In the latter case the

scale of calculation of equivalent permeability is large relative to the correlation scale

of heterogeneity and encompass small scale variations. Unfortunately these conditions

are not satisfied for most of the heterogeneities of the reservoirs and due to presence of

high variation of permeability field at all scales, we are only able to compute equivalent
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permeabilities. When calculating this property, a region is chosen within which equiva-

lent permeability is mathematically valid. If the region coincides with a simulation grid

block, then this permeability is the appropriate “equivalent grid block permeability” for

use in reservoir simulators.

A common expression for equivalent block permeability denoted henceforth by k∗ for

a coarse grid block E, is given by Gómez-Hernández & Journel (1990):

1

|E|

∫
E
K(x)∇pdx =

1

|E|
k∗
∫
E
∇pdx. (2.25)

which basically relates the equivalent permeability of a coarse grid block to be average

flux from an edge of the block divided by average pressure gradient over the block.

This equation can either be solved numerically or in special cases it has an exact

analytical solution. The first step is to determine the upper and lower bounds for k∗.

The most general bound is that the equivalent permeability is always bigger than the

harmonic average, kH , and smaller than the arithmetic average, kA, of fine permeability

with the coarse grid block (Matheron, 1967). Another more restrictive set of bounds

suggested by Cardwell & Parsons (1945) and Renard & de Marsily (1997) sets the

lower bound of permeability in a certain direction to be the arithmetic mean of the

harmonic means of permeabilities parallel to that directions, kAH , and the upper bound

to the harmonic mean of the arithmetic means of permeabilities perpendicular to that

direction, kHA.

An example of cases when upscaled permeability is actually an effective property is

when permeability and its inverse have the same probability distribution. This happens

for the random log-normal distribution and the chess-board configuration. The effective

property in such cases is given by the geometric average (Matheron, 1967). For a two-

dimensional isotropic statistically homogeneous medium k∗ is given by :

k∗ = mα
am

1−α
h , (2.26)

where ma and mh are respectively arithmetic and harmonic averages, α ∈ [0, 1] is a

statistical factor. This corresponds to the Landau-Lifshitz conjecture that was first

proposed in terms of electromagnetic fields (Landau & Lifshitz, 1960). Journel et al.

(1986) also proposed a generalized power average expression which simplifies to the

harmonic, arithmetic and geometric means in the specific cases:

k∗p =

(
1

|E|

∫
E
K(x)pdx

) 1
p

. (2.27)

The exponent p depends on type of heterogeneity, block shape and size, and the flow
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condition in the block. The conditioning to flow also necessitates consideration of the

direction of flow for which k∗ is calculated. Generally permeability is tensorial but in

many cases ignoring the cross-flow leads to a diagonal equivalent permeability.

Alongside the above attempts, physical theories and stochastic methods are used for

calculation of k∗. For instance, effective medium theory (EMT), percolation theory

and the analogy between electric conductance and permeability of porous media are

notable. For a description and review of such methods we refer the reader to King

(1987) and Renard & de Marsily (1997).

Numerical pressure computation techniques

Another way to obtain an equivalent permeability of a specific block is by numerically

solving Darcy’s equation on the block itself and matching the flow. A numerical method

commonly referred to as the pressure solver method (PSM) (Warren & Price, 1961; Begg

et al., 1989; Christie, 1996) is to obtain and invert the solution of fine pressure calculated

over the domain of coarse grid block E ∈ Ω. The solution is dependent on the choice of

boundary condition. One common choice is assuming a generic axis-oriented boundary

condition. For example if x is the direction of pressure gradient:

p(0, y) = 1, p(1, y) = 0,

v(x, 0) = 0, v(x, 1) = 0,

From the solution, we can integrate total flow rate, qx = −
∫

Γ1,y
v(1, y)dy by summation

of outlet fluxes. Then k∗ in the x direction is:

k∗xx =
−qx.∆x
A∆p

(2.28)

where ∆p is the assumed pressure gradient, ∆x is the thickness of the grid block in the

x direction, A is the area from which the outlet fluxes exit. By alternating the boundary

condition over the sides, we can obtain k∗ for other directions, namely, k∗yy and k∗zz. The

technique in this form yields a diagonal upscaled permeability tensor and ignores the

cross terms. Furthermore, due to often an arbitrary and unrealistic boundary condition

assumption the result is prone to errors. Later in this chapter, we will address this issue.

An alternative, however, is application of different boundary conditions and processing

of the fine grid solution so that full tensor k∗ is calculated. For example, (Durlofsky,

1991) implemented periodic boundary condition which means that we assume that each

grid block is a periodic cell in a periodic medium. This imposes full correspondence

between the pressures and velocities at opposite sides of the block, e.g., to compute kxx
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we impose the following boundary conditions:

p(1, y) = p(0, y)−∇p, p(x, 1) = p(x, 0),

v(1, y) = v(0, y), v(x, 1) = v(x, 0),

This approach yields a symmetric and positive definite tensor, and is usually more

robust than the directional flow boundary conditions. This is pronounced in case of

structures in porous media that may include crossflow. examples of such structures are

sedimentary layers where there is either a high angle of inclination or high permeability

contrasts or high and low permeability layers of approximately equal thickness (Pickup

et al., 1994).

 
. 0n v  

. 0n v  

1p   0p   

iE  

Figure 2.1: Illustration of calculating k∗ for directional PSM for a coarse grid block and
boundary conditions imposed.

Renormalization method and renormalization-based methods

Another way to calculate k∗ is the renormalization method. Renormalization is a re-

cursive algorithm. The effective properties of small regions of the reservoirs are first

calculated and then placed on a coarse grid. The grid is further coarsened and the pro-

cess repeated until a single effective property has been calculated (King et al., 1993).

The renormalization transformation is by no means unique and many different renor-

malization schemes have been proposed, some inspired by an analogy between flow in

porous media, percolation processes and the flow of currents through resistors (King,

1989). Here we only review examples of Real-space transformations as a particular

case of the more general concept of the renormalization group. For further discussion

and thorough review of “full” real- and momentum-space renormalization method for

coarse-graining of subsurface reservoirs we refer to Hristopulos (2003) and Hristopulos
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& Christakos (1999). This general treatment has confirmed the applicability of the

renormalization concept to upscaling, providing a solution of the problem in all orders

of perturbation, even for heterogeneous systems where large fluctuations render other

methods unsound.

One of the well known applications of real-space renormalization, presented by King

(1989), uses a resistor analogy of flow problem and use of a lattice on which permeability

is defined at each lattice cell. In this work, successive star-triangle transformations are

used analogous to electric network and finite difference formulation of flow is devised to

derive a formula for k∗. The algorithm coarsens simple Cartesian cells hierarchically,

that is it coarsens from N ×N to N
2 ×

N
2 to . . . to 4× 4 to 2× 2 to a final single value,

where N is the number of fine cells. The derivation of the formula is as follows.

A cell-centred finite difference discretization is considered to solve the boundary con-

dition problem defined over four fine cells imposed by inlet and outlet constant pressures.

The boundary conditions are the same as used in directional pressure solver method. In

addition, an equation is written to relate equivalent permeability k∗ of these four cells

to the same pressure difference. By combining the two equations and eliminating the

pressure drop and also algebraically inverting the matrix of coefficients, with much of

algebra an explicit formula for equivalent permeability is derived:

k∗ = f(k1, k2, k3, k4),

f =
(2(k1 + k2)(k3 + k4)(k12 + k34))

3(k1 + k3)(k2 + k4) + 1
2(k1 + k2 + k3 + k4)(k12 + k34)

, (2.29)

where k1, k2, k3 and k4 are absolute permeabilities of four constituent fine cells, and k12

and k34 are harmonic means of permeabilities of the cells with the given subscripts. This

value turns out to be very close to directional pressure solver method with the obvious

benefit of not having to solve any system of equations. However, the assumption of

boundary conditions in the derivation are similar to that of directional pressure solver

method. Therefore the same errors are encountered in upscaling by renormalization

method in situations that assumed directional boundary conditions do not agree with

realistic ones. As with the pressure solver method there are some suggestions to improve

renormalization outputs for the equivalent permeability.

One way to improve the renormalization schemes is to use a large cell scheme rather

than a small cell one. This means that a large group of cells are upscaled into multiple

blocks. This aids in reducing the effects of the artificial boundary effects which are

inevitable when single blocks are considered in isolation (Williams, 1992).

Another problem with the method is the discretization scheme. By construction,
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Figure 2.2: Bond renormalization from Hinrichsen et al. (1993).

diagonal flow is not allowed and this leads to big errors for example in the chess-board

case (Yeo & Zimmerman, 2001). In this case, where sites have alternating high and

low permeabilities, flow tends to follow diagonal paths joining the high permeability

areas. While, renormalization by Equation 2.29 predicts that the block permeability is

controlled by the low permeability value, Dykhne (1971) proved that the exact result

(effective permeability) is given by the geometric average. This behaviour cannot be

captured by the finite-difference discretization scheme used in the derivation of Equation

2.29. The error caused by the renormalization increases with the contrast between the

high and low permeability values (Yeo & Zimmerman, 2001) .

For the method to work, each renormalization block should be bounded by isobars

in the direction perpendicular to flow and this is clearly not always the case when the

fluctuations in pressure are on scales comparable to the block size. Another suggestion

by Gautier & Noetinger (1997) calculates the full tensor of equivalent permeability by

renormalization. The modifications of the original scheme is achieved by using a periodic

boundary conditions for the pressure gradient. Although the cross-flow effects are not

ignored under this scheme, the upscaling still suffers from considering a small group of

cells.

In order to estimate the error in renormalization, King (1996) derived another set of

explicit formulae for equivalent permeability. In this work, kAH and kHA, (respectively

arithmetic-harmonic mean and harmonic-arithmetic mean of fine permeability), are

used in the hierarchical setting and renormalization is used to enhance these means.

Firstly, the source of error in the derivation of kAH and kHA for a two-dimensional

2× 2-cells is studied. The error is shown to originate from the assumption that the flow

is either entirely first in the x direction and then is in the y direction or vice versa. It

is found that the addition of extra degrees of freedom between the cells on the edges
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can cancel out this error. The renormalization procedure in this case is shown to be

an approximation scheme to the inversion of a matrix. That is, the pressure differences

across the direction of flow are ignored in a mean-field sense by eliminating the degrees

of freedom internal to the coarse block. To illustrate this we refer to Figure 2.3. In

configuration a and b if we assume no flow between points 5 and 6 is equivalent to

compartmentalize the systems into two subblocks of A and B which leads to kAH and

kHA. Therefore the error arises from the assumption of no cross-directional flow. By

finding the equations for this pressure difference, an expression for the error introduced

can be obtained. This can be translated into an error in the estimation of the effective

permeability computed by kAH and kHA:

kMHA = kHA − δkHA,

δkHA ≈ (k1k4 − k2k3)2

s
(
(k1 + k3)(k2 + k4) + 1

3s(k12 + k34)
) , (2.30a)

kMAH = kAH − δkAH ,

δkAH ≈ k1k4 − k2k3

4
(
3(k1 + k3)(k2 + k4) + 1

2s(k12 + k34)
) ×(

2(k1k4 − k2k3)

(k1 + k3)(k2 + k4)
(k12 + k34) + (k12 − k34)

)
, (2.30b)

s = k1 + k2 + k3 + k4.
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pi po
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Figure 2.3: Illustration of compartmentalization by assuming no flow between points 5
and 6. This leads equivalent permeability to be kAH and kHA respectively
in configurations a and b. The variables pi and po refer, respectively, to the
input and output pressures prescribed on the boundaries.

Again as in renormalization, we have explicit forms which yield direct values for

upscaled permeability for 2× 2 cells, so we can hierarchically substitute in Equations

2.30a and 2.30b to the desired coarse level.

37



Wavelets for upscaling

As a continuation of the renormalization scheme (successive grouping of fine cells to

yield an average value), here we briefly describe applications of wavelets in upscaling.

Wavelets are special functions that represent data in terms of averages and fluctuations.

This is a desirable feature for upscaling purposes and has been more or less fully ex-

ploited within several descriptions. The full mathematical details of wavelet functions

and upscaling formalism will be given in the next chapter, however here we only review

the literature and discuss the similarities of wavelet upscaling to the renormalization.

The basic idea underlying wavelets is to decompose a function or a set of data (either

continuous or discrete), into basic components and their relative coefficients. In this

sense it is very similar to a Fourier transform, where the basic components are sines and

cosines and the coefficients are given by their amplitude. Wavelet transforms, however,

offer both spatial and frequency resolution (Pancaldi, 2007). For this reason, they have

been particularly successfully applied to the analysis of signals where it is necessary

to capture both underlying periodic functions and specific localized features, which are

almost impossible to represent with periodic components.

There are two distinct wavelet-based upscaling approaches in the literature. First,

wavelets can be used to compress information in terms of reducing the number of data

points with a filtering procedure. This has been applied in the context of upscaling by

Sahimi et al. (1983), where a filtering process reduces the number of permeability values

in the system without compromising the statistics. This approach leads to quadtree or

octree Cartesian upscaled permeability grids. Another is to apply a wavelet transfor-

mation on the flow equations themselves so that we have a coarsened pressure equation.

This approach has been extensively applied by Pancaldi et al. (2006) and Pancaldi et al.

(2009) and will be thoroughly analyzed in Chapter 3.

At this point we leave the technical discussion of wavelets to Chapter 3 and it only

suffices to mention that the use of wavelets as in the second approach is quite similar

to the renormalization group in terms of the hierarchical elimination of permeability

fluctuations.. This reveals the basic principle underlying renormalization methods for

upscaling.

Local and global upscaling

As shown in Equation 2.25, the problem of averaging for obtaining equivalent perme-

ability, is defined solely on a local domain, for example on the domain of a coarse grid

block. This holds for the derivation of k∗ by pressure solver and renormalization meth-

ods. As a consequence of this local averaging, we are not able to effectively capture

the flow paths and fine grid effects. This is more pronounced when a high correlation
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length exists in porous media and connectivities stretch along an area larger than a

single coarse block, (see Figure 2.4 for examples of such cases). This limitation leads to

errors in upscaling performed locally. For reducing the error, there are some suggestions

in the literature.

 

Figure 2.4: Typical coarse grid blocks where local upscaling methods may fail.

The improvements mainly come from considering information obtained non-locally or

globally. To define terminologies of local and global upscaling, we refer to the review

by Farmer (2002). The upscaling process is subdivided into two phases: fine-grid ex-

periment and coarse grid calibration. In the first phase, the fine-grid pressure solution

is calculated. This can be performed either in the local region that incorporate a single

coarse grid block or in the global domain, where the solution is calculated over large

portions of the system. The global solution is what upscaling is devised to avoid, since

it is computationally demanding. However, as we will discuss later, in multiphase flow

upscaling, the global solution of the fine scale pressure equation, only once, requires

negligible computations compared to the whole costs of simulation. The second phase,

can also be performed locally or globally and it involves finding values for the coarse

properties from the fine grid solution. A set of different schemes arise from local and

global treatments for each of the two phases: local-local, global-local, global-global and

local-global.

Generally local-local methods are exact in d = 1, where the flow patterns are trivial.

In higher dimensions, though, the flow pattern is non-trivial and depends on boundary

conditions and care is needed in applying local-local upscaling methods. An improve-

ment can be made with the use of “jackets”, also called oversampling, that is, the value

at one specific block is calculated based on an area surrounding it. Another approach

to improve the results of local-local methods is to upscale transmissibility rather than

permeability itself and this can be combined with oversampling. Later we will discuss

transmissibility upscaling in more detail.

In the case of global-local methods, the solution is known for the entire fine grid and
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fine scale flux can be integrated to obtain values for the coarsened local permeability.

The case of the global-global method is the most demanding and a method suggested by

Holden & Nielsen (2000) is based on the minimization of the difference between the fine

and coarse scale solutions. The idea is similar to history matching (data assimilation)

but uses results from fine scale calculations rather than physical measurements (Farmer,

2002).

For the case of the local-global method, upscaling is performed from the fine grid only

in a subregion of the system. The remaining coarse values are interpolated. It reduces

processing times considerably. Durlofsky (2005b) also presents an “extended local”

approach, which corresponds to the oversampling previously discussed, and suggests it

for use on systems where the coarse grid is not aligned with the fine one.

A different local-global method, termed “quasi-global” is defined by Durlofsky

(2005b). This upscaling method is performed by an iteration loop to correct the as-

sumed boundary condition used to compute upscaled values. Here, we explain and

later will use a version in which a correction is used to upscale transmissibilities. For

a coarse scale representation, under the assumption of two point flux approximation,

the upscaled transmissibilities, denoted henceforth by T∗ of the interface between two

coarse blocks can be computed from the local or extended local problems. The solution

of these local problems provides the values of upscaled transmissibilities by:

T ∗m,n =
qm,n

< p >m − < p >n
, (2.31)

where qm,n = −
∫

Γm,n
(k∇p).ndl is the total flux obtained by summation of fine grid flow

(shown as arrows in Figure 2.5) across the coarse block interface Γm,n between two coarse

blocks that contain subblocks m and n. The quantities < p >m= 1
|Em|

∫
Em
∇pdx and

< p >n= 1
|En|

∫
En
∇pdx are the volume averages of the fine scale pressure over subblocks

Em ⊂ Ei,j and En ⊂ Ei±1,j±1, respectively. The transmissibility upscaling avoids the

secondary error otherwise encountered in calculation of coarse transmissibilities based

on upscaled permeabilities (Chen et al., 2003).

If all upscaled transmissibilities T ∗ij are positive, then the two point flux approximation

scheme for coarse scale will be used for the global solution of coarse pressure pc as:

∑
j:∂Ei∩∂Ej 6=∅

T ∗ij(p
c
i − pcj) =

∫
Ei

Qcdx, (2.32)

where Qc denotes coarse scale source and sink. In the next iteration, the values of the

surrounding coarse scale pressures pci±1,j±1 (or global solution) are used to improve the

boundary conditions in local upscaling. With new values of upscaled transmissibility a
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Figure 2.5: An illustration of the ap-
plication of global informa-
tion in terms of surround-
ing coarse pressure that de-
fines boundary conditions
for local solvers in transmis-
sibility upscaling. The gray
square is the extended re-
gion or jacket around coarse
target block and thick rect-
angles represent the area
in which volume average
pressures are calculated for
upscaling.

new iteration is carried out to reach a consistent pressure field and transmissibility set.

The derivation of boundary conditions from global flow is rather a non-trivial task.

One approach is to use a bilinear (in 2-D) and trilinear (in 3-D) interpolation of coarse

pressure values, pci±1,j±1, to provide the local Dirichlet-type boundary conditions.

Moreover, the global information obtained by solving coarse scale problem depends on

flow scenarios. In Chen et al. (2003), authors employed directional generic axes-oriented

flows, while in a later version in Chen & Durlofsky (2006), the global information is

derived from specific flow scenario. This choice provides coarse scale parameters that

are adapted for any type of global flow.

2.2.2 Multiphase Upscaling

As was mentioned earlier, for upscaling multiphase flow, in addition to absolute perme-

abilities, relative permeabilities and capillary pressure should be upscaled. Therefore,

it is necessary to express the saturation equation in coarse scale. One way to write an

upscaled saturation equation is by assuming that the functional form of these properties

does not change with scale. In this case the same relative permeability and capillary

pressure curves from fine to coarse scale are used. Unfortunately this suggestion fails in

the presence of non-local heterogeneities similar to failure in the case of absolute perme-

ability upscaling. In these circumstances, a multiphase upscaling technique is generally

required (Barker & Thibeau, 1997).
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Pseudo-function generation

A common approach is to use an averaging technique to generate relative permeability

and capillary pressure curves similar to global-local upscaling. For instance, for calculat-

ing an upscaled mobility of phase l, denoted by λ∗l , a fine scale global solution, provides

the flow rate between the grid blocks, the pore volume weighted average saturation and

viscosity inside the grid block and the pressure gradient across the grid block. To match

the phase flow rates between coarse grid blocks Ei and Ej in x direction the following

must hold:
N∑
k=1

(fl)k = f l, (2.33)

Substituting in Darcy’s law for multiphase flow, Equation 2.5 (ignoring gravity), gives:

−
N∑
k=1

(
tλl(S)∇p

)
k

= −
(
T ∗λ∗l (S)∇p

)
ij
, (2.34)

where t and T ∗ denote fine and coarse transmissibilities. From this expression, some

fictitious functions between λ∗l and Sl can be derived which give rise to generation

of dynamic pseudo relative permeability functions. The dynamic term refers to the

pseudofunctions that are derived from simulated saturation distribution. In contrast,

when the flow is dominated by gravity or capillary effects, the saturation distribution

may be determined by assuming capillary/gravity equilibrium and vertical equilibrium

pseudos may be calculated. There are several methods to define pseudofunctions (see

Guzman et al., 1999; Kyte & Berry, 1975; Stone, 1991; Jacks et al., 1973). The methods

vary in the way they factor the fine grid flow into the product of average quantities,

T ∗, λ∗l and ∇p. Similarly, the pseudo capillary pressure curve is calculated by assigning

volume average capillary pressure to the average saturation in the column of grid cells

from a reference datum.

Implementation of new functions of relative permeability at coarse scale, leads to an

upscaled saturation equation:

∂Sw
∂t

+∇ · F ∗(x, Sw) = Qw, (2.35)

where F ∗(x, S) = vf∗w , v is the upscaled velocity field obtained from coarse scale

pressure equation. Here the variation of F ∗i with x appears because the pseud-

ofunctions are in general different for each block in the coarse grid. Finally,

f∗w =
{
f∗w,i

}
=

{λ∗w,i}
{λ∗w,i}+{λ∗o,i}

is the pseudo fractional function for water specifically only

for coarse grid block Ei.

Unfortunately pseudofunction generation has several drawbacks. It is computation-
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ally expensive in cases that we have to redefine the functions throughout the simulation

due to changes in mobilities. The functions are also generally dependent on flow

conditions (Aarnes & Efendiev, 2006; Barker & Thibeau, 1997) and they may only

be valid for the exact conditions for which they were derived. This is due to the fact

that pseudofunctions depend, not only on the heterogeneous porous media structures,

but also on the saturation distribution within the grid block and on the reservoir

flow history, which in turn depends on well locations and global boundary conditions.

Furthermore, from a practical point of view, there are very many such functions as

they will differ from one coarse grid block to another.

Volume averaged equations

This approach is an alternative to pseudofunction generation and tries to derive an

expression for relating volume average quantities in the saturation equation with some

locally calculated fluctuation terms (Durlofsky, 1998). In this idea, S, v and fw are

expressed in terms of averages (S, v and fw) which are constant within the averaging

region and spatial fluctuations (S̃, ṽ and f̃w) that have zero mean in the averaging

region. By means of averaging an expansion of the saturation equation with S = S + S̃,

v = v + ṽ and fw = fw + f̃w, one obtains:

ϕ
∂S

∂t
+ v · ∇fw + ṽ · ∇f̃w = 0, (2.36)

ϕ
∂S̃

∂t
+ v · ∇f̃w + ṽ · ∇fw + ṽ · ∇f̃w = ṽ · ∇f̃w. (2.37)

The equation for the fluctuating component can be used to generate equations for

various moments of the fine scale saturation equation, see e.g., Durlofsky (1997). As-

suming a unit mobility ratio, Efendiev et al. (2000) and Efendiev & Durlofsky (2002)

derived a single coarse-grid equation from Equation 2.36 on the form:

ϕ
∂S

∂t
+∇ ·G(x, S) = ∇ ·D(x, t)∇S, (2.38)

where G(x, S) = vf(S) and D(x, t) is a history dependent function that models ṽ · ∇f̃w.

In fact, compared to the fine scale saturation equation, D(x, t) is an extra history-

dependent diffusion term that incorporates local fluctuation into a coarse scale satura-

tion equation. The first observation of this formulation is that the coarse scale saturation

equation unlike the pressure equation does not take a similar form to the fine continuous

scale.

In later developments, Efendiev & Durlofsky (2003), eliminated the history-

dependence of Equation 2.38 and corrected G(x, S) to include convective contributions

43



resulting from scales larger than the coarse block. The results show reasonable perfor-

mance in the case of two-phase flow with varying boundary conditions and mobility

ratios. To conclude, the methodology is a more process-independent development for

coarse scale saturation equation compared to pseudofunction generation. However,

in the literature, there is a lack of investigation to extend this approach to include

capillary and gravity effects.

Transmissibility upscaling for multiphase

Previously we introduced transmissibility upscaling as an alternative to permeability

upscaling in single-phase. We can simply generalize this scheme to multiphase flow up-

scaling, only if the single transmissibility, T ∗ij , is changed to multiphase transmissibility,

T∗ij = λt(S)T ∗ij . This requires that we modify transmissibility upscaling problems of the

form of Equation 2.31 to:

T∗m,n =
−
∫

Γm,n
(kλt(S)∇p).ndl

< p >m − < p >n
, (2.39)

which obviously entails recomputation of transmissibilities throughout a dynamic mul-

tiphase flow due to changes in λt(S). A suggestion (Chen & Durlofsky, 2006) is then to

use a thresholding technique so in multiphase simulation, after computing a set of up-

scaled transmissibilities at the initial time step, at the next time step, only a portion of

transmissibilities are recomputed. This recomputation is performed only for the coarse

blocks where the total mobilities change significantly. A criterion to detect these coarse

blocks is (Jenny et al., 2005):

1

1 + ελ
<
λn+1
t,i (S)

λnt,i(S)
< 1 + ελ, (2.40)

where λt,i(S) denotes total mobility of coarse block i and ελ > 0 is a user-defined thresh-

old value. If any coarse block violates the inequality of Equation 2.40, the transmissi-

bilities of that block must be recomputed.

An advantage of enforcing the thresholding in addition to computational gain is effec-

tive elimination of the number of anomalous coarse scale properties in case of local-global

multiphase upscaling. Anomalous transmissibility values are encountered when global

information (interpolated coarse scale pressure) is not consistent with local regions with

low flow rates (Chen & Durlofsky, 2006). This inconsistency is seen when the coarse

scale pressures lead to very small pressure difference (∆p). If the integrated flow rate

(f) is also very small, there can be a sign difference between these two values, so the

calculated transmissibility will be negative. If ∆p is considerably smaller than f , the cal-
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culated transmissibility in Equation 2.39 becomes anomalously large. By enforcing the

threshold, the recomputation of transmissibilities in these low flow regions is avoided.

The methodology above will be used throughout the following chapters for com-

parison purposes. This involves comparison with directional pressure solver method,

renormalization and wavelet upscaling both in single and multiphase cases.

Multiscale and upscaling-downscaling methods

The representation of saturations at a coarse scale leads to a truncation error or nu-

merical dissipation error due to discretization of derivatives. This smears sharp front

movement of flow within a coarse block which may ultimately result in wrong predic-

tions of production performance. In order to reduce or eliminate such error, there are

mainly two groups of methods that are developed to upgrade an upscaling method:

multiscale methods and upscaling-downscaling methods.

Multiscale techniques refer to numerical schemes which model physical phenomena at

a coarse scale while preserving underlying fine scale features inside the coarse solution

using partial differential equations and corresponding operators at different scale (Kippe

et al., 2008; Hesse, 2008).

Generally in most multiscale methods, by imposing different gridding on the global

domain (coarse and underlying fine) a set of equations is derived for coarse scale flow

calculations and the underlying fine grid. Fine grid equations are locally defined pressure

equations which are imposed with special “reduced” boundary conditions (Chen & Hou,

2003). The solution of these problems leads to definition and calculation of pressure

(and sometimes velocity) basis functions. These functions are used in linear combination

to reconstruct fine scale global pressure and velocity solution.

In the multiphase flow case, basis functions must be updated to incorporate multi-

phase phase flow mobility-dependent variables in the upscaling. This is a major com-

putational burden that is only resolved if adaptivity is practised to maintain the com-

putational efficiency of the original upscaling. By acknowledging the fact that reservoir

processes are phenomenologically highly local in space and time, there is a potential to

switch back efficiently to fine scale only where and when needed.

As an approximate alternative to multiscale methods, a post-processing downscaling

step can be implemented into an upscaling method to reconstruct fine scale velocity

field. In so doing, a numerical procedure is performed on coarse velocities that map

the results back into fine grid. The resulting fine velocity field is then employed for fine

scale saturation calculation (Guérillot & Verdière, 1995).

A detailed technical description of these two approaches will be given in Chapter 4.

Moreover, for the upscaling-downscaling method we will suggest and implement tech-
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niques for qualitative improvements and computational savings. The application mainly

focuses the multiphase flow, however, error reduction for single phase flow upscaling will

also be investigated.
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3 Wavelets-based Upscaling

In this chapter an upscaling method for absolute permeability, based on Haar wavelets

and operator coarsening, will be proposed. The method draws on the application of

the Haar transform to Darcy’s equation for pressure in single-phase flow in a porous

medium. The main idea is to use the Haar wavelet basis to separate the average pressure

from the fluctuations in pressure. To a zeroth order approximation, all fluctuations can

be neglected, giving a mean-field type result for the average pressure. In the formalism

introduced, this can be translated into a very simple upscaling rule for permeability and

transmissibility that is inserted into a hierarchical renormalization scheme.

The chapter is laid out into three sections, In Section 3.1 we present an introduction

to the mathematics of wavelet transformation. In Section 3.2 the methodology of the

pressure equation upscaling with wavelets is described and in Section 3.3 we will use

this method in a comparison study with group of single phase upscaling described in

the previous chapter.
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3.1 Introduction to Wavelets

The wavelet transformation of a function is a localized version of Fourier transform

(Daubechies, 1992). This transform has special basis functions that are shifted or tech-

nically speaking, translated in the physical domain. As well as translation, “scale” is

also considered, which is the main desirable property of wavelet transformation for up-

scaling. We can either lower or increase the resolution by changing the scale. Based

on basis functions of the new scale and their shifts the transformation of the function

is carried out repeatedly. These transforms are called wavelets since they behave like

localized waves throughout the domain.

Each step of the transformation consists of taking the averages (trends) and differ-

ences (fluctuations) of a function or a dataset. The average coefficients are obtained by

scaling functions while the difference coefficients (or wavelet coefficients) are obtained

by wavelet functions. The coefficients can be used to retrieve the original function in

an inverse transform. The purpose of transformation is that, in image processing for

example (where wavelets are very popular), the coefficients of transformation can be

filtered out by a threshold. Then with an inverse step, the new approximate image is

obtained that contains the same trend but fewer defining points and so requires less

storage size.

The simplest scaling (averaging) and wavelet (differencing) functions that are also

used in this work are the so-called box or Haar scaling and wavelet functions (Haar,

1909):

φ(x) =

1 if 0 ≤ x < 1

0 if elsewhere
, ψ(x) =


1 if 0 ≤ x < 1/2

−1 if 1/2 ≤ x < 1

0 if elsewhere

, (3.1)

Considering particular function f(x) defined on interval of [0, 1]:

f(x) =< f, φ > φ(x)+ < f,ψ > ψ(x), (3.2)

where < f, φ >=
∫
f(x)φ(x)dx and < f,ψ >=

∫
f(x)ψ(x)dx respectively determine the

coefficients of average and difference basis functions. We can translate or shift scaling

and wavelet functions, tile the domain, and perform integrations to determine coeffi-

cients over all the tiles. It is noticeable that the mean value of ψ(x) over the entire

space is zero whereas the mean value of φ(x) is unity.

In discrete form the Haar scaling and wavelet functions can be written as

φ = 1
n [1 , 1 , 0 , 0 , · · · ], and ψ = 1

n [1 ,−1 , 0 , 0 , · · · ] where n is a normalizing constant.
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Figure 3.1: Haar scal-
ing φ and
wavelet ψ
functions:
shifting and
scaling.

We shift nonzero entries of these vectors successively throughout the domain. Instead

of integration, inner products will evaluate the coefficients for averages and differences.

For example, for a vector f = [f1 f2], the averages and differences coefficients are

obtained by < f.φ >= f1+f2√
2

and < f.ψ >= f1−f2√
2

, where φ = [1 1] and ψ = [1 − 1].

This can be shown by the following matrix multiplication:

f∗ = Wf,

where W is a wavelet matrix and contains vectors of scaling and wavelet functions, in

this case: W = 1/
√

2

[
1 1

1 −1

]
and f∗ is the vector containing both the averages and

differences coefficients.

Properties of scaling and wavelet functions

For any scaling and wavelet function, one can define scale-controlled and shift-controlled

scaling and wavelet functions by the co-called multiresolution formulation (Burrus et al.,
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1998) or two-scale relation (Sheng, 2000):

φj,k(x) = 2j/2φ(2j/2x− k), (3.3a)

ψj,k(x) = 2j/2ψ(2j/2x− k), (3.3b)

where j represents the scale factor (or zooming) and k the translation (or shifting).

Scaling and wavelet functions have the following important properties:

1. Any continuous real function can be approximated by linear combinations of φ(x)

,φ(2x) ,φ(4x) , · · · φ(2jx) and their shifted functions.

2. Orthonormality (like sines and cosines for Fourier transform) for both scaling and

wavelet functions holds.

3. Wavelet/scaling functions with different scale j have a functional relationship, for

Haar wavelets: φ(x) = φ(2x) + φ(2x− 1) and ψ(x) = φ(2x)− φ(2x− 1). There-

fore we can obtain the same relationships for every pair of a fine resolution, j, by

adjacent translations of 2k, 2k + 1 for a scaling and wavelet functions at coarser

resolution, j + 1 as:

φj+1,k(x) = (φj,2k(x) + φj,2k+1(x))/
√

2, (3.4a)

ψj+1,k(x) = (φj,2k(x)− φj,2k+1(x))/
√

2, (3.4b)

These two formulae are very important for a hierarchical transformation. That

is, by knowing any fine resolution transformation coefficients, one can calculate

scaling (average) and wavelet (difference) coefficients at coarser resolution as:

< f, φj+1,k > = (< f, φj,2k > + < f, φj,2k+1 >) /
√

2, (3.5a)

< f,ψj+1,k > = (< f, φj,2k > − < f, φj,2k+1 >) /
√

2, (3.5b)

If the average coefficients, < f, φj,k > of f at scale j are denoted by aj,k , and the

difference coefficients < f,ψj,k > are denoted by dj,k , computing the coefficients

can be represented by the pyramid scheme shown in Figure 3.2. The reconstruction

on the other hand can also be illustrated with an inverse pyramid scheme shown

in Figure 3.3.

This representation shows that an original function f at an assumed fine resolution

of j, can be transformed to three coarse levels of j + 1, j + 2, j + 3. It is possible to

represent this transformation with average coefficients at the coarsest level j + 3

and difference (detail) coefficients at all three levels as fj → aj+3|dj+3|dj+2|dj+1.
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aj  aj+1  aj+2  aj+3 

  dj+1  dj+2  dj+3 

 

Figure 3.2: The pyramid tree for hierarchical forward transformation.

aj+3  aj+2  aj+1  aj 

dj+3  dj+2  dj+1  
 

Figure 3.3: The pyramid tree for hierarchical inverse transformation.

To generalize, any function f(x) can be expressed hierarchically in terms of scaling

and wavelet functions as:

f(x) =
∑
k∈Z

aJ,kφJ,k(x) +

j0∑
j=J

∑
k∈Z

dj,kψj,k(x), (3.6)

where j0 is the finest and J = j0 + n is the coarsest scale in the ladder of scales.

4. The main purpose for any transformation is the analysis of data. In the context of

wavelets the fluctuation or differences can be interpreted as noise to get rid of. We

can specify some threshold value which any noise with absolute value lower than

that can be removed. In this way we can compress data into efficient averages,

that is, first apply the transform, then by threshold remove the noise and finally

by an inverse transform retrieve the data to a reasonable approximation.

The extension of wavelets to higher space dimensions is generally carried out by taking

the tensor product of one dimensional basis functions to cover multidimensional domain

of an original data. That is, we tessellate the space with new higher dimension basis

functions. In two dimensions for example we have φj,k(x) = 2j/2φ(2jx− k) for the x

direction and φ′j,k′(y) = 2j/2φ(2jy − k′) for the y direction. These two sets form an

orthogonal basis in L2(R2):

Φj,k,k′(x,y) = φj,k(x)φ′j,k′(y) = 2j/2Φ(2jx− k, 2jy − k′), k, k′ ∈ Z
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To obtain orthogonal wavelets we use permutation of tensor products:

Ψh
j,k,k′(x,y) = φj,k(x)ψ′j,k′(y), (3.7a)

Ψv
j,k,k′(x,y) = ψj,k(x)φ′j,k′(y), (3.7b)

Ψd
j,k,k′(x,y) = ψj,k(x)ψ′j,k′(y), (3.7c)

where h stands for horizontal, v for vertical, and d for diagonal. The reason is the

attribution of each of these subspaces to the directions of differences: Ψh
j,k,k′ , Ψv

j,k,k′ ,

and Ψd
j,k,k′ .

In this case, for hierarchical expansion of function f(x, y) we have:

f(x,y) =
∑
k,k′∈Z

aJ,k,k′ΦJ,k,k′(x,y) +
∑

µ=h,v,d

j0∑
j=J

∑
k,k′∈Z

dj,k,k′Ψ
µ
j,k,k′(x,y). (3.8)

For the Haar discrete scaling and wavelet functions, one may show that:

Φ = [1 1]⊗

[
1

1

]
=

[
1 1

1 1

]
,

Ψh = [1 1]⊗

[
1

−1

]
=

[
1 1

−1 −1

]
,

Ψv = [1 − 1]⊗

[
1

1

]
=

[
1 −1

1 −1

]
,

Ψd = [1 − 1]⊗

[
1

−1

]
=

[
1 −1

−1 1

]
,

where ⊗ is the tensor product. These arrays show the direction of calculating differences

over a square. The wavelet matrix in this case can be constructed by vectorization of

above functions and placing them row-wise into the matrix. For example for a 2× 2

data, f =

[
f1 f2

f3 f4

]
, one can write:

f∗ = Wf , W = 1√
2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

, then f∗ = 1√
2


f1 + f2 + f3 + f4

f1 − f2 + f3 − f4

f1 + f2 − f3 − f4

f1 − f2 − f3 + f4

.

The first row is the average coefficient and other three rows are respectively horizontal,

vertical and diagonal differences coefficients.

For higher dimensions we can extend the analogy, basically we have
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Φ = φ(x1)φ(x2) · · ·φ(xd) as the scaling function and one can show that there are

2d − 1 way to write different permutation of φ and ψ, leading to 2d − 1 different

directions of calculating differences or in another word 2d − 1 wavelet basis functions.

For example for three dimensional data, there are seven wavelet functions.

Hierarchical matrix representation of transforms

It is always very useful to represent inner products by matrix operations. For discrete

wavelet transforms the same stands. Here, we start with Haar wavelets applied to a sam-

ple vector f0 = [a0,1, a0,2, a0,3, · · · , a0,8]T , where the superscript T denotes transpose.

The first step is to obtain averages and differences coefficients of the basis functions.

This step can be described as the matrix-vector multiplication, f1 = W1f0, where W,

is:

W1 = 1/n



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 −1 0 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 −1 0 0

0 0 0 0 0 0 1 −1


,

where n =
√

2. In this matrix the first four rows applying correspond to φj=1,k=1:4. The

last four rows correspond to the basis vectors ψj=1,k=1:4 . These coefficients are:

f1 = W1f0 = 1/n



a0,1 + a0,2

a0,3 + a0,4

a0,5 + a0,6

a0,7 + a0,8

a0,1 − a0,2

a0,3 − a0,4

a0,5 − a0,6

a0,7 − a0,8


=



a1,1

a1,2

a1,3

a1,4

d1,1

d1,2

d1,3

d1,4


.

One can write f0 in following expansion on basis of scaling and wavelet functions as:

f0 = 1/n
[∑

j,k aj,kφ
T
j,k +

∑
j,k dj,kψ

T
j,k

]
, j = 1, k = 1 : 4.

From the orthonormality of the basis functions ,

φj,k × φTj,k′ = ψj,k × ψTj,k′ = 1, if k = k′ and φj,k × φTj,k′ = ψj,k × ψTj,k′ = 0, if k 6= k′,

it follows that W ×WT = I , where I is the identity matrix. So WT = W−1.

This relation makes it possible to calculate the inverse discrete wavelet transform.
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For example, the inverse transform of the above is f0 = (W1)T f1. This relation holds

for any stage and any wavelets.

To obtain the averages and differences coefficients of second stage coarsening we only

work with the first four entries. This is to keep the difference coefficients of first stage

and transform the average coefficients only. This stage is carried out by:

W2 =



1/n 1/n 0 0 0 0 0 0

0 0 1/n 1/n 0 0 0 0

1/n −1/n 0 0 0 0 0 0

0 0 1/n −1/n 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


,

and the transformed vector is:

f2 = W2f1 = 1/n



1/n(a0,1 + a0,2 + a0,3 + a0,4)

1/n(a0,5 + a0,6 + a0,7 + a0,8)

1/n(a0,1 + a0,2 − a0,3 − a0,4)

1/n(a0,5 + a0,6 − a0,7 − a0,8)

a0,1 − a0,2

a0,3 − a0,4

a0,5 − a0,6

a0,7 − a0,8


=



a2,1

a2,2

d2,1

d2,2

d1,1

d1,2

d1,3

d1,4


.

This stage is rearranged as f2 = W2f1 = W2W1f0 where

W2W1 =



1/n2 1/n2 1/n2 1/n2 0 0 0 0

0 0 0 0 1/n2 1/n2 1/n2 1/n2

1/n2 1/n2 −1/n2 −1/n2 0 0 0 0

0 0 0 0 1/n2 1/n2 −1/n2 −1/n2

1/n −1/n 0 0 0 0 0 0

0 0 1/n −1/n 0 0 0 0

0 0 0 0 1/n −1/n 0 0

0 0 0 0 0 0 1/n −1/n


.

This matrix holds two stages of transformation at the same time, it calculates the
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coefficients of scaling functions by the first two rows corresponding to φ2,1, φ2,2, the third

and fourth rows corresponding to ψ2,1, ψ2,2 and finally the last four rows corresponding

to ψ1,1, ψ1,2, ψ1,3, ψ1,4. With coefficients obtained, we can write

f0 = 1/n

 ∑
j=2,k=1:2

aj,kφ
T
j,k +

∑
j=2,k=1:2

dj,kψ
T
j,k +

∑
j=1,k=1:4

dj,kψ
T
j,k

.
We can continue in a same fashion for the transformation to another coarser level:

W3 =



1/n 1/n 0 0 0 0 0 0

1/n −1/n 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


,

where and f3 = W3f2 = W3W2W1f0. We have:

W3W2W1 =



1/n3 1/n3 1/n3 1/n3 1/n3 1/n3 1/n3 1/n3

1/n3 1/n3 1/n3 1/n3 −1/n3 −1/n3 −1/n3 −1/n3

1/n2 1/n2 −1/n2 −1/n2 0 0 0 0

0 0 0 0 1/n2 1/n2 −1/n2 −1/n2

1/n −1/n 0 0 0 0 0 0

0 0 1/n −1/n 0 0 0 0

0 0 0 0 1/n −1/n 0 0

0 0 0 0 0 0 1/n −1/n


.

From above example, it is obvious that for any transform we can construct a hierar-

chical transforming matrix, denoted by H, which holds some given level of coarsening `

as:

H` = W`W`−1 · · ·W1. (3.9)

It is possible to show that H matrices are also orthogonal matrices. The procedure

for construction of H for higher dimensions is similar to one dimension. Only that we

have to account for the multiple ways of calculating the differences as for W in higher

dimensions.

Calculating a hierarchy of coefficients from an original dataset, we can carry out an
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inverse transform. This is exactly what we exploit as an advantage of average-difference

decomposition, that is, one can refine the detail coefficients through some arbitrary value

for threshold and ignore insignificant details for inverse transformation. This is what is

used in denoising or refining the data in signal processing and image compression.

In the next section, we will describe an upscaling procedure based on the use of W

and H matrices and in Chapter 6 we will use a direct transformation on permeability

fields by wavelets in order to construct non-uniform grids.
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3.2 Upscaling of the Pressure Equation by Haar Wavelets

Pancaldi et al. (2006) illustrated the feasibility of transmissibility upscaling by means of

wavelet-coarsening of the pressure equation itself, supporting the idea of operator-based

upscaling of transmissibilities. They examined the ability of coarse representation of

pressure equation to provide approximate solutions without the need of solving the fine

problem.

The problem with their developed algorithm was computational difficulties in con-

structing the hierarchical matrices, undermining the computational gains in finding the

approximate solution for pressure. Nonetheless, by the fundamentals provided in the

previous section, we have developed a very fast and efficient algorithm to generate large

hierarchical matrices for Haar scaling and wavelet functions. The algorithm is generally

based on the fractal self-repetitive patterns of such matrices, therefore we extend the

application of operator-coarsening to investigate possible pros and cons for this line of

upscaling.

The approach starts with exploitation of the unitary matrix W−1 = WT Equation

2.22:

TP = R, TWTWP = R. (3.10)

To complete the equation transformation, we multiply by W on both sides to obtain

a new transmissibility matrix and a new boundary condition vector applied to the

transformed pressure: (
WTWT

)
WP = WR. (3.11)

Defining the transformed variables,

T′ = WTWT, (3.12a)

P′ = WP =

[
Pa

Pd

]
(3.12b)

R′ = WR =

[
Ra

Rd

]
. (3.12c)

where Pa and Ra are average coefficients of the transformed pressure and right-hand-

side vector and Pd and Rd are difference coefficients. From there equations we have:

T′P′ =R′. (3.13)

Up to this point, the transformation has been completely reversible; in fact, we have

simply changed the variables with which we represent the system. Now we approximate
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Equation 3.13 by ignoring the fluctuations of the system to preserve the large scale

behaviour.

To illustrate the mechanism, let us consider a 1×N system, with N = 4, that we want

to coarsen by a factor n = 2 by transforming a 1 × 4 group of cells into a 1 × 2 group

of blocks. To approximate Equation 3.13, we define new variables P and R, composed

of the first (N/2) = 2 elements of P′ and R′ respectively, and T as the (N/2)× (N/2)

upper left corner of T′.

If we assume unit viscosity, unit block sizes and areas, and constant pressure at

two boundaries, the fine-scale, the transformed and the coarse-scale transmissibilities

(T,T′andT) are:

T =


2k1 + t12 −t12 0 0

−t12 t12 + t23 −t23 0

0 −t23 t23 + t34 −t34

0 0 −t34 t34 + 2k4

 ,

T′ =


2k1 + t23 −t23 2k1 − t23 −t23

−t23 t23 + 2k4 t23 t23 − 2k4

2k1 − t23 t23 2k1 + t23 + 4t12 t23

−t23 t23 − 2k4 t23 4t34 + 2k4 + t23

 ,

T′ =

[
A B

BT C

]
; (3.14a)

T = A =

[
2t1 + t23 −t23

−t23 t23 + 2t4

]
. (3.14b)

where tij is the transmissibility between cells i and j.

To determine the coarse pressure, we invert the renormalized transmissibility matrix

T solving for pressure. In the mean-field approximation we can write:

TP = R, (3.15)

P = T−1R. (3.16)

Using T, P, andR corresponds to assuming that fluctuations of pressures are negligi-

ble. In other words, we represent the system in a mean-field approximation where only

the average behaviour is considered. Hence, exploiting the orthonormal property of W,

an expression for the coarse transmissibility can be derived operating on Darcy’s equa-

tion on the fine–scale, leading to a mean-field pressure solution. The general principle
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underlying this method can be applied in any dimension and to all problems which

require coarsening.

It would be interesting to find what effect the terms that we have just discarded

have on the pressure solution. This can be attempted in one dimension by retaining

the full T′ matrix in Equation 3.14a and solving simultaneous equations in Pa and Pd,

eliminating Pd leads to:

(
A−BC−1BT

)
Pa = (Ra −BC−1Rd). (3.17)

This looks like a new equation of the type T′′Pa = R′′. This form suggests methods

to solve for pressure solution beyond the mean-field approximation and has also

led to developments of wavelet-based multigrid solvers (see De Leon, 2008). The

main problem here is to calculate C−1 in an efficient way. Application of wavelets,

however, proves to have an advantage because of the sparsity of this matrix. One

can also impose thresholds in C−1 and add non-zero entries. This approach leads to

a truncated multigrid method. Another application of the above formulation is in

wavelet-based homogenization procedure (see Dorobantu & Engquist, 1998). For our

upscaling purposes, however, in the following, only the mean-field approximation will

be considered, where B and C are set to zero.

Explicit formula for wavelet upscaled permeability and transmissibilities

The above formalism can be used to derive an explicit formula for renormalization

group upscaling of transmissibilities and permeabilities by wavelets. This requires a

small collection of cells to be replaced successively. In Pancaldi (2007), a 4× 4 system

is selected to be replaced by 2 × 2 system. The fine-scale transmissibility matrix in

this case is 16 × 16. When transformed with W and WT, the matrix obtained is still

16 × 16, but taking the first four rows and columns only, we get a 4 × 4 matrix. This

can be compared to the transmissibility matrix of a 2× 2 system to deduce the relation

between the permeabilities at cell and block level.

Consider the transmissibility matrix T for a 4× 4 system with flow from left to right

and no flow top and bottom:

T =


2k1 + t12 + t15 −t12 0 0 −t15 0 ... 0

−t21 2k2 + t23 + t25 −t23 0 0 −t25 ... 0

. . . . . . . . . . . . . . . . . . . . . −t1516
0 0 0 0 0 . . . −t16,15 2k16 + t1615 + t1612

 ,
where tij is the transmissibility between cells i and j, and ki is the permeability of cell

i.
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The upper corner T of the transformed matrix T′ = WTWT:

T=

 k1+k2+ t23+t67
2

+ t59+t610
2

− t23+t67
2

− t59+t610
2

0

− t23+t67
2

k3+k4+ t23+t67
2

+ t711+t812
2

0 − t711+t812
2

− t59+t610
2

0 k13+k14+ t59+t610
2

+ t1011+t1415
2

− t1011+t1415
2

0 − t711+t812
2

− t1011+t1415
2

k15+k16+ t711+t812
2

+ t1011+t1415
2

 .
The transmissibility matrix for a 2× 2 system, T2×2 is:

T2×2 =


2k′1 + t′12 + t′13 −t′12 −t′13 0

−t′21 2k′2 + t′21 + t′24 0 −t′24

−t′13 0 2k′3 + t′31 + t′34 −t′34

0 −t′24 −t′34 2k′4 + t′24 + t′34

 .

We can now compare the elements of the two matrices one by one, T2×2[i, j] and

T[i, j]. For example:

T2×2[1, 2] = −t′12,

T[1, 2] = − t23 + t67

2
,

T2×2[1, 3] = −t′13,

T[1, 3] = − t59 + t610

2
,

T2×2[1, 1] = 2k′1 + t′12 + t′13,

T[1, 1] = k1 + k2 +
t23 + t67

2
+
t59 + t610

2
,

and hence, for consistency:

t′12 =
t23 + t67

2
, (3.19a)

t′13 =
t59 + t610

2
, (3.19b)

k′1 =
k1 + k2

2
. (3.19c)

This identification of the correspondence of terms from fine–scale to coarse–scale is

only possible because the structure of the upper left block in the transform of the matrix

at the fine–scale is the same as the structure of the matrix for the smaller system. This

means that, provided we discard the pressure fluctuations, the operator acting on the

coarse–scale is still Darcy’s law but with different values for permeability. To illustrate

this Figure 3.4 shows how an original transmissibility matrix is transformed in the

two-dimensional case.

The relationship between permeability and transmissibility in the upscaled system
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(k′i, t
′
ij) and in the fine–scale system (ki, tij) is shown in Figure 3.5. For a 4× 4 system,

the block permeability is the average of the permeability of the cells which are in direct

contact with the boundary condition. The block transmissibilities are the average of

the cell transmissibilities across faces.

The dependence of the coarse values on the type of boundary condition is evident. If

this method were applied in this form to a large system most of the information apart

from the values at the boundaries would be lost. To avoid losing too much information

at each upscaling step the procedure is always performed on a 4× 4 subset of fine–scale

cells.

 

Original Matrix Level 1 

h 

v 

d 

h v d 

Figure 3.4: A transformation of transmissibility matrix. Left: original fine-scale matrix
for a 32× 32 system, T, right: T′ = WTWT. The red box represents C,
and blue boxes are B and BT. The top left corner is T. It is interesting to
notice that B and C matrices each include bands of horizontal, vertical and
diagonal differences.

  

Figure 3.5: A schematic representation of the relation between cell and block permeabil-
ities and transmissibilities. Left: fine-scale permeabilities and right: coarse-
scale permeabilities and transmissibilities (Pancaldi et al., 2006).

61



Hierarchical transformation and multilevel wavelet upscaling

The application of wavelets described above was a single level upscaling and led to

derivation of an explicit formula for the upscaled properties. The role of boundary

conditions is clear in any attempt to derive a formula (Pancaldi, 2007). In another

format of wavelet upscaling, Pancaldi et al. (2009) applied the hierarchical transforma-

tion (with the aid of H-matrices) to the pressure equation. This format will lead to

higher than one level of upscaling but offers no explicit formula. Further, the effects

of boundary conditions in the right-hand-side vector are transformed and upscaled in a

similar multilevel fashion.

To illustrate this approach to operator upscaling, assume a one-dimensional system.

In Figure 3.6, the sparsity pattern of the original transmissibility matrix and three levels

of upscaled operators are shown. It is interesting to notice that the pattern of sparsity

for transformed matrix follows the same ladder of transformation as Equation 3.6. That

is, we have an averaging operator corresponding to the coarsest level on the top left,

and a ladder of differencing operators for the finest to coarsest levels.

 

Original Matrix Level 1 Level 2 Level 3 

Figure 3.6: Three levels of multiscale projection of transmissibility matrix of a one-
dimensional Nx = 256 system. The red boxes show C submatrices while
blue boxes are B and BT.

Again equivalent to the application of W-matrices, the averaging operator has a

similar sparsity pattern to the original matrix. Hence, one can extract the coarse trans-

missibilities from bands of the T matrix and use it for the upscaled model.

Moreover, there are suggestions in Pancaldi et al. (2009) about how to extend the

method to nonuniform coarsening. The algorithm, however, is an a posteriori procedure

in determining the coarse grain within which the pressure distribution is governed by

the global boundary conditions (again a constant pressure gradient). For such coarse

grids, the coarse operator produces satisfactory solution. However in very heterogeneous

coarse grids in which subgrid effects can not be ignored, the case is different and we

have to use an operator which includes submatrices that give the differences. In this

case we need to predict where or at what scales the deviation of pressure from the
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homogeneous case will be more severe, so that we can arbitrarily choose to keep only

the corresponding elements in the calculation of the new solution. This leads to savings

in computational time, because the matrix that needs to be inverted is reduced in size

as rows and columns not required for the solution are deleted.

The solution for Pd is then integrated with the previously determined average values,

Pa, to give a nonuniformly coarse grained solution (Pancaldi et al., 2009). Nonetheless

for making an a priori algorithm, authors have practiced strategies to decide the position

of coarse gridcells where elements should be kept. This led to taking the permeability

gradients as an indicator of heterogeneities. However in this reference Pancaldi et al.

(2009) the discussions are limited only to the calculation of the pressure in a single time

step for problems with a constant pressure gradient boundary condition. Further, there

is no study on the effects of upscaling on the saturation equation and final outputs of

a simulation. Also it is questionable whether the pressure solution can actually cover

dynamic evolution of saturation throughout the simulation.

Regarding the above problems, in the next section for comparison studies we

completely ignore the differencing submatrices in T′. Nevertheless significant numerical

improvements in constructing H-matrices have been implemented in upscaling. We

took advantage by looking at the sparsity pattern of such matrices so that for large

systems the construction, multiplication and reduction in obtaining T should be

efficient.

Multiphase flow upscaling by wavelets

A multiphase application of the wavelet upscaling technique was used in Pancaldi (2007)

to preserve the average pressure of a chosen phase while reducing the number of grid

cells in the system. The structure of the algorithm is identical to the single phase

case, the only difference being that instead of absolute permeability we now have total

mobility values for each cell.

The algorithm is to extract upscaled transmissibilities from fine values based on the

formalism presented in Equations 3.11 and 3.12 applied to the multiphase version of the

pressure equation (Equation 2.13). This leads to an upscaling rule for total mobility

which is the same as the averaging scheme for absolute permeability. Using this rule we

do not need to perform any matrix operations to obtain the coarse–scale mobility values.

Once these values are known, the pressure of the reference phase can be calculated at

the coarse–scale.

There are also considerations about the coarse representation of capillary pressure and

gravity. The direct approach is to include these effects on the right hand side vector

and consequently upscale them by extracting R from either R′ = WR or R′ = HR.
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The important factor here is updating the upscaled transmissibilities and that needs

an efficient algorithm in extracting T from either T′ = WTWT or T′ = HTHT. This

also requires fine–scale total mobility values to update T. One approach is to transfer

the coarse pressure solution onto the fine grid by way of linear weighted interpolation.

Then a fine–scale flux is calculated to be used for the fine–scale transport equation

solution.

In the next section we will assess the quality of multiphase wavelet upscaling.
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3.3 Numerical Results for Wavelet Upscaling

In this section we compare the wavelet method described in the previous section with a

selection of upscaling methods. We perform comparisons for single phase and multiphase

flow in the following subsections.

3.3.1 Single Phase Flow

First we start with the checkerboard pattern for upscaling. In this case we are able to

assess permeability wavelet upscaling with an exact solution for upscaled permeability

of the medium. The next case is a synthetic realization of heterogeneity and the final

case is a realistic example of heterogeneity viewed as a benchmark in the reservoir

simulation community.

The checkerboard pattern

One of the most difficult cases of heterogeneity for upscaling and simulation is a case

with large contrast in permeabilities of fine cells. For the simplest case of high contrast,

one test is to consider the checkerboard configurations shown in Figure 3.7. In the

analysis of renormalization, King (1996) examined the two configurations, case a and

case b, with permeability ratio 1000:1 between the high permeability (k1) cells and the

low permeability (k2) cells.

While case a has a large contrast, it does not have great implications for upscaling as

flow occurs almost entirely in the high permeability cells and the interface between these

cells are connected by a finite difference scheme. Therefore, the upscaled permeability

obtained by pressure solver method is a reliable value and can be looked at as a reference

solution.

In contrast, for case b, the finite difference solution has problems at interface. The

flow path between large permeability cells are not compatible with the two point flux

approximation scheme’s assumption that fluid flows from the centre of one cell to the

centre of the adjacent cell. The upscaled permeability, on the other hand, for the case

of constant pressure gradient in one direction, is exact and has been proved to be the

geometric mean of permeabilities while we have a uniform checkerboard configuration

with equal distribution of phases k1 and k2 (Yeo & Zimmerman, 2001; Farmer, 2002;

Matheron, 1967). Hence, we assume systems with configurations in Figure 3.7 with

k1 = 1000, k2 = 1 and upscale them to a single value.

In Table 3.1 we have compared the values obtained by different methods for upscaled

permeability. For this special case of boundary condition, as obtained by Equation 3.19,

the wavelet-based upscaled permeability is equal to the arithmetic mean. For case a, the
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Method case (a) in
Figure 3.7

case (b) in
Figure 3.7

Geometric Mean 177 31
Pressure Solver Method 534 2.66
Harmonic Arithmetic Mean 667 500
Arithmetic Harmonic Mean 501 2.00
Modified Harmonic Arithmetic Mean 534 2.66
Modified Arithmetic Harmonic Mean 501 2.66
Renormalization Method 534 2.66
Wavelet Method 500 500

Table 3.1: The results for checkerboard pattern simulations. The reference solutions are
bold-faced.

value obtained by wavelet method is close to the reference value obtained by pressure

solver method. In contrast, for case b, the value obtained by wavelet method is an order

of magnitude different from the reference value obtained by geometric mean. This is not

far from expectation as wavelet method is based on coarsening an operator discretized by

two point flux approximation scheme. The table also shows that correction for modified

harmonic arithmetic mean and modified arithmetic harmonic mean has brought these

means very close to pressure solver and renormalization method.

 

k1 

k2 

k1 k2 

a b 

Figure 3.7: Checkerboard patterns used in comparison studies.

For the case of transmissibility upscaling, we compare the reference and upscaled

values for outflux. The system is originally 32× 32 dridcells populated by configuration

of case a. We impose a constant pressure gradient in the x direction and upscale the

system to 4× 4 coarse grid cells. Further, in this case, we are able to add adaptive local

global transmissibility upscaling to the list of methods compared. We note that for case

b, the finite difference fine solution is not reliable for comparison. In the simulation here
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we impose passive tracer flow assumptions. In passive tracer flow, we have an injected

fluid which has the same properties as the initial fluid in place and there is no reaction

or absorption. This is equivalent to using a linear flow function f(S) for a waterflooding

and a viscosity ratio of M = µw/µo = 1 and relative permeability curves as:

krw = S and kro = 1− S, (3.20)

where S is the saturation of injected tracer (here water). These assumptions provide a

constant the total mobility and constant kλt throughout the simulation. Consequently

the upscaling is a single phase upscaling.

The error for total outflux is measured by:

εr =

∥∥Qc −Qf∥∥
Qf

(3.21)

where Qf and Qc are the total outflow in fine and coarse scales respectively. By a single

time step calculation of total outflux from the system, the relative error for different

methods are εr,PSM = 0.50%, εr,ALG = 0.01% and εr,wavelet = 6.10%.

The outflux of the initial fluid in-place computed by different methods is shown

in Figure 3.8. It can be seen observed that wavelet transmissibility upscaling by

hierarchical transformation overestimated the flow. Two methods of pressure solver

and adaptive local global upscaling match the result of the fine scale solution. However

due to the inherent error of coarse representation of saturation, there is a considerable

diffusion error affecting the production after breakthrough. Reducing the numerical

diffusion error will be our objective in Chapter 4.

Correlated log-normal permeability realizations

Here, we consider upscaling of correlated log-normal fields for permeability. In generat-

ing log-normal permeabilities, the values of mean and standard deviation of underlying

random normal distribution with which the correlated model is built, can represent the

degree of heterogeneity of the system. For each of these statistical properties (mean and

standard deviation), 50 realizations of size 256× 256 are simulated by using the moving

average technique. The algorithm is described in detail in Wallstrom et al. (1999b) and

later in Pancaldi (2007). The spatial correlation lengths are the same in both directions.

The value is 10 grid cells equivalent to a dimensionless value of 10/256 = 0.0391. Table

3.2 shows the statistical properties of the realizations and Figure 3.9 shows permeability

fields of one random realization for the first considered set.

The permeabilities obtained are allocated to the centres of a 256× 256 Cartesian

system of a unit area with uniform gridding. Then a constant pressure gradient is
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Figure 3.8: The outflux of fluid in-place in tracer flow computed by different upscaling
method and the fine reference solution.
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Figure 3.9: The logarithm of permeability for a random realization for the sets σ = 5.
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µ σ < lnkmin > < lnkmax > ln < M > ln < S >

1 5 -3.54 5.75 1.59 2.12
1 10 -8.03 10.4 3.33 5.18
1 15 -9.10 11.6 3.86 5.86
1 20 -12.4 15.2 6.28 9.79

Table 3.2: Statistical properties of of correlated log-normal distributions used for calcu-
lation of outflow in fine and coarse models. µ and σ are the mean and stan-
dard deviation of uncorrelated random normal distributions that are used
as background for correlated field. M and S are the mean and standard
deviation of correlated fields.

imposed on each realization in the x direction and fine and different coarse outflows are

calculated. The coarse models contain 32× 32 grid cells corresponding to an upscaling

factor of 8× 8 or three levels of hierarchical coarsening.

Figure 3.10 shows the relative error in outflux computed by Equation 3.21 for three

methods of pressure solver, adaptive local global and wavelet. Here, we do not show the

results of renormalization method, modified harmonic arithmetic mean and modified

arithmetic harmonic mean, because they essentially produce almost identical results

compared to pressure solver method even when there is more than one level of upscaling.

It is observed that wavelet hierarchical transmissibility upscaling has performed poorly

compared to pressure solver method. On the other hand, corrections of transmissibilities

by adaptive local global algorithm by means of 3 iterations, have effectively reduced εr.
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Figure 3.10: The relative error in outflows in four sets of 50 realizations of porous media.

Tenth SPE comparative solution project, model 2

Now we repeat the constant pressure gradient, single-phase flow on a sequence of two-

dimensional models with permeability data from Model 2 of the 10th SPE Comparative

Solution Project (Christie & Blunt, 2001), henceforth simply referred to as the SPE10

model. This model consists of 60× 220× 85 cells, each of size 20× 10× 2ft. The top

35 layers represent a prograding near-shore environment, with quite smooth variation

in the coefficients from one grid cell to the next. The bottom 50 layers model a fluvial

formation with narrow high-flow channels. Long correlation length structures, such as

the high-flow non-local channels in the lower part of the SPE10 model, are generally

difficult to model using conventional upscaling methods (Kippe et al., 2008).

In order to carry out hierarchical upscaling, we first extrapolated the permeabilities of

the layers from 60× 220 to 64× 256, hence we were able to upscale the model to 8× 32

coarse system. The extrapolations are performed with the help of MATLAB built-in

programme interp2. This function determines the output by a “bicubic interpolation”

within the two-dimensional input function, which in our case is the permeability in

60× 220 layout.
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A pressure gradient as in previous examples was applied in the x direction with no

flow from the other sides. We plot the fine outflow against the coarse outflows in all

85 layers in Figure 3.11, and as we observe, there is an improvement by adaptive local

global upscaling. The arithmetic harmonic mean, renormalization method and pressure

solver method, all underestimated the of flow (Qc < Qf ). Harmonic arithmetic mean

on the other hand overestimated the flows but are much closer to the 45o line. The

results obtained by modified harmonic arithmetic and arithmetic harmonic have not

been plotted due to their proximity to the results of the pressure solver method. The

wavelet method performs very poorly for most of the bottom heterogeneous layers and

it yields overestimated results that are just better than arithmetic mean which gives a

large overestimation.
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Figure 3.11: Fine scale compared to the coarse scale results for SPE10 layers, the closer
the marks to the 45o line, the more accurate results for upscaling.
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3.3.2 Multiphase Flow

Here, for multiphase water flooding we assume a reservoir initially saturated with oil.

Water is injected to displace the oil with similar boundary condition as for single phase

tracer flow simulation. The only difference is relative permeabilities:

krw = S2 and kro = (1− S)2, (3.22)

where S is the water saturation. Also we used unit viscosity values for both oil and

water. Two permeability fields (a and b) were taken as 32× 32 subsets from SPE10

model shown in Figure 3.12.

A constant pressure gradient was imposed on the boundaries in the x direction and

similar outflux calculation as for previous examples were performed and results for the

outflux of oil were shown in Figure 3.13. For the adaptive local global transmissibility

upscaling we used a 3-iteration limit. The figure shows strong overestimation of flow

by wavelet method, strong underestimation of flow by pressure solver method and

marginal underestimation of flow by adaptive local global.
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Figure 3.12: The logarithm of 32× 32 subset permeability fields (left a, and right b)
from SPE10 model.

3.3.3 Summary of Results

In our numerical experiments we observed that the results for wavelet upscaling of

either permeability or transmissibility, are not reasonable. In fact the transformation

operator can be seen as simple averaging that produces a mean-field approximation and

consequently the results are found to be only just better than simple arithmetic mean.

However, there should be improvements in performance if one can include the details

ignored by coarse operator. This would amount to implementing a multigrid method

and the cost of calculation of an enriched coarse operator and its application can negate
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Figure 3.13: The outflux of fluid in-place in multiphase flow computed by different up-
scaling methods and the fine reference solution for media a, left and b,
right.

the advantage gained by upscaling. To this end, we were not able to devise an efficient

yet high-performance coarse wavelet operator. Hence, we turned our attention towards

the investigation and possible improvements of adaptive local global upscaling in the

following chapters.

73



4 Multiscale and Upscaling-Downscaling

In this chapter, we will describe an upscaling-downscaling method and show an applica-

tion of its use. We will introduce some modifications and improvements to an existing

upscaling-downscaling technique and will compare its performance with a multiscale

method and conventional upscaling method. The purpose of developing upscaling-

downscaling and multiscale methods is to resolve the solutions of either the pressure or

the saturation equation, or both the equations, to avoid the problem of conventional

upscaling that averages out the detailed complexities of flow. The key issue remains to

keep such methods efficient and computationally viable.

The chapter is laid out as follows, In Section 4.1 we describe two of the most important

and widely cited multiscale methods. The first one (multiscale finite volume method)

resembles to the upscaling-downscaling technique in refining the coarse velocity. The

second one (multiscale mixed finite element method) will be used for comparison. In

Section 4.2 the modified upscaling-downscaling technique as the main achievement of

this work will be presented. Finally in Section 4.3 the results for a wide range of test

cases will be given.
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4.1 Multiscale Methods

4.1.1 Multiscale Finite Volume Method (MSFV)

This method uses linear superposition of local solutions of pressure and velocity as

basis functions and was first suggested by Jenny et al. (2003). The coarse scale solution

is used as weights in superpositions to provide mass-conservative fine fluxes at the fine

scale. Consequently, the fine fluxes can be used to solve transport equation at the fine

scale to reduce numerical diffusion error. The fact that the method is a finite volume

scheme means that instead of two-point flux approximation scheme, a multipoint

flux approximation scheme is used to derive transmissibilities and to discretize the

pressure equation. Here, we describe procedures for the calculation of basis functions

for pressure and velocity.

The pressure basis functions

The derivation of pressure basis functions is a localization of the pressure equation

to regions such R shown in Figure 4.1. For each such region (henceforth referred to

as interaction region), we solve a set of homogeneous boundary-value problems of the

form:

−∇ ·Kλ∇Θk
i = 0 in R, Θk

i = νki , on ∂R, (4.1)

where νki are boundary conditions to be specified below. The subscript i in Θk
i denotes

a coarse point in the coarse grid TH . The superscript k runs over all corner points

of the region. The above set of equations provide local solutions for each region. The

global solution of pressure, then, is obtained by linear superposition:

p =
∑
k

pkΘk =
∑
i,k

pkΘk
i , (4.2)

where pk is a given set of pressure values at TH and Θk
i will serve as building blocks to

construct a global continuous pressure solution. The boundary condition for Equation

4.1, νki satisfies νki (xl) = δkl, where δkl is the Kronecker delta function. For boundaries

over the edges one approach is to use linear interpolation to extend the coarse point

values νki (xl) to provide a linear pressure distribution.

The role of boundary condition is very crucial to mimic the fine scale behaviour.

Wallstrom et al. (1999a) found that a constant pressure condition of the sub-domain

boundary tends to overestimate flow contributions from high permeability areas. Instead

Hou & Wu (1997) proposed a so-called oscillatory boundary condition so that for each
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Figure 4.1: Coarse gridblock i = 5 with nine adjacent coarse volumes (solid lines). Also
shown are two interaction regions k = A,B around coarse gridblock and
their flow contribution on this block (Jenny et al., 2005).

face F (a line in 2D) of the interaction region, we solve:

− ∂x(Kλ∂xν
k
i ) = 0 in F, (4.3)

where x denotes the component parallel to the boundary. The possible oscillations in

values of K render such boundary conditions oscillatory. This choice is reported to lead

to uniform flow along the boundary and better results than a constant or linear pressure

condition (Hou & Wu, 1997). By assembling the flux contributions across the grid block

boundaries, a multi-point finite volume stencil is derived:

∑
k

pkfk,i =

∫
Ei

qdx,

fk,i = −
∫
∂Ei

n ·Kλ∇Θkds, (4.4)

where fk,l is the total flux out of grid block Ei induced by Θk and are in fact the ef-

fective transmissibilities for a 9-point stencil of the multipoint flux approximation in 2D.

The velocity basis functions

For the velocity reconstruction, a set of secondary basis functions is defined. For each

pressure basis function Θk, one associates a reconstruction basis function Θ̃k with each

cell in the coarse mesh. This is achieved by computing the fine scale flux q from the

global pressure field. This is used in turn as a boundary condition to solve an elliptic
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equation for coarse grid block Ei:

∇ ·Kλ∇p = f ′ on Ei, f ′ =

∫
∂Ei

qdΓ∫
Ei
dEi

. (4.5)

In two dimensions, each coarse grid block is overlapped by four interaction regions,

so for determination of q for a coarse grid block (for example the coarse grid block

i = 5 in Figure 4.1), we have to insert pi = 1, {i = 1 : 9} and use the relevant pressure

basis function to have q alongside the faces of the coarse grid block i = 5. This means

that for the 2D case, we have to solve 9 equations of the form of Equation 4.5 for each

coarse grid block to cover all possible contributions of the surrounding coarse blocks and

their constituent interaction regions. The fine scale velocity field is obtained by linear

superposition of these 9 solutions with weights being again the coarse pressure values

at {i = 1 : 9}. In 3D the number of solutions for linear superposition is 27.

The calculation and definition of two sets of pressure and velocity basis functions are

now complete at the initial time. One can restore these functions to use them throughout

the simulation. However, when the total mobility is not constant as in multiphase flow,

the solution of local problems and consequently the transmissibilities and the velocity

basis functions undergo changes that should be accounted for in regions of dynamic

change. This can be implemented both temporally and spatially, in an adaptive way as

in Jenny et al. (2005).

The high number of velocity basis functions for reconstruction may become an under-

mining factor in efficiency of the algorithm. Alternatively, Jenny et al. (2006) suggested

the use of an algorithm that does away with the use of a secondary set of basis functions.

This algorithm will be used in this work under the framework of upscaling-downscaling

technique and will be described in more detail later.

4.1.2 Multiscale Mixed Finite Element Method (MSMFE)

The main idea behind the mixed finite element method is to consider both the pres-

sure and the velocity as unknowns and express them in terms of basis functions (Aarnes,

2004). This is unlike the finite volume or the finite difference method where the velocities

are derived from the pressure solution. For each variable (pressure and velocity), differ-

ent approximation spaces are considered. Hence, the continuity equation (∇ · v = Q)

and the Darcy equation (v = −K∇p) are approximated by finite element functions for

pressure and velocity, respectively, belonging to their pertinent spaces.

The common choice of the approximation spaces for the pressure is piecewise-constant

scalar for the element areas and for the velocity is piecewise-linear over the element

interfaces. The mathematical details and the discrete forms of the equations in the
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mixed finite element method are fully described in many references like Aarnes (2004).

The multiscale generalization is to design a multiscale approximation space for the

velocity that accounts for the subgrid variations in permeability. This is achieved by

letting the interface-associated basis function be numerical simulations of local pressure

equations restricted to a pair of coarse grid blocks with source terms specified in such a

way that unit flow is forced across the element interface (Hou & Wu, 1997). Specifically,

if Ei and Ej denote two coarse gridblocks with a common interface Γij = ∂Ei ∩ ∂Ej , the

multiscale velocity basis functions Ξij are defined by use of pressure local basis function,

Θij , as:

Ξij = −Kλ∇Θij , in Ei ∪ Ej , (4.6)

(∇ · Ξij)|Ei = `(x)/

∫
Ei

`(x)dx, (∇ · Ξij)|Ej = −`(x)/

∫
Ej

`(x)dx, (4.7)

with no-flow boundary conditions along the edges ∂Ei ∪ Γij ∪ ∂Ej . The choice of spec-

ification of `(x) is important to ensure mass conservation in the coarse mesh. To model

the flow around the wells more accurately on the subgrid, Aarnes (2004) and Aarnes

et al. (2006) proposed the use of `(x) = 1 away from the wells and `(x) = Q in gridblocks

penetrated by wells. The definition of `(x) completes the definition of the multiscale

velocity basis functions Ξij . The solutions for Equation 4.6 are time-dependent since

they depend on the total mobility of the underlying grid. Therefore we need to regen-

erate them adaptively in time and space similar to multiscale finite volume method.

We will use a multiscale mixed finite element method for the comparison purposes in

the results section with the upscaling-downscaling method that will be described in the

next section.
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4.2 Upscaling-Downscaling Methods

In this approach we solve for the pressure distribution in the upscaled grid and include

the fine-scale heterogeneities in the computation of the phase saturations. In other words

we solve the saturation is a grid nested inside the coarse grid, hence the name, nested

gridding. Other common terminology used is simulation on a dual-mesh framework.

The result of performing this procedure, is similar to the multiscale methods in that

the saturation equation is solved in the fine scale grid.

The dual mesh method was first used by Ramé & Killough (1992) to model a single-

phase miscible flow. They used a finite element method to solve the pressure field on

the coarse scale. This solution is then projected by a spline interpolation procedure to

the fine grid. A finite difference scheme was used for the saturation equation that was

solved on the fine grid. Meanwhile, a restriction operation is performed periodically to

rescale the coefficient matrix for the discretized pressure equation on the coarse grid.

This operation will inform the coarse grid about the total mobility changes occurring

at fine grid.

To avoid the artifacts of a non-physical interpolation, Guérillot & Verdière (1995)

introduced a dual-mesh method where the velocity field was reconstructed within each

coarse-grid block by solving the pressure using approximate boundary conditions. For

the boundary conditions Gautier et al. (1999) assumed constant fine fluxes across each

coarse face, while Chen et al. (2003), Audigane & Blunt (2004) and Niessner & Helmig

(2009) used fine-scale inter-block transmissibility.

4.2.1 Incompressible Flow with no Capillarity-Gravity

The description of nested gridding from Gautier et al. (1999) is as follows. First we

decouple the pressure problem into a set of smaller problems on two scales: we consider

a coarse grid superimposed on a fine grid. We assume that the initial petrophysical

properties are defined on the fine grid. The first step of the nested gridding method

is to upscale porosity and permeability on the coarse scale. Any method of upscaling

at this stage can be used. The pressure equation is solved on the coarse scale. The

next step is to go back to the fine grid, solving a set of “velocity reconstruction” local

problems within each coarse grid block using boundary conditions derived from the

previous step.

As shown in Figure 4.2, the main equation for reconstructing velocity in each coarse

gridblock, Ej , is:

vEj = −KEj∇p, ∇.vEj = q in Ej ,

vEj · n|Γ = qcΓ.
tγi∑
γi⊂Γ tγi

on ∂Ej ,
(4.8)
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where vEj is the total velocity field for the coarse gridblock, Ej ; q
c
Γ is the coarse scale flux

across the coarse edge, Γ, calculated from the upscaling stage, and tγi is the fine-scale

transmissibility of interface, γi ⊂ Γ. We have Nc (coarse gridblocks) such equations to

solve. A global reconstructed velocity field is obtained simply by union of the patches

of velocities:

vrec =
Nc⋃
j=1

vEj in Ω. (4.9)

c

yq 

c

xq 
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yq 

Ej

 

Figure 4.2: An illustration of downscaling: distributing coarse scale velocity values (big-
ger arrows) into fine scale velocities (smaller arrows) as Neumann boundary
condition

We note that the technique described above is used instead of the application of the

velocity basis functions in the framework of later version of multiscale finite volume

method (Jenny et al., 2006) to reconstruct the fine velocities.

4.2.2 Modified Static Downscaling

In the following, we will describe some modifications to improve accuracy and efficiency

of the downscaling procedure. These modifications constitute our main contributions

to the upscaling-downscaling field.

The first modification comes with the vector tγi/(
∑

γi⊂Γ tγi) in Equation 4.8 that

is in fact a partitioning vector for attributing a higher share of coarse flow to high

permeability boundary fine cells and similarly a lower share to less permeable cells.

This proportionality is purely local and would be wrong when a high permeable single

fine cell is unconnected to high flow paths. To enhance the proportionality, we try to

use a better partitioning vector. Hence, we change the proportion to |vγi|/(
∑

γi⊂Γ |vγi |),
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where vγi is the fine scale velocity over interface γi. This change obviously requires the

original fine velocity distribution. As an approximate alternative, we use distributions

obtained by solving for extended local problems in the local-global upscaling stage.

These solutions provide velocity fields over the extended region to detect a better picture

for connection of flow paths than that provided by the use of the transmissibilities. The

indices for prolongation can be easily calculated once for an incompressible case in the

first iteration of local-global upscaling. In this case, we change Equation 4.8 to:

vEj = −KEj∇p, ∇ · vEj = q in Ej ,

vEj · n|Γ = qcΓ.
|vapp.γi |∑
γi⊂Γ |v

app.
γi |

on ∂Ej ,
(4.10)

where vapp. = {vapp.γi } represents an approximated velocity field from local-global up-

scaling stage.

The second suggestion is to improve the computational efficiency. This is achieved by

elimination of the constraint to reconstruct the fine pressure distribution. In Gautier

et al. (1999) the central fine grid block is assumed known and equal to the pressure

of the coarse gridblock. The specification of pressure in this technique is necessary to

make Equation 4.8 solvable. However, in our experience, the reconstructed pressure field

contains several peculiarities and is not of a comparable quality to the fine reference

model.

If we neglect the emphasis on having a fine scale pressure distribution, instead we can

try to reconstruct only a mass conservative velocity field. This allows us to decompose

the problem into four equations in two dimensions (as shown in Figure 4.3) and six

in three dimensions (number of coarse edges) plus particular solutions for wells. The

solvability is this case is achieved by an arbitrarily fixing the pressure in one cell, e.g.

equating the pressure of the first cell to the pressure of the coarse gridblock l (p1 = Pc).

The pressure solution, in this fashion, is non-physical but its gradient provides useful

velocity distributions.

For each decomposed equation we impose Neumann boundary conditions, derived

from partitioning of a unit-value coarse scale flux over the corresponding coarse

edge. For example for a coarse gridblock, E, we compute a distribution func-

tion denoted by vΓi for edge Γi ⊂ ∂E, obtained by boundary condition assumed as

vΓi.n|Γi = 1×
(
|vapp.γi |/

∑
γi⊂Γ |v

app.
γi |

)
on Γi and open flow over the other edges. Hence-

forth, we refer to these distributions as basis functions.

After calculating the distribution basis functions, we can generate the same velocity

distribution of Equation 4.9 by means of a linear superposition for coarse gridblocks
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Figure 4.3: Illustration of the decomposition of nested-gridding problem in two-

dimensions into four equations that determine velocity distribution basis
functions.
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and a union for the global domain:

vrec =
Nc⋃
j=1

(
M∑
i=1

qcΓi.vΓi

)
j

+ vp, in Ω, (4.11)

where Nc is number of coarse gridblocks, M is space dimension, qcΓi is coarse velocity

over coarse edge, Γi ⊂ ∂E, and vp is a particular solution only for well coarse gridblocks

calculated as:

vp = −KE∇p, ∇ · vp = q. on Ewell. (4.12)

The calculation of vΓi and vp are performed only for the initial time step so that the

downscaling does not require the solution of Equation 4.8 for the rest of the simulation,

furthermore, such calculations are obviously parallelizable. These factors can be ex-

ploited for computational gains. Moreover, aiming only at constructing a conservative

velocity field, different global boundary conditions can be simply incorporated into this

framework. The schematic of application of this technique is given in Figure 4.4.

The step by step description of our upscaling-static-downscaling (adaptive local global

upscaling coupled by static modified nested gridding or ALG-MNG–) is as follows:

1. Determine the size of the coarse grid blocks.

2. At initial time t = 0 , two procedures are performed: Firstly, the upscaled trans-

missibilities T∗ are calculated for all coarse grid block edges by adaptive local

global upscaling. The procedure is as follows: First for a single phase flow, we

calculate upscaled transmissibilities by extended local method. This procedure is

performed by assuming an extended region around the coarse grid block with the

target coarse edge that we are trying to calculated the upscaled transmissibilities

for. The size of extended regions for our tests will be the target coarse grid block

plus half of the length of the neighbouring coarse gridblocks. The bigger the size,

the better the global features will be incorporated into local upscaling, however

with the expense of higher computations.

Then we run the model with the upscaled values to determine coarse pressures in

the coarse grid block centres. Now we perform the iterative procedure of adaptive

local global method described in Section 2.2 to correct the upscaled transmissi-

bilities. The iterations continue until values of the transmissibilities no longer

change. We save the upscaled transmissibilities ({T∗}).

3. Secondly, the velocity basis functions are calculated for each coarse grid block by

Equation 4.10 and for wells by Equation 4.12. For better quality basis functions in

partitioning of coarse fluxes into boundaries of Equation 4.10, we use approximate
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velocity fields obtained in extended regions in the stage of adaptive local global

upscaling. These velocities come form pressure solved at the extended regions

similar to what is shown in Figure 2.5, grey square, with boundary conditions

from bilinear or trilinear interpolation of coarse pressure values. We save the

basis functions ({vΓi}) and we refer to them as static basis functions because they

are calculated at initial time.

4. Here we start the actual simulation. First by upscaled transmissibilities, T∗, we

calculate implicitly, from the pressure equation, the coarse pressure and the coarse

fluxes.

5. Then the coarse fluxes are processed by static downscaling to have a reconstructed

fine scale velocity field (vrec) by Equation 4.11.

6. The fine scale fluxes are input into the upstream explicit saturation solver and

one time step is run. We have now the fine scale saturation solution.

7. The saturation solution is used to calculate the total mobilities.

8. If we have a single phase tracer flow simulation, the total mobilities are constant,

otherwise, we detect regions with high change of the total mobilities via Equa-

tion 2.40 in order to update the upscaled transmissibilities of coarse blocks located

in such regions.

9. In the detected regions the permeability at fine scale is multiplied by the total

mobilities and with the new mobility-included permeability we update upscaled

transmissibilities. This is done by a single-stage use of the coarse pressure as

Dirichlet-type boundary condition for solving pressure at extended local problems.

The solution is used for new transmissibilities calculated from Equation 2.39.

10. We go back to step 3, for the second time step of the coarse scale pressure calcu-

lation.

The use of the basis functions to reconstruct fine scale distributions has also been

examined in the context of multiscale finite volume method and multiscale mixed fi-

nite element method. In the multiscale finite volume method (Jenny et al., 2003) the

pressure basis functions are used to derive effective upscaled transmissibilities. For fine

scale velocity reconstruction, this algorithm uses 9 local problems (in 2D) and 27 local

problems (in 3D) to construct and store a secondary set of functions as velocity basis

functions. Also, in multiscale mixed finite element method (Aarnes, 2004) an additional

set of basis functions for velocity are considered in addition to the usual basis functions
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for pressure considered in conventional finite element methods. The role of these basis

functions is similarly to incorporate the effect of total mobility change and underlying

subgrid heterogeneities.

Applying a static velocity field (obtained only at the initial time), Aarnes & Efendiev

(2006) used homogenization theory to prove that under some assumptions, the two-

phase flow velocity, can be approximated by a static part that does not depend on

saturation, times a time dependent function in each coarse block. Also Khoozan et al.

(2011) replaced the time-consuming reconstruction step in the dual mesh method with

a fast analytical solution. However, in deriving the analytical solution, the subgrid

heterogeneity of each coarse gridblock is replaced with a homogeneous upscaled value.

This can be an undermining factor. Instead we use a numerical solution for deriving

the static part of the velocity field at fine scale and we use the coarse velocity field as

weights to compute the global reconstructed velocity field. In the results section, we

will apply and compare this algorithm with the fine reference model for different cases

of flow simulation and various heterogeneous media and boundary conditions.

4.2.3 Developing Frameworks for Inclusion of Capillarity-Gravity and

Compressibility

Capillarity and gravity

The addition of capillarity and gravity requires extra measures in upscaling-downscaling.

These two additional effects can undermine the robustness of static downscaling, because

the velocity field undergoes changes from time to time due to the evolution of saturation.

Here, we implement a simple operator splitting procedure to separate the effects of

capillarity and gravity from viscous force. The splitting allows us to still use the velocity

reconstruction basis functions for the viscous effects. The operator splitting, following

references like Bratvedt et al. (1996) and Lie et al. (2012), uses Equation 2.13 to obtain:

−∇ ·
[
Kλt∇pvisco

]
= Qt, (4.13)

−∇ ·
[
Kλt∇pcap−gravo

]
= −λw(S)K∇Pcwo + λG(S)gK∇z, (4.14)

po = pvisco + pcap−gravo . (4.15)

The first equation determines the velocity in the absence of capillarity and gravity.

The second equation determines the velocity including these effects. The treatment of

these two equations for the upscaling-downscaling is different. First, for the upscaling

stage, we perform the adaptive local global iteration and transmissibility updating

only for the first equation (Equation 4.13). Then we use the transmissibilities for the

coarse scale capillarity-gravity equation (Equation 4.14). Due to the existence of a
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Figure 4.4: Switching the scales via upscaling-downscaling algorithm compared with the
reference algorithm used in the numerical section.
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non-constant right hand side in the second equation, the reconstruction procedure for

this equation should be revised. That is because velocities arising from capillarity

and gravity may change more frequently, we have to use a secondary set of velocity-

reconstruction basis functions that are updated frequently throughout the simulation.

These basis functions are calculated by static downscaling again. The coarse fluxes

obtained form solution of the second equation are used as weights. Then depending on

level of dominance of gravity or capillarity, every several time steps, the basis functions

should be recalculated.

Compressibility

The compressibility of rock and fluids complicates the algorithm of upscaling-

downscaling mainly because the rock porosity and fluid densities are often strong func-

tions of pressure and consequently the pressure equation should be solved iteratively.

The intrinsic requirement of iteration in this case, however, justifies the use of ALG

transmissibility correction in the same iteration loop of the pressure equation solution.

Here, we present the fine scale equations and suggest the upscaling-downscaling for-

malism, extending static downscaling to the compressible case. The purpose is to sepa-

rate effects of compressibility from an incompressible case in order to be able to handle

the compressibility-induced velocities adaptively. Starting from the mass balance equa-

tion for a compressible phase l:

ϕn+1ρn+1
l Sn+1

l − ϕnρnl Snl
∆t

−∇ ·
(
ρn+1
l λl · (∇pn+1 − ρn+1

l g∇z)
)

= Ql, (4.16)

taking the sum over all phases l resulting in:

ϕn+1

∆t
− ϕn

∆t

∑
l

Bn+1
l ρnl S

n
l −

∑
l

Bn+1
l ∇ ·

(
ρn+1
l λl · (∇pn+1 − ρn+1

l g∇z)
)

= Qt, (4.17)

where Bl = 1/ρl is the volume formation factor. Linearization of this equation results

in the iterative linear pressure equation:

C

∆t
(pν+1 − pν)−

∑
l

Bν
l ∇ · (ρνl λl · ∇pν+1) = −ϕ

ν

∆t
(4.18)

+
ϕn

∆t

∑
l

Bν
l ρ

ν
l S

ν
l +Qt

−
∑
l

Bν
l ∇ ·

(
(ρνl )2λlg ·∆z

)
,

which converges to Equation 4.17 as ν →∞. The superscripts ν and ν + 1 denote
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quantities at the old and new iteration levels, respectively, and

C =
∂ϕ

∂p

∣∣∣∣ν − ϕn∑
l

∂Bl
∂p

∣∣∣∣νρnl Snl , (4.19)

is the compressibility coefficient. Based on Hajibeygi & Jenny (2009), the convective

term can be modified as:∑
l

Bν
l ∇·(ρνl λl ·∇pν+1) ≈ ∇·(λt ·∇pν+1)−∇·(λt ·∇pν)+

∑
l

Bν
l ∇·(ρνl λl ·∇pν). (4.20)

Finally, the convergent iterative scheme for the fine scale compressible pressure equa-

tion is:
C

∆t
(pν+1 − pν)−∇ · (λt · ∇pν+1) = RHSν +Qt, (4.21)

where

RHSν = −ϕ
ν

∆t
+
ϕn

∆t

∑
l

Bν
l ρ

ν
l S

ν
l −

∑
l

Bν
l ∇ ·

(
(ρνl )2λlg ·∆z

)
(4.22)

−∇ · (λt · ∇pν) +
∑
l

Bν
l ∇ · (ρνl λl · ∇pν).

For the upscaling-downscaling, the above equation is split at the coarse scale:(
C

∆t
I−T∗

)
pinc. = Qt, (4.23)(

C

∆t
I−T∗

)
pcmp. = (RHSν +

C

∆t
pν), (4.24)

where I is the identity matrix and T∗ is the matrix populated with transmissibilities

obtained by adaptive local global upscaling. pinc. and pcmp. are incompressible and

compressible pressure solutions. By this decomposition we bound the iterations to the

compressible component only. Following the convergence on the second equation, the

velocity field from the first equation can be downscaled as before by only the difference

of having to add C/∆t. We note that T∗ in this formalism is, similar to the incompress-

ible case, calculated initially globally and updated after then adaptively. As argued in

Hajibeygi & Jenny (2009), the values of C will not affect the solution of the first equa-

tion, because on convergence of the second equation, the first term on the left-hand side

of Equation 4.21 cancels out.

The downscaling of the velocity induced by the compressible part, is not straight-

forward due to the existence of a pressure-dependent right-hand-side part. In this case

similar to gravity-induced velocity we have to employ the conventional nested gridding
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or design a downscaling procedure that its functions are frequently updated.
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4.3 Numerical Results, Comparisons and Discussions

In this section we compare the algorithms defined in the previous section with different

boundary conditions and different heterogeneous media. For boundary conditions we

assume a quarter five-spot pattern as well as flow induced by constant injection rate on

one end and constant pressure at the other end.

Two cases are considered in the following subsections. The first one is a passive tracer

(linear) flow simulation in which the fluids act as a single phase flow specification.

The second scenario is an incompressible waterflood. For each scenario, a range of

combinations of upscaling and downscaling methods are compared with each other.

The description and denotation of these techniques are given in Table 4.1.

Table 4.1: Upscaling-downscaling methods used in comparison study.

Method Description

PSM-NG Conventional nested-gridding on pressure solver method

PSM-MNG Modified nested-gridding on pressure solver method

ALG-NG Conventional nested-gridding on adaptive local-global upscaling in single

phase

ALG-MNG− Static (with application of basis function) modified nested-gridding on

adaptive local-global upscaling in multiphase

ALG-MNG+ Dynamic (without application of basis functions) modified nested-

gridding on adaptive local-global upscaling in multiphase

For the assessment of each model, a comparison to the fine scale reference solution is

performed. The following error measures are considered:

1. The saturation error (Hauge et al., 2012):

ζ(srec) =
‖srec(., t)− sref(., t)‖2

‖sref(., t)‖2
, δ(srec) =

1

T

∫ T

0
ζ(srec)dt, (4.25)

where sref, or s, is the saturation calculated from reconstructed velocity field of the

model under consideration and sref is the saturation from the fine scale reference

model. Further, t is time measured in pore-volumes injected (PVI) and T is the

final simulation time. Finally ‖·‖2 represents Euclidean norm or L2 norm.

2. The reconstructed velocity error (Kippe et al., 2008):

δ(vrec) =

∥∥vx − vref
x

∥∥
2

‖vref
x ‖2

+

∥∥vy − vref
y

∥∥
2∥∥vref

y

∥∥
2

, (4.26)
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where vx and vy are reconstructed velocity components in x and y directions and

vref is the fine scale reference velocity field. This error illustrates the quality of

reconstructed velocity and indirectly examines the accuracy of the coarse velocity

of certain model used in the downscaling procedure.

3. The water cut versus PVI obtained from each model. Water cut is measured by

the fraction of the water mobility divided by the total mobility. In the case of

constant total mobility this fraction is equal to the water saturation of producing

cell. The value is in any case (tracer or multiphase flow) a function of the single

cell’s saturation. Clearly, these values are local in contrast to the previous global

norms. Furthermore, we have to note that, for all the methods, the water cut

values are obtained based on the fine scale saturation results.

4. In addition to water cut, similar to Castellini (2001) and He (2005), we consider

comparison of Qo/∆P curves, where Qo = wcλo(S)(Pj − Pbh) is the oil flow rate

measured at the production gridblock, wc is the well constant, Pj is the pressure

of the production grid block, Pbh is the bottom-hole pressure and ∆P = Pi − Pj
is the pressure difference between the injection and production grid blocks. This

quantity is considered to assess the upscaling quality in terms of pressure in addi-

tion to flow rate. This quantity is calculated only at the production cell. For the

coarse-scale pressure error estimation, we will use:

δ(P c, P f , t) =

∥∥P f (., t)− P c(., t)
∥∥
L2

‖P f (., t)‖L2

, (4.27)

where P c is coarse pressure from various upscaling methods and P f is volume-

averaged pressure from fine scale reference method.

4.3.1 Tracer Flow

Here, the upscaling is for single phase flow. Hence, the static and dynamic downscaling

are identical schemes, and the comparison is limited to the use of vapp. only, or in other

words improvements by using modified nested gridding compared to conventional nested

gridding.

For boundary conditions we assume a source and a sink respectively in the top left and

bottom right corners of layers 10, 37, 47 and 68 of SPE10 model. Layers 37, 47 and 68 are

highly channelized and heterogeneous where the permeability in the system undergoes

a wide variation from 0.004 to 20,000 millidarcy. Layer 10 is a non-channelized layer.

Nonetheless it also shows high variation of permeability. Figure 4.5 shows the logarithm

of permeability for these layers. We assume a constant porosity for the layers and the
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Table 4.2: Comparison of δ(srec) error from different reconstruction schemes for tracer
flow through layers 10, 37, 47 and 68 of SPE10 model.

Layer δ(srec) δ(srec) δ(srec) δ(srec)
of PSM-NG of ALG-NG of PSM-MNG of ALG-MNG

10 0.13 0.09 0.19 0.07
37 0.48 0.29 0.47 0.25
47 0.64 0.37 0.61 0.30
68 0.47 0.38 0.47 0.30

coarse model is 6× 22 upscaled from original 60× 220 gridcells. For the solution of the

saturation equation we implemented a sequential implicit scheme, that is, the pressure

equation is first solved, and based on a fixed total velocity, the saturation equation is

implicitly solved via an iteration loop in a decoupled sequence.
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Figure 4.5: Logarithm of permeability fields for layers 10, 37, 47 and 68, from Model 2
from the 10th SPE Comparative Solution Project (Christie & Blunt, 2001).
Inlet and outlet are also shown by arrows for the case of corner-to-corner
flow.

Table 4.2 gives δ(srec) over 1.5 PVI of simulation. Interestingly, MNG has improved

the quality of saturation profiles for adaptive local global upscaling better than for

pressure solver method. Applied on adaptive local global upscaling the improvement

by MNG relative to NG at 1.5 PVI for the layers 10, 37, 47 and 68 are respectively

22.2, 9.06, 22.8 and 17.0 percent. Table 4.3 gives δ(vrec). The decrease in the values by

modified algorithm for adaptive local global upscaling is even more emphatic for this

error norm.

Figure 4.6 shows the tracer cut curves obtained for different layers at production cell.
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Table 4.3: Comparison of δ(vrec) error from different reconstruction schemes for tracer
flow through layers 10, 37, 47 and 68 of SPE10 model.

Layer δ(vrec) δ(vrec) δ(vrec) δ(vrec)
of PSM-NG of ALG-NG of PSM-MNG of ALG-MNG

10 0.71 0.60 0.47 0.22
37 1.28 1.05 1.21 0.91
47 1.25 1.17 1.02 0.71
68 1.40 1.02 1.39 0.86

For layer 10, as we expect from heterogeneity pattern, PSM-NG is within a satisfying

range. However, the other layers display the importance of correcting the transmissi-

bilities by using the adaptive local global upscaling scheme. For these layers the error

of homogenization through upscaling exceeds the one from the coarse representation of

the saturation.

Although downscaling of the velocity field for the heterogeneous layers could not

remove the error or the discrepancy with the fine scale’s curve, we note that near-well

upscaling can reduce such discrepancies, once the method is coupled with less accurate

upscaling technique like PSM for regions away from the well. Near-well upscaling, as

the name suggests, aims to specifically honour flow details around the well.

We note that the improvement by modified nested gridding downscaling of adaptive

local global upscaling compared to conventional nested gridding is not reflected for the

single value of saturation at the producing cell that determines the production.

4.3.2 Multiphase Flow

In this subsection, we test the modifications to a two-phase flow simulation to determine

the improvement by modified nested gridding compared to conventional nested gridding

and investigate the application of static downscaling algorithm. Two viscosity ratios are

examined, M = µo/µw = 0.1 and M = µo/µw = 10. For M = 0.1 the front is sharp and

piston-like while for M = 10, in contrast, the front lingers into the displaced fluid. From

a reconstruction point of view, an unstable displacement (high viscosity ratios) is simpler

to handle. The reason is that the increase of water saturation throughout the domain is

more gradual due to a weak shock. This keeps the change in total mobility small enough

that the coarse velocity field can take them into account more effectively. On the other

hand the saturation increase is spatially abrupt and sudden for cases of sharp piston-like

frontal displacements (low viscosity ratios). This gives the reconstruction oscillations

and errors because the slightest of differences in locating the front in reconstruction
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Figure 4.6: Tracer cut curves for tracer flow simulations on layers of 10, 37, 47 and 68
for reference fine model and different upscaling and upscaling-downscaling
methods.
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leads to large discrepancy of saturation values computed by different models.

Figure 4.7 shows the global error measured by ζ(srec) for different reconstruction al-

gorithms for multiphase flow M = 10 case. We observe an improvement by modified

nested gridding compared to conventional nested gridding similar to tracer flow case.

However, the loss of accuracy by static downscaling is visible for layer 10. In contrast,

for channelized layers, the application of adaptive local global upscaling is advanta-

geous due to high errors of pressure solver method upscaling. For these layers dynamic

and static downscaling have almost similar values of error. To conclude, in any case

of heterogeneity, modified nested gridding is obviously advantageous compared to con-

ventional nested gridding, while for channelized heterogeneity static downscaling infers

minimal loss of accuracy compared to dynamic downscaling.

  

  

0 0.5 1 1.5 
0.04 

0.09 

0.14 

0.19 

  

  

PVI 

Layer 10 
PSM-NG 

PSM-MNG 

ALG-NG 

ALG-MNG+ 

ALG-MNG– 

0 0.5 1 1.5 
0.15 

0.25 

0.35 

0.45 

0.55 

  

  

PVI 

Layer 37 

PSM-NG 

PSM-MNG 

ALG-NG 

ALG-MNG+ 

ALG-MNG– 

0 0.5 1 1.5 
0.2 

0.4 

0.6 

  

  

PVI 

Layer 68 

PSM-NG 

PSM-MNG 

ALG-NG 

ALG-MNG+ 

ALG-MNG– 

0 0.5 1 1.5 
0.2 

0.4 

0.6 

0.8 

1 

PVI 

Layer 47 

  

  

PSM-NG 

PSM-MNG 

ALG-NG 

ALG-MNG+ 

ALG-MNG– 

ζ 
(s

re
c)

 
ζ 

(s
re

c)
 

ζ 
(s

re
c)

 
ζ 

(s
re

c)
 

Figure 4.7: Comparison of ζ(srec) from different reconstruction schemes for multiphase
flow (M = 10) through layers 10, 37, 47 and 68 of SPE10 model.

Figure 4.8 and Figure 4.9 show the water cut curves calculated at producing cell

for each layer and each viscosity ratio. In each panel, we have compared the curves

obtained by ALG-MNG− to ALG-MNG+, PSM-NG and fine reference model. Only we
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have spotted deterioration of ALG-MNG− curve compared to ALG-MNG+ for case of

layer 10 with M = 0.1, while other cases confirm that non-updated basis functions for

multiphase flow produce satisfying results.
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Figure 4.8: Water cut curves for multiphase flow simulations (M = 0.1) on layers of 10,
37, 47 and 68 for reference fine model and different upscaling and upscaling-
downscaling methods.

Figure 4.10 shows fine scale saturation profiles constructed from fine reference model

and three upscaling-downscaling algorithms at 1.5 PVI for layer 47. Figure 4.11 shows

the absolute saturation error (|sref − srec|) for the layers that we considered in the com-

parison. Obviously the reconstruction based on PSM suffers significantly from bad

upscaled values for coarse velocities due to inaccurate coarse properties and ALG-NG

and ALG-MNG− have resulted similar profiles as of the fine-scale reference model.

After considering corner-to-corner flow, here, we examine the case of directional flow

and constant pressure production. The boundary conditions are set as constant injection

rate from one side of the reservoir and a constant pressure production at the other side.

Again we upscale the fine layers (layers 37 and 47) from 60× 220 grid cells to 6× 22.
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Figure 4.9: Water cut curves for multiphase flow simulations (M = 10) on layers of 10,
37, 47 and 68 for reference fine model and different upscaling and upscaling-
downscaling methods.
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Figure 4.10: Fine scale saturation profiles obtained by different method for corner-to-
corner flow, layer 47, at 1.5 PVI (M = 10).
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Table 4.4: Coarse pressure and fine saturation error for directional flow case.

Model δ(P c, P f , t) δ(P c, P f , t) δ(srec) δ(srec) δ(srec)
of PSM of ALG of PSM-MNG of ALG-NG of ALG-MNG−

Layer 37 2.10 0.13 0.55 0.37 0.32
Layer 47 0.51 0.06 0.50 0.34 0.29

Here only the viscosity ratio of M = 10 is considered. For the assessment of the accuracy

of the various techniques, we consider the accuracy of the pressure field and oil flow rate

by calculating Qo/∆P versus time.

Figure 4.12 illustrates the improvement of results by ALG-NG, ALG-MNG− and

ALG-MNG+ compared to PSM-NG. The improvement is mainly due to better coarse

pressure values calculated by ALG upscaling. However, there is only a minimal improve-

ment by ALG-MNG− compared to ALG-NG. Moreover, the application of distribution

basis functions is completely reasonable as we observe no deterioration of results by

ALG-MNG− compared to ALG-MNG+. In Table 4.4 the errors for coarse-scale pres-

sure and fine-scale saturation are given by simulation to 2 PVI.
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Figure 4.12: Comparison of various upscaling-downscaling techniques for directional
flow case through Qo/∆P .

The next test model, taken from Chen et al. (2004), is one realization of a 2D syn-

thetic channelized system containing 100×100 grid cells on a Cartesian coordinate sys-

tem. This model was generated using multi-point geostatistics (for the channels) and

two-point geostatistics (for permeability distributions within each facies). This perme-

ability model (Figure 4.13) is characterized by high variations from 0.02 to 6.5×107
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millidarcy, a mean of 7×104 millidarcy and isotropic normalized correlation lengths

varying from 0.05 to 0.5. In this model, the correlated permeabilities are not aligned

with the Cartesian grid lines, but rotated at almost 45o with respect to the grid. This

model represents a case in which the flow solution is highly affected by grid orienta-

tion and flow conditions in the finite difference scheme, as the preferred flow paths are

along high permeabilities, not the model coordinate system. The upscaling is difficult

in this case due to high permeability variation, high permeability channel, and complex

geometry of heterogeneities.
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Figure 4.13: Logarithm of absolute permeability for synthetic channelized model.

We examine tracer flow induced by corner-to-corner source and sink configuration. We

upscale this model to 10×10 grid blocks and test the same algorithms of reconstruction

as before. In Figure 4.14 we have confirmed the performance of ALG-MNG− in lowering

the fine scale saturation error compared to ALG-NG− and PSM-NG.
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Figure 4.14: Improvement in saturation absolute error by modifications in reconstruc-
tion of velocity at 2 PVI.

To investigate the effect of the upscaling factor on performance of ALG-MNG− we

have carried different coarsening levels on this test case: upscale from 100×100 to

25×25, to 10×10 and 5×5. By calculating ζ(srec) vs. time, we can see in Figure 4.15
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that we observe less improvement by modified nested gridding compared to conventional

nested gridding for 25×25 case. That is to say for lower upscaling factors (like 25×25

case with upscaling factor of only 16) proportionality indices calculated by fine scale

transmissibilities are close enough to those calculated by approximate velocity field. In

comparison of ALG-MNG− and ALG-MNG+ we observe ζ(srec) for ALG-MNG− only

to exceed that of ALG-MNG+ after 1 PVI for upscaling factors of 400 (5×5) and 100

(10×10).

To finalize this case, we note that for a 2D upscaling factor of 100 which is a more

usual case for reservoir simulation upscaling, we see a good improvement in terms of

saturation error by MNG compared to NG (from 0.31 to 0.23 at 2 PVI) and small

deterioration by using static downscaling algorithm (from 0.23 to 0.26 at 2 PVI).
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Figure 4.15: Effect of upscaling factor on performance of basis functions for downscaling.

In directional flow case, we performed similar analysis of errors for Qo/∆P , and errors

for coarse-scale pressure and fine-scale saturation. Results are respectively presented in

Figure 4.16 and Table 4.5. Similar to layers 37 and 47 that were examined for directional

flow, this example shows that high coarse pressure errors by PSM are removed by

ALG upscaling. From downscaling point of view, there is some improvements by MNG

compared to NG and no under-performance by MNG− compared to MNG+.

4.3.3 Simulation Runtime for a 3D Case

In previous tests we showed that by the upscaling-downscaling scheme we can generate

a good approximation to the flow compared to a fine reference model by ALG-MNG−.

However, the most important factor is to keep the efficiency of upscaling in terms of

CPU gain and memory reduction. In our algorithm we only focus on pressure equation
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Figure 4.16: Channel case: comparison of various upscaling-downscaling techniques for
directional flow case through Qo/∆P .

Table 4.5: Channel case: coarse pressure and fine saturation error measurements for
directional flow case at 6 PVI.

Model δ(P c, P f , t) δ(P c, P f , t) δ(srec) δ(srec) δ(srec)
of PSM of ALG of PSM-MNG of ALG-NG of ALG-MNG−

Channel case 0.56 0.10 0.39 0.22 0.17
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upscaling and once we reconstruct a velocity field the computation for the saturation

equation is as expensive as it is for the fine model. In the calculation of CPU time,

we assume that the superposition of velocity basis functions is not computationally de-

manding since it does not involve any equation to solve. Hence, for the downscaling part

of the time for nested-gridding is not considered. For large scale reservoir models the

superposition is actually a matter of optimized programming and can easily outperform

linear solution of local problems.

For a three dimensional example, we take a section of SPE10 model bottom 50 layers

(Upper-Ness fluvial channelized formation). The section is a 60×60×50 grid with varia-

tion of permeability between 9.63×10−7 to 20 millidarcy. We upscale it to 6×6×5 blocks

with PSM, PSM-NG, ALG-NG− and ALG-MNG− methods as in the previous cases.

The water flooding boundary conditions are corner to corner flow case with constant

pressure production at one corner and constant injection rate at the other. We use a

mobility ratio of M=10 and relative permeabilities from Equation 3.22 for the water

and oil phases. For local-global method the computations can be costly given that in

three dimensions, calculation of a corrected set of transmissibilities involves extended

regions 8 times the size of their target coarse block (8,000:1,000 cells in this example).

The application of local-global iteration therefore is very time consuming unless strong

measures for adaptivity are enforced. Therefore we put a maximum of 2-iteration limit

for updating transmissibilities.

In Figure 4.17 (left panel), ζ(srec) vs. time for three algorithms of upscaling-

downscaling are shown. We again observe improvement in the reconstructed saturation

fields for ALG-MNG− compared to ALG-NG and PSM-NG. This confirms both cor-

rections in the upscaling stage by adaptive local global method in three dimension as

well as improvements in downscaling stage by modified nested gridding. In right panel

of this figure, the oil flow rates are plotted and the curve for ALG-MNG− is in good

agreement with that of fine reference model. However, the difference between curves

of ALG-NG and ALG-MNG− is very insignificant. Therefore the improvements in this

plot are essentially due to ALG upscaling and not modified downscaling. In Figure 4.18

the saturation profiles at 0.4 PVI are shown.

For the analysis of computational complexity, we presented CPU time for each of

methods in Table 4.6. The machine used is an Intel Xeon 2.67GHz CPU processor

and 4.00 GB RAM. As mentioned earlier, the CPU times are only for solution of the

pressure equation so that we see a significant speed-up factor for PSM and equally for

PSM-NG. In PSM we deal with solution of very small 6×6×5 systems, so that the com-

putations drastically drop to less than a second for our machine. However this is not the

case for ALG techniques. Even with adaptivity, the calculation of corrected boundary
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Figure 4.17: Left is ζ(srec) vs. time, right is the curves for oil production rate with
different methods.
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Figure 4.18: Logarithm of permeability and Saturation profiles at 0.4 PVI for different
models under comparison for the 3D case.
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Table 4.6: Time consumption for solution of the pressure equation by different methods
for a 3D case study

Method δ(P c) at 1 PVI ζ(srec) at 1 PVI Qoil at 1 PVI CPU time (sec)

Fine − − 12.17 331.8
PSM 0.34 − 17.30 0.037
PSM-NG 0.34 0.56 16.23 0.037
ALG-NG 0.12 0.44 13.35 54.42
ALG-MNG− 0.12 0.35 13.35 54.42

conditions for dynamic coarse grid blocks and following iterations have undermined up-

scaling speed-up. Nonetheless for three dimensions Wen et al. (2006) have shown that

optimized programming in addition to modifications in the size of the extended region

can lead to reasonable speed-up factors for ALG upscaling. Our emphasis however in

three dimensional cases like previous examples still remains on the reduction of nested

gridding error by MNG and application of MNG−.

4.3.4 Comparison of Upscaling-Static-Downscaling (ALG-MNG–)

with Multiscale Mixed Finite Element (MSMFE)

Here, we use a code developed by Lie et al. (2011) to compare the performance of multi-

scale mixed finite element (MSMFE) with upscaling-static-downscaling (ALG-MNG–).

The objective is to investigate if a simplistic upscaling-downscaling can provide the

accuracy of a more algorithmically complex multiscale method. In our comparison,

we will not consider the computational aspect of either of the methods because the

MSMFE code, similar to our ALG-MNG− code, has been currently developed only for

theoretical and small-scale reservoir cases. However, it suffices to refer to a computa-

tional comparison study presented by Kippe et al. (2008) between ALG-NG and three

multiscale methods. The conclusion there is that, ALG-NG is the least computationally

efficient method. This may not be always the case as in their study, they point out two

drawbacks for ALG-NG. First, they consider that the velocity reconstruction should

be performed globally everywhere and at all times for ALG-NG. Second, they did not

enforce adaptivity for the upscaling stage of the algorithm in order to avoid possible de-

terioration of performance of the algorithm. These two factors, however, were negated

by the use of basis functions for the reconstruction stage and we also observed consis-

tency of the results by adaptivity in the upscaling stage. Unfortunately at this stage,

we are unable to perform a proper study on computational efficiency of ALG-MNG−
compared to existing multiscale methods and keep the comparison very simplistic.

We consider the performance of methods for corner-to-corner multiphase flow simu-
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Table 4.7: Saturation error, δ(srec), for MSMFE and ALG-MNG−.

Layer MSMFE ALG-MNG− Layer MSMFE ALG-MNG−

10 0.07 0.06 47 0.28 0.27
37 0.26 0.26 68 0.46 0.30

lation (M = 10) of layers 10, 37, 47 and 68 of SPE10. Table 4.7 is a report of global

δ(srec) error for these layers. Figure 4.19 shows water cut curves obtained by different

methods. It is clear that ALG-MNG− has a better performance and this is most pro-

nounced in the case of layer 68. For this layer, δ(srec) for MSMFE is 54.6 % higher than

that of ALG-MNG−. The saturation profiles for this layer at the end of simulation are

shown in Figure 4.20.
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Figure 4.19: Water cut curves obtained by ALG-MNG− and MSMFE for multiphase
flow simulation.

We note that the quality of MSMFE and other multiscale methods can be improved, in

a similar way to ALG upscaling, by incorporating global information into the upscaling
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Figure 4.20: Saturation profiles for different models at 1.2 PVI, layer 68 of SPE10.

stage of the algorithms and definition of local basis functions. This has been investigated

in Efendiev et al. (2006) and Durlofsky et al. (2007). The modified algorithms use either

an initial fine scale velocity to correct the velocity basis functions in MSMFE or the fine

scale pressure to correct upscaled transmissibilities in MSFV. Adaptivity can also be

enforced to update basis functions only where and when needed. The aforementioned

references show very promising accurate multiscale tools. Nonetheless, we note that, if

the global information is to be exploited, it is very likely that ALG-MNG− offers a less

algorithmically complex procedure than local-global multiscale methods.

4.3.5 Summary of Results

We have introduced modifications in downscaling by nested gridding that reduces com-

putational overhead compared to the original scheme of nested gridding and can lead

to better quality reconstructed saturation profiles. This modification stems from mim-

icking the behaviour of the fine velocity distribution from an extended-local upscaling

stage. In an attempt to exploit the incompressibility of waterflooding, to avoid lin-

ear solvers in nested gridding, we showed that it is practical to only initially calculate

and then reuse a set of basis functions for velocity reconstruction. The application is

demonstrated in two and three dimensional test cases as well as using different sets of

boundary conditions including corner to corner flow and directional flow with constant

pressure production. We showed that use of these functions did not particularly un-

dermine the strength of the ALG-NG upscaling-downscaling for strongly channelized

systems. For the 3D case, our non-optimized code for ALG upscaling affected consider-
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ably the speed-up factor but the result for the downscaling stage in lowering the error

for fine saturation profiles and the application of basis functions remained as promising

as in two dimensional cases.
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5 EOR Applications of

Upscaling-Static-Downscaling

(ALG-MNG−)

The upscaling-static-downscaling (ALG-MNG−) method is applied in this chapter to

simulate of a group of EOR flooding processes. The chemical flooding processes includ-

ing polymer and surfactant flooding exhibit a wide range of difficulties for multiphase

upscaling. The change in viscosities and relative permeability curves of the fluids are

among these difficulties. For evaluating the improved technique, we compare the results

with the fine scale reference model. The reference model is in turn validated by frontal

advance theory in Section 5.1. ALG-MNG− method is tested for highly heterogeneous

porous media under different scenarios of secondary recovery in Section 5.2.
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5.1 Numerical Validation of the Fine Scale Solution

This section covers the validation of numerical simulation of the displacement by poly-

mer, surfactant and thermal flooding with frontal advance theory Buckley & Leverett

(1942), Claridge & Bondor (1974), Pope (1980). The purpose is to validate the fine scale

model used for numerical simulation in the comparison study. The analytical results

are based on Buckley-Leverett solutions of one-dimensional homogeneous cases. The

examples are as follows: Example 1 is a case of polymer flooding with a simplistic rhe-

ology for the polymer. The polymer fluid is injected after a conventional waterflooding.

The higher viscosity of injected fluid boosts the recovery. Example 2 is also a polymer

flooding case with the difference that in this case the oil bank does not form and the

polymer fluid is injected right from the beginning. In Example 3 we validate numeri-

cal simulation of surfactant flood with adsorption and change of relative permeability

curves due to a reduced residual oil saturation. Ultimately, in Example 4, a thermal

flooding analytical solution is used to validate numerical solution. In this example the

viscosities of fluids are reduced due to the use of heated water and the equation for

energy balance affects the saturation profiles.

5.1.1 Example 1: Polymer Flooding

In this example, we use a linear displacement example presented in Green & Willhite

(1998). Water and viscous polymer fluids are injected into a one dimensional homoge-

neous system. The polymer fluid is miscible with the previously injected water, which

has a low viscosity. It is also assumed that the polymer fluid is not adsorbed on the

rock. No mixing occurs between the polymer fluid and the low-viscosity resident water.

Thus, a boundary exists between the polymer and displaced water where there is a

step change, or jump, in viscosity from viscosity of resident water µw to viscosity of

polymer fluid µp. The resident water forms the leading flood front and because there

is a discontinuity in the viscosity between the polymer and resident fluids, a second

discontinuity in saturation, or shock front, must form at the boundary of polymer and

resident water (Green & Willhite, 1998).

Formation of the polymer shock

A conceptual model of the displacement process is developed by considering the injection

of polymer at some time after a waterflood has started. The waterflood and the polymer

solution parameters used are given in Table 5.1.

For relative permeability, the relationships considered for oil and water are:

kro = α1(1− SwD)m, krw = α2(SwD)n, (5.1)
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Table 5.1: Properties used for Example 1

Property Value

Porosity, φ 0.20
Connate water saturation, Swc 0.30
Residual oil saturation, Swc 0.30
Oil viscosity, µo,cp 40
Water viscosity, µw,cp 1.0
Polymer viscosity, µp,cp 4.0

where SwD = (Sw − Swc)/(1− Sor − Swc). Sw, Swc and Sor are respectively water sat-

uration, connate water saturation and residual oil saturation. For this example we used

α1 = 0.8, α2 = 0.2, m = 2, n = 2.

The water material balance leads to

(Aϕ)
∂Sw
∂t

+ qt
∂fw
∂x

= 0, (5.2)

where A is cross sectional area, ϕ is porosity, qt is injection rate, fw is fractional flow of

water, t is time from the beginning of injection, and any consistent set of units may be

used. In case the system is horizontal and gravity-and capillary effects are negligible, the

fractional flow of water is fw = kw/µw
kw/µw+ko/µo

. Using dimensionless variables, xD = x/L

and tD = qtt/Aφ, the above equation changes to:

∂Sw
∂tD

+
∂fw
∂xD

= 0. (5.3)

The derivation of an expression for the saturation velocities by frontal advance theory

begins with writing Sw = Sw(xD, tD) then, dSw =
(
∂Sw
∂xD

)
tD
dxD +

(
∂Sw
∂tD

)
xD
dtD, for a

path of constant saturation dSw = 0 so(
∂xD
∂tD

)
Sw

= −
(
∂Sw
∂tD

)
xD

/

(
∂Sw
∂xD

)
tD

= vSw . (5.4)

Combining Equations. 5.3 and 5.4, gives a constant velocity with which each Sw

travels: (
dxD
dtD

)
Sw

=

(
dfw
dSw

)
S=Sw

, (5.5)

The flood-front saturation is found by constructing a tangent to the fractional flow

curve (fw − Sw curve) from Swc when the water in the rock is initially at connate
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saturation, i.e., immobile. The slope of the tangent is given by:

f ′wf =
fwf − fwc
Swf − Swc

, (5.6)

where fwf is the fractional flow of water at the flood-front saturation, fwc is the fractional

flow of water at connate water saturation equal to zero, Swf is flood-front saturation,

and Swc is the connate water saturation.

The flood-front or saturation shock moves at a velocity given by:

vwf =

(
dfw
dSw

)
S=Swf

= f ′wf . (5.7)

All saturations less than Swf travel at the flood-front velocity. The location of a

particular saturation is found by integrating Equation 5.5 with respect to time to obtain:

(xD)Sw = tDf
′
w. (5.8)

Because the velocity of every saturation is constant, the graph of saturation location

versus time is a set of straight lines starting from the origin.

When polymer enters the linear system at xD = 0 and tD = tD0 and dispersion is

neglected, a miscible boundary forms between the injected water and the polymer. At

this boundary, the velocity of the polymer phase must be equal to the velocity of the

displaced water. The specific velocity of the resident water phase is given by:

v = fwqt/AφSw, (5.9)

where AφSw is the cross-sectional area that the water flows through. By analogy, for

the specific velocity of the polymer phase:

vp = fpqt/AφSp, (5.10)

where Sp and fp are the water saturation and the fractional flow of the polymer. At

the boundary between the polymer solution and the displaced water, the velocities of

the two phases must be equal (i.e., v = vp). Thus,

fw/Sw = fp/Sp. (5.11)

It is convenient to express these velocities in terms of dimensionless parameters by
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introducing the specific velocity defined as:

vDp = vp/(qt/Aφ). (5.12)

The velocity of the saturation discontinuity is obtained by the continuity equation

(Green & Willhite, 1998):

vDv = (∂fp/∂Sp)Spf
= (fpf − fw1)/(Spf − Sw1), (5.13)

where, Spf is the saturation on the upstream side of the discontinuity and Sw1 is the

saturation on the downstream side of the discontinuity. Because the specific water

velocity must be equal to the velocity of the discontinuity,

vDpf = vDw1, (5.14)

so

(fpf − fw1)/(Spf − Sw1) = fpf/Spf = fw1/Sw1. (5.15)

fpf and Spf can be found by constructing a tangent from the origin to the fp − Sp,
as shown in Figure 5.1a. The intersection of this tangent with the fractional-flow curve

gives the values of fw1 and Sw1. With these values, the displacement of the shock caused

by the differences in viscosities is completely defined.

The saturations of polymer fluid higher than Spf that satisfy Equation 5.11 are found

by drawing a straight line from the origin of the fractional-flow curve through Sp to

intersect the fw − Sw curve at Sw, fw. Figure 5.1b is an enlargement of the upper

portion of Figure 5.1a. Lines a through f are drawn from the origin to fp − Sp, which

intersects the fw − Sw curve at Sw, fw.

Inspection of Figure 5.1b reveals that vDv > f ′w and vDv > f ′p until Sp = Spf , where

vDv = f ′pf . Thus, the velocity of the polymer shock increases until it is equal to fpf

at Spf , where it becomes stabilized at its maximum value. Smaller Sw values are

encountered as the polymer fluid penetrates the rear of the original waterflood saturation

profile. Sp, must decrease from 1− Sor along the path from line a to line f to Spf , while

Sw must decrease from 1− Sor to SwF along the same path (see Figure 5.1b). Within a

timestep that Sn+1
w is overtaken by Sn+1

p , the position of this two saturations are defined

by:

xn+1
Dv = tn+1

D f ′n+1
w , (5.16)

and

xn+1
Dv =

∫ tD

0
vn+1
Dv dtD =

∫ tD

0

(
fw − fp
Sw − Sp

)n+1

dtD. (5.17)
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Figure 5.1: (a): Fractional flow curves for water and polymer fluid. The graphical
technique of finding the polymer shock front (at Spf , fpf ) and oil bank water
saturation (at Sw1, fw1). (b): Upper part of fractional flow curves for water
and polymer fluid. Lines a to f represents the path within which the polymer
fluid saturations supersede resident water saturations.

For integration of Equation 5.17, it is possible to use an average velocity for vn+1
Dv and

approximate the integral as:

xn+1
Dv = xnDv + v̄n+1

Dv (tn+1
D − tnD), (5.18)

which

v̄n+1
Dv =

1

2

((
fw − fp
Sw − Sp

)n
+

(
fw − fp
Sw − Sp

)n+1
)
. (5.19)

Substituting Equation 5.16 into Equation 5.18 and solving for the time when the

shock intersects the path of Sn+1
w yield:

tn+1
D =

xnDv − v̄
n+1
Dv t

n
D

f ′n+1
w − v̄n+1

Dv

. (5.20)

With pairs of Sn+1
w overtaken by by Sn+1

p depicted at the ends of lines a to f in

Figure 5.1b, the evolution of the polymer shock can be calculated in a succession. The

polymer shock in distance-time diagram intersects Sn+1
w from original waterflood lines

to initiate new lines for Sn+1
p . The location of Spf at subsequent times tD > tD0 is given

by the frontal advance solution:

xp = (tD − tpD0)f ′n+1
w + xpD0, (5.21)
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where tpD0 and xpD0 are time and location where SPf evolves from the saturation

discontinuity calculated from Equation 5.20 and Equation 5.16.

Oil bank formation

If Sw1 > Swf an oil bank forms ahead of the polymer fluid and behind the resident

water bank. If Sw1 < Swf and tD0 is small, Sw1 can overtake Swf leaving no possibility

for an oil bank to form. The value of Sw1 can be graphically measured as shown

in Figure 5.1. In this example, Sw1 = 0.427 and Swf = 0.420. Therefore we see an

oil bank formation although Sw1 is marginally higher than Swf .The resident water

saturation at the front of the oil bank (Swr) approaches Sw1 asymptotically. The oil

bank extends between the position of Spf and position of Swr. Next the positioning of

Swr will be discussed.

Following the oil bank shock by front tracking

The front of the oil bank, a jump from Sw1 to Swr, can be followed in the same manner

used to track the evolution of the polymer shock. As the oil shock moves, it intersects the

paths of saturations in the water bank after the flood front forms i.e, SwF > Sw > Swf .

Similar to the path of polymer shock in time-distance diagram, the points at oil bank

shock must satisfy both frontal-advance of waterflood and overtaking by the oil bank.

The velocity of the oil bank from the continuity equation around the shock is:

vDr =
fwr − fw1

Swr − Sw1
, (5.22)

and similar to Equation 5.18 for the distance traversed by the oil bank shock from the

Snwr saturation line to the Sn+1
wr saturation line:

xn+1
Dr = xnDr + v̄n+1

Dr (tn+1
D − tnD), (5.23)

where

v̄n+1
Dr =

1

2

((
fwr − fw1

Swr − Sw1

)n
+

(
fwr − fw1

Swr − Sw1

)n+1
)
, (5.24)

where vDr is dimensionless velocity of the oil-bank shock, xDr is location of the shock

at tn+1
D and v̄n+1

Dr is average velocity of the shock between tnD and tn+1
D . xnDr and xn+1

Dr

can also be expressed in terms of frontal-advance equation (i.e. xDr = tDf
′n+1
wr ), so

tn+1
D f ′n+1

wr = tnDf
′n
wr + v̄n+1

Dr (tn+1
D − tnD), (5.25)
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and

tn+1
D = tnD

f ′nwr − v̄nDr
f ′n+1
wr − v̄n+1

Dr

. (5.26)

The path followed by the front of the oil bank is computed by determining the value

of xDr in Equation 5.23 as Swr decreases. This path may be visualized by constructing

the series of lines from Sw1 to the fw − Sw curve. The slope of each line is the specific

velocity of the oil bank shock at Swr.

Figure 5.2 and Figure 5.3 are the distance/time diagram for a polymer flooding

that began after injecting tD0 = 0.06 PV of water into a linear system. The path of

the polymer shock appears to be linear because the maximum specific velocity of the

shock, vDF , is reached at tpD0 = 0.069 at point A in Figure 5.3. However, as shown in

Figure 5.3 the specific velocity of the front of the oil bank continuously increases with

tD. In this example, the oil bank does not overtake the flood front Swf , before it leaves

the system at xD = 1.0. Consequently, the polymer flooding would perform like the

regular waterflood until breakthrough of the oil bank at tD = 0.33.
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Figure 5.2: Time/Distance diagram for polymer fluid injection until tD = 0.7 PV after
a conventional waterflood that has been in operation until tD0 = 0.06 PV .

Description of the solute concentration

The material balance equation for the solute concentration (polymer or salt, for in-

stance) denoted by C in the polymer fluid, is given by (Sorbie, 1991):

∂CSw
∂tD

+
∂Cfw
∂xD

= 0. (5.27)
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Expanding the differentials and using Equation 5.3 we have:

Sw
∂C

∂tD
+ fw

∂C

∂xD
= 0. (5.28)

which describes the movement of a sharp concentration front through the porous rock.

There is no dispersion or mixing of the fluids, and the concentration jumps from 0

to maximum concentration (1 for here) at the concentration front. The concentration

front can be followed by deriving an expression for the concentration velocity by frontal

advance theory. Consider a path of constant composition where C = C(xD, tD) then,

dC =
(
∂C
∂xD

)
tD
dxD +

(
∂C
∂tD

)
xD
dtD, for a path of constant composition dC = 0 and

(
∂xD
∂tD

)
C

= −
(
∂C

∂tD

)
xD

/

(
∂C

∂xD

)
tD

= vC , (5.29)

which gives the specific velocity of the concentration shock. Combining Equations. 5.28

and 5.29, gives

vC =
dxD
dtD

=
fw
Sw

. (5.30)

Because the concentration front causes the saturation shock and these shocks must

travel at the same specific velocity, the specific velocity of the concentration front is the

same as that of saturation shock.
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Numerical simulations

In this part the results of numerical simulation of the polymer fluid injection at

tD0 = 0.06 after conventional waterflood are compared with saturation profiles obtained

from frontal advance theory.

The numerical simulations are based on the finite difference discretization of conven-

tional waterflood and the aqueous-phase transport equations for one dimensional case.

For the aqueous-phase transport equation, ignoring physical dispersion, we discretize:

∂CSw
∂tD

+
∂Cf̃w(Sw, C)

∂xD
= 0, (5.31)

where f̃w is the fractional flow of the mixed aqueous phase (water and the polymer

fluid). The definition of f̃w as a function of C directly affects the numerical simulation

results. We briefly describe here a conventional approach and a recent improved one

based on AlSofi & Blunt (2012) that reduces the numerical diffusion error.

Traditionally the fractional flow of the aqueous phase is defined by:

f̃w =
1

1 + µ̃w(C)

k̃rw(C)
kro
µo

, (5.32)

where µ̃w(C) is the mixed phase viscosity and is defined as a linear or quadratic function

of the solute concentration. In the linear case of concentration-viscosity dependence,

we can write µ̃w(C) = (1− C)µw + Cµp. Finally, k̃rw(C) is the relative permeability of

the mixed phase. Here we assumed that the polymer fluid is not modifying the relative

permeability curves, hence k̃rw(C) is the same as krw(S).

Alternatively AlSofi & Blunt (2012) modified the definition of f̃w in which the aqueous

phase is decomposed into segregated water and polymer fractional flows:

f̃w = (1− C)fw + Cfp = (1− C)
1

1 + µw
krw

kro
µo

+ C
1

1 +
µp
krp

kro
µo

, (5.33)

Then for the transport, the discretization of Equation 5.31 is replaced with:

∂CSw
∂tD

+
∂Cfp(Sw, C)

∂xD
= 0, (5.34)

that is, the solute is being transported strictly by the polymer fluid fractional flow (fp)

only, instead of the overall aqueous phase fractional flow (f̃w). This formulation is

equivalent to assuming that the process takes place as a segregation-in-flow (denoted

henceforth by SEG), as opposed to the traditional instant full mixing assumption (de-

noted henceforth by IFM)(AlSofi & Blunt, 2010). The improvements obtained by this

118



modification in terms of reduction of the numerical diffusion error is shown for Example

1, in Figure 5.4. In this figure, the concentration and saturation profiles are shown at

tD = 0.15 PVI and the reduction of smearing effect by implementing SEG scheme is

evident. Such reduction, however, can be more outstanding for certain set of viscosity

values (as for the next example) that infers greater differences between fractional flow

of water and the polymer fluid.
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Figure 5.4: The improvements of numerical simulation by SEG scheme for saturation
and concentration profiles for Example 1 at tD = 0.15 PVI.

Continuing the simulations, the saturation profiles from frontal advance and numer-

ical calculations (10,000 cells and with SEG scheme) are compared in Figure 5.5 at

tD = 0.06, tD = 0.09, tD = 0.15 and tD = 0.3. The agreement is complete between the

two methods.

5.1.2 Example 2: Injection of Polymer at Connate Water Saturation

In this example, a polymer injection to a linear reservoir at connate water saturation is

considered. As in the previous example the injected polymer fluid is miscible with the

connate water and is not retained on the porous rock by adsorption or other mechanisms.

The properties of the polymer fluid, connate water and oil are given in Table 5.2.

For relative permeability, the relationships of Equation 5.1 are used with:α1 = 1.0,

α2 = 0.4, m = 2 and n = 2

A polymer shock forms instantaneously with the same properties of previous example:(
dxD
dtD

)
Spf

=
fpf − fw1

Spf − Sw1
, (5.35)
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Table 5.2: Properties used for Example 2

Property Value

Porosity, φ 0.20
Connate water saturation, Swc 0.20
Residual oil saturation, Swc 0.20
Oil viscosity, µo,cp 10
Water viscosity, µw,cp 1.0
Polymer viscosity, µp,cp 20
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and

xD3 = tD
fpf − fw1

Spf − Sw1
. (5.36)

Water saturations greater than Spf travel at velocities given by:(
dxD
dtD

)
Sp

=

(
fp
Sp

)
Sp

. (5.37)

Using the properties of Table 5.2, the values of Spf and Sw1 are determined graphically

as shown in Figure 5.6a to be Spf = 0.760 and Sw1 = 0.405. Also similar to Spf for water

fractional curve, we can determine that Swf = 0.468. Unlike the previous example,

Swf > Sw1, therefore the oil bank forms immediately, overtakes Swf and has a uniform

water saturation of Sw1. The velocity of the oil bank is given by:(
dxD
dtD

)
Sw1

=
fw1

Sw1 − Swc
. (5.38)

With the help of Equation 5.37 and Equation 5.38, the time/distance diagram of this

example for until tD = 0.3 of PVI is shown in Figure 5.6b.
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Figure 5.6: (a): The polymer shock front (at Spf , fpf ) and oil bank water saturation
(at Sw1, fw1) for Example 2. (b): The time/distance diagram for Example
2 from beginning to tD=0.3 PV injected.

For the numerical simulation part, due to the larger gap between the fractional flow

curves of water and the polymer fluid, we are able to demonstrate the improvements

achieved by the use of the SEG scheme. The difference between mixed phase fractional

curves obtained by either Equation 5.32 or Equation 5.33 is shown in Figure 5.7a. The

difference is very significant and the curvature in f̃w,SEG will lead to saturation velocities
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(shown in Figure 5.7b) quite different from those obtained by f̃w,IFM . The saturation

velocities (f ′w = dfw
dSw

) obtained by SEG scheme clearly represent two shocks (water and

the polymer fluid) while those obtained by IFM scheme show smeared shocks.
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Finally, the agreement of the saturation and concentration profiles with the frontal

advance theory as well as the reduction in numerical diffusion by SEG are shown in

Figure 5.8.
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5.1.3 Example 3: Surfactant Flooding

In this example we validate numerical simulation of surfactant flooding. The surfactant

reduces the IFT between the injected fluid and the oil. The reduction has two effects

on the relative permeability curves (Talash, 1976). Firstly, the relative permeability

curves have less curvature. Secondly is the reduction of the residual oil saturation

from Sor, the waterflood residual oil, to Ssor, the residual saturation to the surfactant

flood. This reduction shifts the fractional flow curve toward higher water saturations.

In this example we assume the chemical system reduces the IFT sufficiently to obtain

Ssor = 0.10 for the reservoir rock and oil system presented in Example 1. We assume,

however, that the curvatures of the relative permeability curves are left unchanged.

The effects of adsorption and retention occurring as a result of rock-fluid interactions

by chemicals, are described for the concentration equation by:

∂C(Sw +Di)

∂tD
+
∂Cfw
∂xD

= 0, (5.39)

where Di is a convenient factor defined to represent the retention of species i on the

rock by:

Di = ∂Ĉi/∂C, (5.40)

where Ĉi is retention of species i in terms of the pore volume of the rock:

∂Ĉi =
Aiρgr(1− ϕ)

ϕ
, (5.41)

where Ai is the amount of species i retained by the rock and ρgr is the density of the

rock. It is assumed that the porosity occupied by species i is ϕ. The surfactant in

this example is assumed to be strongly adsorbed and retarded by retention of chemical

species on the rock so that for the sharp-front approximation, Di = Ĉi/C = 0.8.

For the movement of the concentration shock, we can simply notice that everything

is similar to the previous examples, with the only difference being the existence of Di.

Hence the specific velocity of the concentration shock is:

vCi =
dxD
dtD

=
fw

Sw +Di
. (5.42)

And again because the concentration front causes the saturation shock and these

shocks must travel at the same specific velocity, the specific velocity of the saturation

shock is (
dxD
dtD

)
Ssf

=

(
∂fw
∂Sw

)
Ssf

=
fsf − fw1

Ssf − Sw1
. (5.43)
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Thus
dxD
dtD

=
fw1

Sw1 +Di
=
fsf − fw1

Ssf − Sw1
=

fsf
Ssf +Di

. (5.44)

Inspection of Equation 5.44 shows that the values of fsf and Ssf can be found by

drawing a tangent to the fs − Sw fractional flow curve from the point fs = 0, Sw = −Di.

The intersection of this tangent with the (fw, Sw) curve for the original oil/water system

gives (fw1, Sw1). Figure 5.9 shows the construction procedure. The positions of Ssf ,

Sw1 and Swf at time tD are respectively, xDf = tDf
′
sf , xD1 = tDf

′
w1 and xDf = tDf

′
wf .
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Figure 5.9: Construction procedure to determine fsf and Ssf for when adsorption oc-
curs, Example 3.

For the numerical simulations, we use only the SEG scheme. In this, the segregated

water, the segregated chemical and the oil fractional flow functions are calculated by:

λw = α1(SwD)n/µw,

λs = α1(SsD)n/µs,

λo = (1− C)α2(1− SwD)m/µo + Cα2(1− SsD)m/µo, (5.45)

where SwD = S−Swc
1−Swc−Sor

and SsD = S−Swc
1−Swc−Ssor

. Then we have fw = λw
λw+λs+λo

,

fs = λs
λw+λs+λo

and fo = λo
λw+λs+λo

. With these, the calculation of the mixed phase

fractional flow (f̃w) will be similar to Equation 5.33.

Figure 5.10 is the saturation profiles by frontal advance theory as well as the numerical

simulations.
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5.1.4 Example 4: Thermal Flooding

In this example, a simple thermal flooding is considered to validate the numerical sim-

ulation. We assume injection of hot water into a reservoir saturated initially with cold

fluid and containing cold connate water. The hot water warms up the oil and reduces

its viscosity and mobilizes it. It is assumed that oil responds more to heating than the

water so that the viscosity ratio (viscosity of oil divided by that of water) decreases to

favourable values for a piston-like displacement. In this case we have two fractional flow

curves each pertinent to different temperatures, i.e. fw is a function of both saturation

and temperature. The cold fluid fractional-flow is represented by fw and the thermal

hot fluid fractional-flow is represented by fth.

The governing equations for thermal flooding are the material balance for water and

energy balance that determines the temperature profile. For a dimensionless set of equa-

tions that are easy to work with, we use the assumptions and formulation of references

Bratvold (1989) and Dindoruk & Dindoruk (2008):

∂Sw
∂tD

+
∂fw(TD, Sw)

∂xD
= 0, (5.46)

and

(Sw + β)
∂TD
∂tD

+ (fw + α)
∂fw
∂xD

= 0, (5.47)
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where TD is normalized dimensionless temperature defined as:

TD = (T − Tmin)/(Tmax − Tmin), (5.48)

and α and β are dimensionless functions of the thermal properties of rock and fluid,

and as well as porosity:

α =
ρocvo

ρwcvw − ρocvo
, (5.49)

and

β =
ρocvo + 1−φ

φ ρrcvr

ρwcvw − ρocvo
, (5.50)

where cvr, cvo and cvw are heat capacity of rock, oil and water respectively and ρr, ρo and

ρw are density of rock, oil and water respectively. The assumptions for the derivation

of Equation 5.47 is that heat is not conducted by rock and it is just convected by the

fluid. Similar to Example 3, for the specific velocity of temperature shock we have:

vTD =
dxD
dtD

=
fw + α

Sw + β
(5.51)

Because the temperature front causes the saturation shock and these shocks must

travel at the same specific velocity, we have:

dxD
dtD

=
fw1 + α

Sw1 + β
=
fthf − fw1

Sthf − Sw1
=
fthf + α

Sthf + β
. (5.52)

Inspection of Equation 5.52 shows that the values of fthf and Sthf can be found by

drawing a tangent to the fth − Sw fractional flow curve of hot water from the point

fth = −α, Sw = −β. The intersection of this tangent with the (fw, Sw) curve for the

cold fluid gives (fw1, Sw1).

In addition to the equations for water saturation and temperature, we can use a

non-adsorbing tracer with a similar transport equation:

Sw
∂C

∂tD
+ fw

∂C

∂xD
= 0. (5.53)

However, fw is not a function of tracer concentration and the C-front does not affect

the saturation profile.

The properties we consider here are the same properties used for hot water injection

into cold reservoir for the base case investigated in Dindoruk & Dindoruk (2008). The

properties are reported in Table 5.3 and Table 5.4. For relative permeabilities, we put

α1 = α2 = 1.0 and n = m = 3 in Equation 5.1 and Swc = 0.18 and Sor = 0.20. Based

on these properties, Figure 5.11 shows the procedure of finding Sthf , Sw1 and Swf . The
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Table 5.3: Thermal properties and densities of rock and fluids used for Example 4

Porosity Heat Capacity Density α β
(Btu/lb− F ) (lb/ft3)

Oil 0.45 53.04
Water 1.00 62.40
Rock 0.25 0.31 126.54 0.62 3.73

Table 5.4: Temperature dependent parameters (fluid viscosity) used for Example 4

T(F) µo(cp) µw(cp)
180 (Hot Fluid) 2 0.70
70 (Cold Fluid) 8 1

positions of Sthf , Sw1 and Swf at time tD are respectively, xDthf = tDf
′
thf , xD1 = tDf

′
w1

and xDf = tDf
′
wf .

The SEG scheme used here is the same as Equation 5.45 the only difference being

that T is used instead of C. It is notable, however, that due to a narrow gap between

the two fractional curves of cold and hot fluids in this example, there is no significant

benefit in using the SEG scheme.

Figure 5.12 is the saturation profiles by frontal advance theory as well as numerical

results at tD = 0.25 PVI.
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5.2 Numerical Assessment of ALG-MNG−

In this section, we compare the results of the application of Chapter 4 upscaling and

upscaling-downscaling techniques (listed in Table 4.1) on two and three dimensional

test cases for polymer (viscous fluid), surfactant and thermal flooding. For the two

dimensional case, we consider layers 37 and 47 of SPE10 model, upscaled from 60× 220

to 6× 22. For the three dimensional case, we consider the same SPE10 subsection used

in the the previous chapter, upscaled from 60× 60× 50 to 6× 6× 5 and a homogeneous

case, upscaled from 20× 20× 20 to 5× 5× 5. The objective remains to assess the

performance of static downscaling, ALG-MNG−, described in the previous chapter.

5.2.1 Polymer Flooding

We start the comparisons with fluid properties used in Example 1 of the previous section

and rock properties of layers 37 and 47. Although we use the SEG scheme for the

upscaled models, the improvements are not considerable bearing in mind that the gap

between the fractional flow curves of water and the viscous fluid is not prominent. Hence

we leave the illustration of possible improvements for the next example. We compare

water cut curves as well as curves for the recovery factor vs. time. The polymer is

injected after 0.25 PVI injection of water and is continued up until 1.5 PVI. The results

are shown in Figure 5.13.

Quite clearly, the static downscaling (ALG-MNG−) shows very good agreement with

the fine reference method. This is very important since we have not updated the velocity

basis functions for the polymer flood initiation and in the downscaling we relied only on

the coarse velocities to inform the change of the flooding scenario. Such performance

and agreement on the locally measured water cut and the recovery factor quantities

assure us that global error estimates too remain as strongly in favour of ALG-MNG−
as they were in the previous chapter.

Next, the same fluid properties of Example 2 were used with polymer flood right from

the beginning. As noted previously, here the SEG scheme is naturally favourable for the

upscaled method since it reduces the numerical diffusion of the saturation coarse-scale

representation. It is however interesting to test the performance of the downscaled SEG

and IFM coarse-scale velocities.

To start, we apply downscaling on homogeneous models. The model was solved with

a 100× 100 grid with the SEG scheme for the fractional flow. For the downscaling we

consider three methods: one with the SEG scheme for both the coarse-scale (10× 10)

and fine-scale fractional flow curves in solution of the saturation equation, denoted by

Downscaled–1, one with IMF scheme for both the coarse-scale and the fine-scale frac-
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Figure 5.13: Recovery factor and water cut curves for layer 37 and layer 47 of SPE10
model for polymer flooding case.
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tional flow functions, denoted by Downscaled–2 and finally one with IFM for the coarse

and the SEG scheme for the fine-scale fractional flow functions denoted by Downscaled–

3. The water cut curves obtained by these methods are shown in Figure 5.14a. In

Figure 5.14b the saturation profiles obtained by different methods are shown at 0.35

PVI. It is clear that Downscaled-2 method has significant smeared regions around the

second front.
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Figure 5.14: Polymer flood water cut curves with fluid properties of Example 2 on a
homogeneous system (a). Saturation profiles at 0.35 PVI by three methods
(b).

It is clear that Downscaled–1 matches the fine reference method reasonably well for

both the first and second shocks, whereas Downscaled–2 has not resolved the second

shock due to the use of a smeared fractional flow function. Downscaled–3 shows that the

first shock is perfectly captured while the error for the second shock, although reduced,

is not completely removed as of Downscaled–1 method.

Now, we test the methods on layers 37 and 47 for ALG-MNG−. The saturation pro-

files obtained by the fine reference method, Downscaled–1 (with SEG) and Downscaled–

2 (with IFM) are shown in Figure 5.15. Similar to the previous observation, a reduction

in numerical diffusion is seen by application of the SEG scheme.

For the water cut the general agreement between ALG-MNG− with the SEG scheme

and the fine reference method is evident in Figure 5.16 as of the homogeneous case.

Both methods show a flat part in the water cut curve due to the arrival and passage of
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Figure 5.15: Saturation profiles for polymer flooding with three methods for layer 37
(a) and for layer 47 (b) at 0.25 PVI.

an unsmeared oil bank until the arrival of the second shock.
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Figure 5.16: Water cut curves for polymer flooding with three methods for layer 37 and
for layer 47.

Next, we use properties of Example 1 for the 3D case. The results for the homogeneous

case and heterogeneous case (subsection of SPE10 model) are shown in Figure 5.17. First

we note that for the homogeneous case MNG and NG are essentially identical, second,

for all the methods we use the SEG scheme. It is observed that the water cut curves for

the homogeneous case obtained by PSM-NG+ and ALG-NG− do not match the fine

reference method. Only the ALG-NG+ matches. This observation raises the point that

the secondary shock due to polymer is very sensitive to both the upscaled and down-
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scaled solutions. As we observed similar sensitivity in two dimensional homogeneous

case towards the SEG and IMF schemes, here the problem has wider aspects: PSM

versus ALG upscaling and static versus dynamic downscaling. For the Figure 5.14, the

Downscaled–1 method was actually PSM-NG+ method in Figure 5.17.
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Figure 5.17: The water cut curves obtained by 3D cases for the polymer flooding.

Now here for 3D, the large secondary-shock smearing effect is eliminated by imple-

menting ALG upscaling. The effects of solute related total mobility changes are captured

in the transmissibilities by iteration (similar to a two-phase flow upscaling). Then the

dynamic downscaling has been equally effective to transfer such effects to the saturation

equation. The same effects are not obviously captured well by the static downscaling.

This can be a major drawback. However, looking at Figure 5.17, for the heterogeneous

case, we see that ALG-MNG− is performing well. This is because the heterogeneity has

helped to smear the secondary shock more or less, so the sensitivity has been lowered.

From the efficiency point of view, the computational gain by the application of the

static downscaling for this example is considerable. The time for the dynamic down-

scaling was tNG+ = 291 seconds, where as the time for the static downscaling was

tNG− = 48 seconds. Other time measurements are the fine scale pressure equation

solution is tfine = 3185, the coarse scale pressure equation solution by PSM is only

tPSM = 0.3643, the coarse scale pressure equation by ALG is tALG = 476, although this

can still be made more efficient.

5.2.2 Surfactant and Thermal Flooding

The comparisons here are based on the rock and fluid properties used in Example 3

of the previous section for the surfactant. For the thermal flooding, in order to have

a more pronounced secondary shock than the one produced by Example 4, we use,
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Table 5.5: Thermal properties and densities of rock and fluids used for numerical
assessment

Porosity Heat Capacity Density α β
(Btu/lb− F ) (lb/ft3)

Oil 38.6 77.9
Water 41.3 82.8
Rock 0.3 35.0 100 7.80 28.8

Table 5.6: Temperature dependent parameters (fluid viscosity) used for numerical
assessment

T(F) µo(cp) µw(cp)
180 (Cold Fluid) 120.0 0.77
70 (Hot Fluid) 1.0 0.60

instead, properties given in Tables 5.5 and 5.6. The properties represent a heavy oil

reservoir which reacts very favourably towards the injection of hot water.

Again, we compare recovery factor and water cut curves obtained by simulation of

the surfactant and thermal flooding by different methods on two and three dimensional

models. Whereas the surfactant is injected after 0.25 PVI injection of water and is

continued up until 1.5 PVI, the thermal flood initiates right from the beginning to 1

PVI.

For both of the scenarios, we use only the SEG scheme for the fine and the coarse

scale. For the two dimensional cases, the results of recovery factor and water cut curves

are shown in Figure 5.18 and Figure 5.19. For both scenarios we observe an acceptable

performance of ALG-MNG−.

For the three dimensional cases, the water cut curves are shown in Figure 5.20 and

Figure 5.21. The secondary increase of the water cut in heterogeneous cases of these

two plots have been significantly smeared by the heterogeneity present. In any case,

homogeneous or heterogeneous, the performance of ALG-MNG− is as satisfying as

before.

Finally, the saturation profiles at 1 PVI for the three methods of the fine-scale refer-

ence, PSM-NG+ and ALG-MNG− are shown in Figure 5.22.
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Figure 5.18: Recovery factor and water cut curves for layer 37 and layer 47 of SPE10
model for surfactant flooding case.
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Figure 5.19: Recovery factor and water cut curves for layer 37 and layer 47 of SPE10
model for thermal flooding case.
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Figure 5.20: The water cut curves obtained by 3D cases for the surfactant flooding.
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Figure 5.21: The water cut curves obtained by 3D cases for thermal flooding.
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Figure 5.22: The logarithm of absolute permeability and saturation profiles for the sur-
factant flooding, heterogeneous 3D case at 1 PVI.
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5.2.3 Summary of Results

We showed the applicability of static downscaling introduced in the previous chapter

to a handful of EOR simulations. The agreement between the fine scale and the static

downscaled method (ALG-MNG−) was generally reasonable for 2D and 3D systems

that we tested. It is, however, a matter of investigation to judge the performance of

a static downscaling method for more physically complex EOR processes and flooding

scenarios.
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6 Quadtree Grid Generation vs.

Adaptive Local Global Upscaling

In this chapter, a non-uniform quad-tree grid generation algorithm, originally developed

by Elsheikh (2007), is modified for tracer and multiphase flow in channelized hetero-

geneous porous media. In Section 6.1 two approaches for quad-tree grid construction

will be described. In the first approach, a wavelet transformation was used to generate

a refinement field based on permeability variations. The second approach uses flow

information based on the solution of an initial-time fine-scale problem. In Section 6.2

the resulting grids were compared with uniform grid upscaling. For uniform upscaling,

we use renormalization upscaling and local-global upscaling. The velocities obtained by

non-uniformly and uniformly upscaled grids, were downscaled. This procedure allows us

to separate the upscaling errors, on non-uniform and uniform grids, from the numerical

diffusion errors.

Cartesian non-uniform quadtree grid generation for reservoir simulation is relatively

easy to implement and requires much less bookkeeping in comparison to unstructured

grids. Also, from the reservoir simulation standpoint, upscaling can be more straight-

forward on quadtree grid than on an unstructured grid. Permeability can be upscaled

within each coarse grid block just with changing the level of upscaling. Nonetheless

the main drawback of a quad-tree grid is the lack of flexibility in representing severe

geometrical deformities of porous media compared to an unstructured grid. This might

lead to a high number of cells around the heterogeneities.

In this chapter, we perform a critical evaluation of two different methods for quadtree

grid construction based on permeability field information and flow based information.

The solution on non-uniform quadtree grid is compared with uniform grid coarsening

with standard upscaling and iterative local-global upscaling methods (Chen & Durlof-

sky, 2006). This problem differs from standard mesh adaptivity methods where the

mesh is refined and coarsened based on a discretization error metric. Here, both the

discretization errors and upscaling errors are present. The list of the methods used

is: (1) Uniform mesh coarsening with renormalization upscaling, (2) Uniform mesh

coarsening with adaptive local-global upscaling, (3) Quad-tree grid coarsening based on

permeability field indicator (wavelets) with renormalization upscaling, and (4) Quad-
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tree grid coarsening based on flow field indicator with renormalization upscaling. These

different methods are numerically tested against heterogeneous geological models with

large permeability variations. In the numerical simulations, coarse scale velocities were

downscaled back to the original fine grid in order to keep the errors bound to the ab-

solute permeability upscaling. This allows us to solve the phase saturations at the fine

grid for all the methods under consideration.

In this chapter we will try to determine what is the best way to use mesh adaptivity

via quad-trees combined with an upscaling method for solving multiphase flow problems

in heterogeneous medium. In that pursuit, we quantify and compare the performance

of non-uniform quad-tree grids to the fairly accurate adaptive local-global upscaling

algorithm.
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6.1 Quadtree Grid Generation

A quadtree grid consists of a set of non-uniform Cartesian cells obtained from recursive

subdivision of a unit square called the root cell (de Berg et al., 2000). Each cell in the

quad-tree corresponds to a square and has four children and one parent. The exception

is the root cell which has no parent and the leaves which have no children. Dividing

a leaf cell into four is denoted as a refinement operation and merging four children

cells into their parent is denoted as a coarsening operation. In the current work, each

quad-tree cell is assessed based on a certain metric and if its value exceeds a minimum

threshold, that cell is marked for refinement. Different refinement criteria can be used

within the same adaptivity algorithm. Following the marking step, a grid regularization

operation is performed to ensure that no cell has a side length more than twice the size

of its neighbours. This step is called tree balancing. After finishing the marking and

balancing phases, the actual refinement is done by dividing each cell into four children

and updating the neighbouring relationship between the different cells.

In the context of subsurface flow modelling, as was described in Chapter 1, the cri-

teria for generating optimal quad-trees are not always entirely clear. Subsequently, we

will investigate two different strategies for marking quadtree cells for refinement; per-

meability based and flow based criteria. In following subsections we present a detailed

description for each of these criteria.

6.1.1 Wavelet Transformation for Permeability-based Gridding

Wavelets are used here for the permeability based gridding. Wavelets have been applied

successfully for grid generation on cases of high heterogeneity by Ebrahimi & Sahimi

(2002, 2004) and Rasaei & Sahimi (2008b,a). The main idea is to filter the detail (or

wavelet) coefficients obtained by transformation to reduce the size of data set or to

eliminate fluctuations. During the thresholding, a wavelet coefficient is compared with

a specified value and is set to zero if its magnitude is less than the threshold; otherwise, it

is retained or modified depending on the thresholding rule. VisuShrink and SureShrink

are two commonly used wavelet thresholding rules. For a signal with size n, VisuShrink

which is also referred to as universal threshold (Donoho, 1995) is defined as:

t = σ
√

2 log n, (6.1)

where σ is the noise level or equivalently σ2 is the noise variance present in the signal.

For practical use, when the noise level cannot be assumed to be known, it is important

to estimate it. Based on the median absolute deviation, Donoho & Johnstone (1995)
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defined an estimate of the noise level as:

σ̂ =
median(dj,k)

0.6745
, (6.2)

where dj,k corresponds to the detail coefficients in the wavelet transform at scale j and

position k. The value 0.6745 is used for normalization because the median absolute

deviation of the detail coefficients converges to this value times the noise level as n goes

to infinity. VisuShrink yields overly smoothed fields as it applies a global thresholding

scheme where a single threshold value is applied globally to all the wavelet coefficients.

Alternatively, SureShrink (Donoho & Johnstone, 1995) is an adaptive threshold

chooser based on the Stein’s Unbiased Risk Estimator (SURE) (Stein, 1981). It com-

bines the universal threshold and the SURE threshold estimator and the goal is to

minimize the mean squared error that one can find in full mathematical detail in ref-

erences like Donoho & Johnstone (1995). The thresholding employed by SureShrink is

adaptive and level dependent, that is, a different threshold value is assigned to each

resolution level in the wavelet transform. This technique is also smoothness adaptive,

which means that the reconstructed image preserves the abrupt changes or boundaries

in the original image.

The SureShrink thresholding is applied here on wavelet transformation of permeabil-

ity field by utilising MATLAB built-in rigrsure option for threshold selection. The

reconstruction of an inverse transform yields a map with similar size of the original field.

If any variation is detected in the reconstructed permeability map (filtered) within a

coarse grid block, that cell is marked for refinement.

6.1.2 Flow-based Gridding

For flow-based adaptivity, the refinement/coarsening indicator is based on the maximum

velocity magnitude within a coarse grid. The indicator for a cell E is defined as:

IE = max
e∈E
{ve} (6.3)

where ve is the cell centred velocity magnitude at a subgrid cell e inside the coarse grid

cell E. The velocity magnitude is defined as

ve =
√

v2
x + v2

y, (6.4)

where vx and vy are the cell-centred averaged velocity values in the x and y directions,

respectively. The velocity values are obtained from a single-stage calculation of fine

scale velocity from solution of pressure equation with the boundary conditions of the
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simulation. For example the boundary condition can be one quarter of five spot pattern

or constant pressure gradient.

The quad-tree leaves are marked for refinement based on the relative value of I. In so

doing, a user-defined percentile of the values of I is determined. Then all the leaf cells

that have an indicator value exceeding the percentile value are marked for refinement.

The velocity field is obtained by solving the fine scale problem at the initial time step.

The use of percentile automates the refinement for different heterogeneous media.

We note that the use of different global boundary conditions to generate flow-based

grid results in different meshes. For example, in this work, we use a corner-to-corner

flow. This pattern may result in more high velocity regions than the actual simulation

implicates. On the other hand the pattern may not cover high flow regions induced

by other cases of boundary conditions. For such circumstances, we refer to the same

implications which were discussed in flow-based non-uniform coarsening presented in

Durlofsky et al. (1997). The authors used the pressure-flux boundary condition which

sets a constant pressure gradient in one direction and no flow on the sides of the other

direction. With the aforementioned implications, the authors argued that an over-

determination of high flow regions is preferred to an under-determination. Furthermore,

the cost of resolving for missed high flow regions is not significant either.

Here we present a step-by-step algorithm for quadtree grid generation:

1. If using wavelets, map the permeability with wavelet transformation by a filtering

procedure. We used a MATLAB built-in function for this purpose (dwt2, which

performs 2D discrete wavelet transform). However, one can use wavelet discrete

transform functions developed under any other programming languages for the

same filtering purpose.

2. If using flow-based gridding, first use the fine scale permeability and the specified

boundary conditions, calculate the fine scale velocity field and the cell-centred

magnitude of velocity based on Equation 6.4.

3. Starting with the current grid, (initially uniform 8× 32), use either the filtered

map of permeability or the magnitude of velocity for refinement marking step.

The refinement for the wavelet-based quadtree grid is based on detection of varia-

tion in the permeability of constituent cells of a targeted coarse grid block because

for the homogeneous coarse grid blocks, the constituent cells all have the same

filtered permeability value.

The refinement for the flow-based quadtree grid is based on ranking of the coarse

grids based on magnitude of velocity. That is, first we calculate, for each coarse

grid, maximum value of the magnitude of velocity of the constituent fine cells.
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Then we calculate a specified percentile of the set of maximum values of the

magnitude of velocity for the coarse grid blocks. Here, we decide that the coarse

grid blocks with maximum value of the magnitude of velocity higher than 70th

percentile are assumed to belong to high flow region and consequently are marked

for refinement. We note that we also could have decided the coarse grids with

maximum value of the magnitude of velocity lower than 30th percentile be marked

for coarsening, however we did not implement this coarsening stage.

Also we do not allow the neighbouring cells to be refined so that the level of

the refinement between them would be more than one. Therefore extra grids are

marked for refinement.

4. Perform the refinements of the marked grid blocks. Each coarse grid block is

refined to four smaller grids.

5. Now we have a non-uniform grid with new number of cells. We perform the stage

3 (with new refinement marking values from the new grid) until we finish the loop

for the maximum number of refinement (see Figure 6.1 for the repetition of stage

3 for the layer 37 of SPE10 model).

6. With the grid obtained, we can perform renormalization algorithm at different

levels to assign coarse permeabilities to each cell of the new grid.

6.1.3 Pressure Equation Discretization for h-Adaptive Grids

The classical finite difference discretization of the pressure equation over the interfaces

γac and γbc, as shown in Figure 6.2 is:∫
γac

kλt∇pds =

(
`a + `c

`a/ka + `c/kc

)
λt,ac

(
pa − pc
`a + `c

)
, (6.5a)∫

γbc

kλt∇pds =

(
`b + `c

`b/kb + `c/kc

)
λt,bc

(
pb − pc
`b + `c

)
, (6.5b)

where `a, `b and `c are grid lengths and ka, kb and kc are absolute permeabilities of cells

a, b and c. The use of classical cell centred discretization results in a local leading trunca-

tion error of O(1/h) when applied to h-adaptive grids with local refinement (Quandalle

& Besset, 1985; Forsyth & Sammon, 1986). This is attributed to the non-aligned flux

vectors as shown in Figure 6.2. Therefore, extra care is needed when calculating the

transmissibility at the interface of fine/coarse grid.

Edwards (1996a) provided a consistent discretization method to deal with the inter-

face between differing grid levels. This scheme utilizes an extended stencil around the
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Figure 6.1: Step by step construction of flow-based and permeability-based grids for
layer 37 of SPE10 model from an 8× 32 uniform coarse grid (not shown) to
the last non-uniform quadtree grid. We imposed the layer with two wells at
the lower left and upper right corners. We note that for the permeability-
based gridding, we added the position of wells to the criteria of refinements.
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Figure 6.2: An illustration of fine/coarse grid interface.

interface derived by flux and pressure continuity. It also produces a symmetric, positive

definite and diagonally dominant matrix of coefficients. First, it considers mean pres-

sures at 1 and 2. To preserve local conservation over the resulting triangle 1,2,c (see

Figure 6.2) the fluxes on the left-hand side of faces 1 and 2 are equated to the flux on

the right-hand side. This results in two equations for the two mean face pressures p1

and p2, respectively,

ka
p1 − pa
h

= kc
pc − (p1 + p2)/2

2h
, (6.6a)

ka
p2 − pb
h

= kc
pc − (p1 + p2)/2

2h
, (6.6b)
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where (hx, hy) are dimensions of the finer cell (a or b). Eliminating p1 and p2 in terms

of pa , pb and pc yields a flux that changes Equation 6.5b to:∫
γac

k∇pds =

∫
γbc

k∇pds = 4
hy
hx

(
kakbkc

4kakb + kakc + kbkc

)(
pc −

(pa + pb)

2

)
. (6.7)
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6.2 Numerical Results, Comparisons and Discussions

The simulations were performed on the following models:

1. Two uniform coarse grid models (256 cells: coarsening level 1 and 1024 cells: coars-

ening level 2) with upscaled permeabilities obtained by renormalization method.

We denote these models by RM with 256 cells and RM with 1024 cells.

2. Two uniform coarse grid models (256 cells and 1024 cells) with transmissibilities

obtained by adaptive local-global upscaling method. We denote these models by

ALG with 256 cells and ALG with 1024 cells.

3. Two models of permeability based quadtree grid (coarsening levels 1 and 2, ob-

tained by different numbers of refinement loops), with the permeabilities of coarse

grids obtained by renormalization. These models are denoted by k -QG followed

by the number of cells in each model.

4. Two models of flow based quadtree grid, with permeabilities of coarse grids ob-

tained by renormalization. These models are denoted by q-QG followed by the

number of cells in each model.

For the assessment of each model, a comparison to the fine scale reference solution is

performed. The following error measures are considered:

1. The saturation error as of Equation 4.25. Further, we calculate a relative error

for RM, q-QG and k -QG compared to ALG by

εr(s) =
δ(s)l ×Nl

δ(s)ALG ×NALG
, (6.8)

where l=RM, q-QG and k -QG and N is the number of cells in each model. Assum-

ing that error reduces linearly with larger number of cells, this value represents an

approximate estimation of accuracy of each method compared to ALG in terms

of quality of saturation profile.

2. The reconstructed velocity error as of Equation 4.26. Similar to saturation, we

calculate a relative error for RM, q-QG and k -QG compared to ALG by

εr(v) =
δ(v)l ×Nl

δ(v)ALG ×NALG
, (6.9)

where l=RM, q-QG and k -QG and N is the number of cells in each model.

3. The water cut curves.
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4. The Qo/∆P curves.

For all the models, the pressure equation is solved on a coarse grid and the velocity is

downscaled by a uniform grid or non-uniform grid nested gridding procedure. The sat-

uration is then calculated on the original fine scale grid. This assures that the upscaling

errors are separated from numerical diffusion error arising from coarse representation of

saturation. For boundary and well conditions we assume a source (constant injection

flow rate) and a sink (constant bottom-hole pressure production), respectively on the

lower left and the upper right corners of the system. This configuration will induce a

corner to corner flow. A no flow boundary condition is applied on the domain outer

boundaries.

6.2.1 Tracer Flow

Here, we perform simulations on smoothly heterogeneous layer 10 and two very chan-

nelized layers 37 and 47 of SPE10 model. Layer 10 shown in Figure 6.3(a) is selected to

investigate how different methods perform at moderately heterogeneous medium. The

constructed grids and saturation profiles are shown in Figure 6.3. From wavelet filtered

permeability map shown in Figure 6.3(c), we observe that regions of high permeability

are not filtered out by the wavelet transform. It is also observed that the fine scale

velocity and the reconstructed velocities resulted in a similar saturation fields at t =0.6

PVI. Further, the uniform grid upscaling and QG models yielded almost identical water

cut curves (shown in Fig. 6.4) that match the fine scale results. The match is complete

in cases of ALG and q-QG models and is very reasonable for RM and k -QG models.

This assures that the downscaling effectively eliminated the diffusion error in all coarse

and non-uniform grid models.

Next, the channelized layers 37 and 47 are examined. The constructed grids and

saturation profiles at t=0.6 PVI for layer 37 and 47 are shown in Figure 6.5 and Fig-

ure 6.6, respectively. Additionally, the saturation profiles obtained form downscaling of

ALG and RM are shown for comparison. Continuing the simulations till t=1.2 PVI, we

obtain δ(s) and εr(s) for layers 37 and 47 which are reported in Tables 6.1 and 6.2. In

the same tables we reported δ(v) and εr(v).

From the tables we draw the following points. First, neither k -QG or q-QG have

achieved as low global error norms as produced by ALG. The two k -QG models show

minimal improvements in δ(s) and δ(v), if any, in comparison to uniform RM. Regarding

the number of cells, εr(s) and εr(v) for k -QG are considerably higher than those of RM,

showing that addition of cells has not been effective at all. For q-QG, coarsening level

1, resulted in lower values of δ(s) and δ(v) compared to RM with 256 cells. However,

the degree of reduction is not emphatic and the values of εr(s) and εr(v) are higher than
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Figure 6.3: Layer 10 tracer flow simulation. (a) Layer 10’s original fine scale perme-
ability, (b) fine scale saturation at 0.6 PVI, (c) the filtered permeability
obtained by wavelet transformation, (d) k -QG model constructed based on
(c), (e) logarithm of cell-centred velocity magnitude, (f) q-QG model con-
structed based on (e), (g) coarse saturation solution at 0.6 PVI for k -QG,
(h) fine saturation solution at 0.6 PVI obtained by use of velocity recon-
structed from k -QG, (i) coarse saturation solution at 0.6 PVI for q-QG, (j)
fine saturation solution at 0.6 PVI obtained by use of velocity reconstructed
from q-QG.
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Figure 6.4: Water cut curves obtained by different models for layer 10 tracer flow
simulation.

Table 6.1: The saturation and velocity errors for layer 37 tracer flow simulation.

Error RM RM ALG ALG q-QG q-QG k -QG k -QG
256 c 1024 c 256 c 1024 c 403 c 847 c 508 c 1066 c

δ(s) 0.31 0.22 0.16 0.09 0.29 0.22 0.28 0.25
εr(s) 1.97 2.51 - - 2.88 2.05 3.51 2.89
δ(v) 1.12 0.96 0.51 0.32 0.95 0.75 1.00 0.90
εr(v) 2.21 3.05 - - 2.93 1.97 3.91 2.97

those of RM with 256 cells. Similar trends are observed for layer 47 with the exception

of the εr(v) value. On the other hand, q-QG, coarsening level 2, produced εr(s) and

εr(v) that are around the same range of RM with 1024 cells, with only 0.625 of the total

number of cells. Consequently εr(s) and εr(v) for this model is lower than RM with

1024 cells.

In terms of locally measured quantities, the water cut curves are depicted in Figure 6.7

and Figure 6.8 for layers 37 and 47 at two coarsening levels. Apart form layer 47 at

coarsening level 1, q-QG is performing very similar to ALG. Even for layer 47, coarsening

level 1, the breakthrough time and early time water cut are in good agreement with the

fine scale solution and ALG model. For k -QG models, the curves are identical to RM

curves and no improvement in the quality of the solution is observed by increasing the

number of cells.

For the same set of conditions, Qo/∆P versus PVI are depicted in Figure 6.9 and Fig-

ure 6.10. The interaction of oil flow rate and pressure difference errors for this quantity,

yields a mixed ranking between q-QG and ALG before and after breakthrough time.
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Table 6.2: The saturation and velocity errors for layer 47 tracer flow simulation.

Error RM RM ALG ALG q-QG q-QG k -QG k -QG
256 c 1024 c 256 c 1024 c 304 c 640 c 583 c 1363 c

δ(s) 0.45 0.32 0.20 0.10 0.44 0.38 0.42 0.38
εr(s) 2.19 3.17 - - 2.56 2.32 4.71 4.968
δ(v) 1.29 0.78 0.45 0.29 0.98 0.81 0.97 0.85
εr(v) 2.8 2.66 - - 2.57 1.71 4.89 3.83
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Figure 6.5: Layer 37 tracer flow simulation. (a) Layer 37’s original fine scale perme-
ability, (b) fine scale saturation at 0.6 PVI, (c) the filtered permeability
obtained by wavelet transformation, (d) k -QG model constructed based on
(c), (e) logarithm of cell-centred velocity magnitude, (f) q-QG model con-
structed based on (e), (g) coarse saturation solution at 0.6 PVI for k -QG,
(h) fine saturation solution at 0.6 PVI obtained by use of velocity recon-
structed from k -QG, (i) coarse saturation solution at 0.6 PVI for q-QG, (j)
fine saturation solution at 0.6 PVI obtained by use of velocity reconstructed
from q-QG, (k) the saturation profile at 0.6 PVI from ALG and (l) the
saturation profile at 0.6 PVI from RM.
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Figure 6.6: Layer 47 tracer flow simulation. (a) Layer 37’s original fine scale perme-
ability, (b) fine scale saturation at 0.6 PVI, (c) the filtered permeability
obtained by wavelet transformation, (d) k -QG model constructed based on
(c), (e) logarithm of cell-centred velocity magnitude, (f) q-QG model con-
structed based on (e), (g) coarse saturation solution at 0.6 PVI for k -QG,
(h) fine saturation solution at 0.6 PVI obtained by use of velocity recon-
structed from k -QG, (i) coarse saturation solution at 0.6 PVI for q-QG, (j)
fine saturation solution at 0.6 PVI obtained by use of velocity reconstructed
from q-QG, (k) the saturation profile at 0.6 PVI from ALG and (l) the
saturation profile at 0.6 PVI from RM.
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Figure 6.7: Water cut curves obtained by different models for layers 37 and 47 tracer
flow simulation at coarsening level 1.
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Figure 6.8: Water cut curves obtained by different models for layers 37 and 47 tracer
flow simulation at coarsening level 2.
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We observe a better performance by ALG initially then the q-QG curves are clearly

closer to the fine scale solution. This can be attributed to the coarse scale measurement

of the oil flow rate and the additional number of cells around the production gridblock

in q-QG model compared to ALG model. However, both methods reasonably match

the reference Qo/∆P values at the final time. On the other hand, the curves obtained

by RM and k -QG show clear deviation from the fine scale reference curves. Hence, by

the use of k -QG models, the discrepancy between the obtained results and fine scale

reference solutions is evident in both the water cut and the Qo/∆P curves.

The comparison of curves above show almost the same level of accuracy obtained

by q-QG and ALG. In other words, for locally measured quantities estimated at the

production gridblock, q-QG models produce the same solution quality as of the itera-

tive procedure of ALG method. The channelized flow patterns are effectively captured

from injection to production points by a flow-adapted grid. However, this has not been

exactly the case for globally measured error norms shown in Tables 6.1 and 6.2. This

can be attributed to a slight deviation in the location of high flow region in the q-QG

model in comparison to ALG and the reference model, and the error norm sensitivity

to these slight dislocations. The spatial discrepancy, while not undermining the water

cut and Qo/∆P prediction, has increased global error norms. Certainly application of

an iterative local-global adjustment technique, similar to Gerritsen & Lambers (2008),

can improve the results of a flow-based quadtree grids, albeit with considerable compu-

tational expenses.
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Figure 6.9: Qo/∆P obtained by different models for layers 37 and 47 tracer flow simu-
lation at coarsening level 1.
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Figure 6.10: Qo/∆P obtained by different models for layers 37 and 47 tracer flow sim-
ulation at coarsening level 2.

Table 6.3: The saturation error for layer 37 multiphase flow simulation.

Error RM RM ALG ALG q-QG q-QG k -QG k -QG
256 c 1024 c 256 c 1024 c 403 c 847 c 508 c 1066 c

δ(s)M=0.1 0.36 0.28 0.25 0.16 0.34 0.29 0.32 0.29
εr(s)M=0.1 1.44 1.80 - - 2.14 1.54 2.56 1.96
δ(s)M=10 0.30 0.21 0.19 0.11 0.28 0.22 0.28 0.24
εr(s)M=10 1.59 2.01 - - 2.28 1.72 2.83 2.34

6.2.2 Multiphase Flow

In order to assess the quality of solutions on non-uniform grids in multiphase case, the

same simulations with non-linear flow function are performed on layers 37 and 47. In

Tables 6.3 and 6.4, the saturation errors are reported. Performing the simulation till 1.2

PVI, similar to the tracer flow case, we observe reasonable performance of q-QG models,

coarsening level 2, in terms of εr(s), either for M = 0.1 or M = 10. Other observations

are similar to the tracer flow simulation. The good performance of q-QG and relatively

poor quality solutions obtained by k-QG, are clear.

Table 6.4: The saturation errors for layer 47 multiphase flow simulation.

Error RM RM ALG ALG q-QG q-QG k -QG k -QG
256 c 1024 c 256 c 1024 c 304 c 640 c 583 c 1363 c

δ(s)M=0.1 0.43 0.29 0.28 0.18 0.41 0.37 0.38 0.31
εr(s)M=0.1 1.54 1.61 - - 1.72 1.31 3.07 2.34
δ(s)M=10 0.43 0.32 0.23 0.12 0.42 0.35 0.41 0.36
εr(s)M=10 1.93 2.65 - - 2.21 1.82 4.15 4.07
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Figure 6.11 shows water cut curves obtained by different models (at coarsening level

1) for multiphase case for layers 37 and 47. The general observation here is that, for

M = 10 case, q-QG stands in the middle of the ALG curves and RM, k -QG curves.

The accuracy is not as of the tracer flow case, however, the breakthrough time has

been reasonably matched for both layers. On the contrary, for the case of M = 0.1, the

breakthrough time is not that predicted by the fine scale reference solution and ALG

model. This can be attributed to the sharp increase of saturation within a small spatial

distance due to piston-like movement of the front. In such case, the water cut curves

are more sensitive to saturation at the production cell. Such sensitivity is captured

effectively by ALG model but not as much effectively by q-QG models. For M = 10,

the physical dispersion and gradual increase of saturation and water cut at production

cell, have provided a suitable condition for q-QG model. The k -QG model is results in

relatively poor quality solutions similar to RM.
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Figure 6.11: Comparisons of water cut curves measured at production cell by different
models for layers 37 and 47, coarsening level 1, for multiphase simulation.

In Figure 6.12 we have shown Qo/∆P for layer 37, coarsening level 1, M = 0.1 and

M = 10. Similar to the water cut curves, for M = 10 case, q-QG is very comparable

to ALG. For M = 0.1 case we observe a considerable discrepancy with the fine scale

model. For the multiphase case, the general outcome of simulation by q-QG, for global

error norms is similar to the tracer flow case, but for the water cut and Qo/∆P , the

results are not as strong as the tracer flow case.

6.2.3 Presence of Shale in Porous Media

In the previous subsections, we studied several subsurface flow problems representing

fluvial channels and high permeability flow-paths that create problems for upscaling.
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Figure 6.12: Comparisons of Qo/∆P for multiphase simulation for layer 37, coarsening
level 1, left M = 0.1 and right M = 10.

In this subsection, we study problems where flow barriers in the form of shales with

very low permeability are present. These flow barriers can also be problematic for

upscaling. For example, renormalization upscaling treats shales imprecisely and results

in a misjudgement of the reservoir connectivity. Typically, shales have a large aspect

ratio and they can be distributed against the flow direction.

Moreover, the presence of flow barriers might be problematic for velocity reconstruc-

tion. Aarnes et al. (2006), for example, have shown that for a barrier that is stretched

beyond a coarse scale gridblock, the boundary conditions interpolated form coarse ve-

locities in multiscale method represent erroneous assumptions that may produce an

unnatural amount of flow through the barrier. That is, the barrier is totally or partially

ignored by the reconstructed velocity field. In the downscaling algorithm used here,

also a particular position of shale is a source of error: the shale is stretching out of the

coarse grid boundaries so that the tail or head of the shale is not situated either inside

the coarse grid or over the boundaries.

Here, we examine non-uniform grid models on a synthetic permeability model pop-

ulated with a few barriers located against a diagonal corner-to-corner flow as shown

in Figure 6.13(a). The model consists of a 128× 128 grid with unit permeability ev-

erywhere except in shale streaks where it is 10−10 Darcy. The permeability and flow

based quadtree grids are shown in Figure 6.13(d) and (f), respectively. We note that,

because the streaks of shale are the only feature in the porous medium, the wavelet

filtered map is essentially identical to the original map. Henceforth, the k -QG grid is

adapted to refine around the shales. In contrast, for q-QG construction, shale offers

zero flow, hence they are completely ignored in the adapted grid.

Tracer flow simulations are performed on two levels of uniform upscaling by RM and
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Table 6.5: The saturation and velocity errors for shale tracer flow simulation.

Error RM RM ALG ALG q-QG q-QG k -QG k -QG
256 c 1024 c 256 c 1024 c 487 c 958 c 511 c 1231 c

δ(s) 0.36 0.21 0.25 0.10 0.47 0.46 0.21 0.11
δ(v) 0.72 0.53 0.52 0.29 1.02 0.97 0.53 0.39
εr(s) 1.41 2.08 - - 3.55 4.45 1.70 1.39
εr(v) 1.38 1.78 - - 3.71 3.09 2.03 1.60

ALG (again 16× 16 = 256 and 32× 32 = 1024 cells) and two models for each of q-QG

and k -QG. First, in Table 6.5 the velocity and saturation errors are reported. Here we

observe an interchange between k -QG and q-QG ranking, in terms of error norms.

Figure 6.14 shows the water cut curves obtained by the different models and for

different levels of coarsening. Similar to error norms, the curves obtained by k -QG

are very reasonable. In fact, not only does k -QG performs better than q-QG and RM

at coarsening level 1, it even outperforms ALG at this level. For this case, the poor

performance of ALG, can be attributed to the lack of high flux over the interface and

the block-to-block pressure drop due to the presence of shale. This factor diminishes

the chance of transmissibility correction by an iterative procedure.

   

   

  
(a) (b) (c) 

(f) (d) (e) 

Figure 6.13: Shale tracer flow simulation, (a) permeability field for shale system, shales
are shown in black, (b) the fine scale saturation profile at t=1.2 PVI, water
is shown in white and oil in black, (c) wavelet transformation-based filtered
permeability, (d) wavelet-based k -QG with 511 cells, (e) Euclidean norm
of cell-centered velocity averages and (f) flow-based q-QG with 487 cells.

Figure 6.15 shows the saturation profiles obtained by the different models at the end of
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Figure 6.14: Water cut curves obtained by different models for shale system. Left is
comparison of curves at coarsening level 1 with the fine scale reference
model, while right is for the coarsening level 2.

simulation. These figures should be compared to the fine scale reference solution shown

in Figure 6.13(b). Clearly, k -QG with 511 cells are closer to the fine scale solution

than q-QG with 487 cells, RM with 256 cells or ALG with 256 cells. At coarsening

level 2, ALG with 1024 cells and k -QG with 1231 cells, corrected the errors of RM with

1024 cells around shales. Furthermore, not only q-QG with 487 cells produced poor

quality results, but also adding more cells has shown no improvement in the quality of

results as shown for the case of q-QG with 958 cells. These results showed that flow

based adaptivity as done in q-QG might perform poorly in the presence of shale. We

conclude that relying on flow information only and ignoring predominant heterogeneity

features, like barriers, can lead to significant errors by grid adaptivity methods. In the

next subsection we add a heuristic criterion to q-QG to account for the presence of flow

barriers.

6.2.4 Combined Heterogeneities and Shale

In this subsection we examine a medium consisting of both channelized heterogeneities

and few flow barriers. Figure 6.16(a) shows the fine scale permeability field used. This

field is an overlay of few flow barriers on the layer 37 of the SPE10 model. These barriers

are cutting the high flow regions of the model. Figure 6.16(b) shows the saturation

profile at 1.2 PVI obtained by solving the fine scale problem.

The refinement criterion used in q-QG is modified to refine the grid at zero permeabil-

ities as well as high flow areas. The new refinement heuristic is denoted by qh-QG. The

resulting grid for coarsening level 2 is shown in Figure 6.16(c) with 1681 cells, refining

both the areas containing barriers and inducing high flow. The resultant saturation pro-
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Figure 6.15: The saturation profiles obtained by downscaling of q-QG, k -QG, RM and
ALG modelsat t=1.2 PVI. Water is shown in white and oil in black.

file from downscaling of tracer flow simulation on this grid is shown at Figure 6.16(d).

For RM with 1024 cells and ALG with 1024 cells, the obtained saturation profiles after

velocity downscaling are shown in Figure 6.16 (e) and (f), respectively. At t=1.2 PVI,

the value of δ(s) for RM with 1024 cells, ALG with 1024 cells, q-QG with 1417 cells

and qh-QG with 1681 cells is 0.58, 0.50, 0.52 and 0.20, respectively. These numbers

shows qh-QG gives significantly smaller errors in comparison to other methods. We

plotted water cut curves obtained by these three models at two coarsening levels in Fig-

ure 6.17. The water cut curves demonstrate that qh-QG model produce considerably

more accurate results in comparison to RM and ALG.

Now we examine the model with multiphase flow with viscosity ratios as before. We

only assess the models at the coarsening level 1. The water cut curves obtained by

M = 0.1 and M = 10 are shown in Figure 6.18 at t=1.2 PVI. At this time δ(s) for RM

with 256 cells, ALG with 256 cells and qh-QG with 565 cells forM = 0.1 is 0.6040, 0.5569

and 0.52, respectively. For M = 10 the values are 0.57, 0.46 and 0.39. These results

shows that qh-QG for multiphase flow especially case of M = 0.1 is not as effective as

in the case of tracer flow simulation. This might be attributed to the lack of multiphase

flow upscaling method for the relative permeabilities used in the model. However, qh-

QG outperforms all other methods presented in this study in terms of estimated error

norms.

6.2.5 Summary of Results

We have presented a critical evaluation of different methods of quadtree construction.

These methods were compared to uniform grid upscaling. For the quadtree design,
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Figure 6.16: Tracer flow simulation on layer 37 combined with few streaks of shale. (a)
The permeability field,(b) the saturation profile at t=1.2 PVI, black is
water while white is oil, (c) the qh-QG model, (d) the saturation profile
at 1.2 PVI from qh-QG downscaled velocities, (e) the saturation profile at
1.2 PVI from RM downscaled velocities and (f) the saturation profile at
1.2 PVI from ALG downscaled velocities.
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Figure 6.17: The water cut curves for layer 37 with shale at two coarsening levels, tracer
flow simulation.
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Figure 6.18: The water cut curves for layer 37 with shale at two viscosity ratios, mul-
tiphase flow simulation. Left figure shows the result for coarsening level 1
and right figure shows the results is for the coarsening level 2.

two adaptivity criteria were considered: flow-based and permeability-based. For the

uniform grid, renormalization and local-global upscaling were used. Based on the ex-

tensive numerical testing on single phase and multiphase flow simulations the following

conclusions are drawn:

1. A permeability-based non-uniform quad-tree grid (k -QG) led to significant errors

in tracer flow simulations of a channelized systems. This can be attributed to

either the loss of channels continuity or to an inaccurate grid refinement.

2. A flow-based non-uniform quad-tree grid (q-QG) coupled with renormalization

upscaling showed good results compared to adaptive local-global (ALG) upscaling

for the production outputs in the tracer flow test cases. The production quantities

were the water cut and oil flow rate divided by the pressure drop along the domain.

The global error norms, however, showed that ALG upscaling is more accurate in

positioning the details of the subgrid flow.

3. For the case of multiphase simulations, the quality of q-QG water cut curves

depended on the viscosities of engaging fluids. For high values of viscosity ratios

(ratio of viscosity of displaced fluid over viscosity of displacing one) we have a

satisfying agreement between q-QG and the fine model for the production outputs.

For low values of viscosity ratio, the production data obtained by q-QG shows

some deviation from the reference results. For high viscosity ratios, this can be

largely attributed to the predominantly streaming flow through the channels and

streaks that the non-uniform grid has refined around. In contrast, for the case
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of low viscosity ratios, the flow is piston-like, hence more sweep-efficient, and not

necessarily dispersing through the channels.

4. Finally, we inserted streaks of shale as forms of barriers inside a test reservoir. For

this pattern, q-QG model was tuned heuristically for refining around the shale in

addition to the flow based refinement indicator. For the tracer flow case, the results

in terms of water production values and saturation profiles were comparable to

the fine scale solution. For the multiphase case and low viscosity ratios the results

were sensitive to grid quality. However, for high viscosity ratio the grid performed

reasonably well in terms of the production curves.

Quadtrees can be dynamically adapted during the simulation time. This might result

in a robust method for dynamic upscaling for multiphase flow problems. In the con-

text of reservoir flow simulation, dynamic grids for EOR processes have been tested by

Heinemann et al. (1983) and Edwards (1996b). However, the presence of extreme het-

erogeneities, barriers or high flow channels have not been examined there. Trangenstein

(2002), Pau et al. (2009) and Chueh et al. (2010) have applied solution-based evolving

grids for flow in porous media with some success. However, these studies did not con-

sider permeabilities upscaling/downscaling effects and the effects of flow barriers and

other forms of extreme heterogeneity on the performance of the grid. Testing dynami-

cally adapted flow based quadtree grids combined with downscaling is a promising line

of future research.
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7 Conclusions and Future Directions

7.1 Conclusions

In this thesis several aspects of upscaling of flow in porous media were investigated and

a static downscaling was proposed and tested.

First, in Chapter 3, we used an operator coarsening approach for upscaling with the

help of Haar wavelet transformation. The methodology resembled the renormaliza-

tion approach using a hierarchy of coarsening. The method presented a transformation

matrix with which we could upscale the pressure equation discretized operator. The

transformed operator had different blocks where each block corresponded to an identi-

fiable section of the transferred pressure solution. The transferred solution constitutes

the averages at a specific coarsening level plus a hierarchy of details or differences from

the coarsest to the finest levels.

We decided to keep only the block corresponding to the average pressure terms. This

is equivalent to neglecting the pressure fluctuations away from the averages. The results

of application of the wavelet-based coarsened operator for layers of SPE10 Model 2 were

compared to a group of upscaling methods described in Chapter 2: the renormalization

method, the pressure solver method and the adaptive local-global method.

The renormalization method uses a closed-form formula derived from resistor anal-

ogy. The pressure solver method, uses local flow solutions of the pressure equation ob-

tained from constant pressure boundary condition on two sides of the local region. The

boundary condition is similar to resistor analogy’s derivation of the formula for equiv-

alent permeability. Unlike such choice of boundary conditions, adaptive local global

upscaling adapts boundary conditions calculated form the coarse pressure values. An

iteration follows and the global information is incorporated into the local solutions to

enhance the quality of upscaling. We used a version of adaptive local global upscaling

in which transmissibilities rather than permeabilities are upscaled. For multiphase flow,

we added effects of total mobility change into the upscaled transmissibilities for adap-

tive local global method. This inclusion substitutes relative permeability upscaling and

pseudofunction generation.

We started the comparisons for checker-board pattern, a synthetically created set of

realizations of permeability and two two-dimensional subsets of SPE10 Model 2. Results
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showed adaptive local global method is most accurate due to the ability of the algorithm

to capture the subgrid flow complexities. For the renormalization method and pressure

solver method the results were very similar, this can be attributed to the similarities in

the algorithms of these methods when deriving the equivalent block permeability. For

the wavelet coarsened operator, however, the results for the heterogeneous examples

were only better than the arithmetic mean. We concluded that unless a more accurate

operator based on including the difference blocks is developed, we cannot expect satis-

fying results from the current method. In this case, the new enriched operator is able

to solve a coarse pressure beyond the mean field approximation.

We did not go further in implementing other upscaling techniques. The problem of

upscaling remains a challenge. The only conclusion is that whereas wavelet operator

coarsening is not a solution, renormalization and the pressure solver methods are only

limited solutions and adaptive local global upscaling is an expensive solution to this

challenge.

Then we turned our attention to discretization error in representing the derivatives

that is affecting the production curves in upscaling techniques. Hence, we dedicated

Chapter 4 to developing a static downscaling algorithm. By upscaling-downscaling in

a dual mesh framework, we solved the pressure in the coarse scale, then we downscaled

the velocities and finally we solved the saturation in the fine scale. We coupled adap-

tive local global upscaling with a modified nested-gridding downscaling. The resulting

upscaling-static-downscaling algorithm showed acceptable reduction of “discretization

error”, leaving only the “upscaling error”. This is the error due to discarding the sub-

grid flow complexities and inaccurate assignment of equivalent upscaled permeabilities

by a poor upscaling method.

The application was examined for different heterogeneity patterns in two and three

dimensions and using different boundary conditions. In terms of accuracy, we observed

good performance of adaptive local global upscaling coupled by nested gridding down-

scaling for the production curves. For the saturation profiles, the performance of up-

scaling downscaling was generally satisfactory but not exact.

The static downscaling provided computational advantages compared to the conven-

tional downscaling. This was achieved by defining building blocks as the basis functions

for the fine scale velocity field. The results compared to the dynamic downscaling

(where the coarse velocity is downscaled at all time steps) showed minimal deterio-

ration of quality of the reconstructed saturation profiles. The results confirmed the

argument by Aarnes & Efendiev (2006) that used homogenization theory to prove that

under some assumptions, the two-phase flow velocity, can be approximated by a static

part that does not depend on saturation, times a time dependent function in each coarse
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block.

The computational saving for static downscaling is subject to the size of the system,

computer memory and processing power. However, one thing obvious is the gain in not

solving as many equations as number of coarse grid blocks that each of which is as large

as number of geomodel fine cells inside the coarse grid block. More precisely if a solver

for solving a linear system of size n× n takes a CPU time of t(n) = O(nα) with α a

varying number larger than one, then we save computations from dynamic downscaling

minus the basis functions generations for static downscaling at initial time. This can be

written as M
(∑Nc

i=1 t(ni)
)
− 2D

(∑Nc
i=1 t(ni)

)
, which Nc is the number of coarse grid

blocks, ni is the number of fine cells inside coarse grid block i, M is the number of times

that we have to perform downscaling and D is dimension of the system.

The modification in the downscaling is from the use of an approximated velocity field,

obtained from upscaling stage by adaptive local global method, to define boundary

conditions in the reconstruction stage. This enhanced the quality of the saturation

profiles for the highly heterogeneous and high upscaling factor values. Furthermore for

comparison studies we examined a multiscale algorithm and we concluded that unless

the multiscale algorithm is improved to capture global effects, the upscaling-static-

downscaling performs better in heterogeneous models.

Regarding the fact that we used the simplest geometrical form for a reservoir grid,

we have to consider the applicability of static downscaling for more general “corner

point geometry” (distorted grids). The gird can better adapt the grid to reservoir

boundaries, faults, horizontal wells and flow patterns and is easily used in standard

finite difference reservoir simulators. The corner point geometry can represent complex

reservoir geometries by specifying the corners of each grid block in grid building. Such

geometry, however, would be still suitable for downscaling, as we are able to define basis

functions for each edges. For geometrically flexible grids such as Voronoi polygons or

Delaunay triangles, the downscaling is actually less justified, since the grid must have

been designed to resolve around fine scale details and reduce numerical diffusion by

itself.

Application of static downscaling for large reservoir models that contain around mil-

lion grid blocks should be reasonable when we consider the displacement process can

be often a very local phenomenon spatially and temporally. At these cases there should

be limited locations to resolve saturation profiles. The downscaling of fluxes are then

limited to the interested areas and simple interpolation of fluxes are used elsewhere. At

this case, the upscaling-downscaling is very suitable for a physical system where differ-

ent processes occur in different parts of a domain and on different scales. Subsequently

a streamline simulator or a multiscale saturation solver can be called at fine scale for
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higher resolutions.

The reasonable performance of static downscaling motivated us to test it for a range

of EOR processes in Chapter 5. The results were very promising. They were established

based on examination of the method for two and three dimensional polymer, surfactant

and thermal flooding. We concluded that in the case of an EOR process with rather

more complicated physics than waterflooding, it was enough to rely on a good upscaling

to inform the statically computed velocity basis functions about the flow details. Then

the basis functions that were statically computed similar to Chapter 4 can be used to

downscale the velocity. The information coming from the upscaled method, however,

was very crucial for accurate capturing of a secondary shock caused by solute and its

consequent increase in water (or aqueous phase) cut in the production cell. In fact,

the basis functions used in such a development seem to have only a trivial role in

distributing the flux over a coarse grid area and only the subgrid heterogeneity must

somehow be honoured. The complexities of saturation changes, apparently are all works

of the total mobility changes which were captured by adaptive local global upscaled

transmissibilities sufficiently at coarse scale or the fractional flow functions affecting the

saturation equation which was solved at fine scale.

Although the EOR flooding example processes were perhaps oversimplified in com-

parison to more realistic cases, the difference will not be fundamental. For example

we already know that the algorithm works for low-salinity flooding and shear-rate de-

pendent polymer flooding. Modelling the physics of these processes requires that in

low-salinity flooding both reduction of residual oil saturation and modification of rela-

tive permeabilities be accounted for whereas in shear-rate dependent polymer flooding,

the viscosities should be iteratively updated based on the flux magnitude. All these

physical details only affect the saturation equation coefficients at the fine scale. As

mentioned in the text dealing with the upscaling of the saturation equation or the

derivation of pseudo-relative permeabilities were not our objective. Consequently, we

are sure that as long as the process is incompressible and immiscible, we will have

satisfying performance for our upscaling-static-downscaling algorithm.

In Chapter 6 a non-uniform quadtree grid generation algorithm is developed and

applied for tracer and multiphase flow in channelized heterogeneous porous media. Grid

generation was guided using two different approaches. In the first approach, wavelet

transformation was used to generate a refinement field based on permeability variations.

The second approach uses flow information based on the solution of an initial-time

fine-scale problem. The resulting grids were compared with uniform grid upscaling.

For uniform upscaling, two commonly applied methods were used: renormalization

upscaling and local-global upscaling. The velocities obtained by non-uniformly and
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uniformly upscaled grids, were downscaled. This procedure allows us to separate the

upscaling errors, on non-uniform and uniform grids, from the numerical diffusion errors

resulting from solving the saturation equation on a coarse grid. The simulation results

obtained by solving on flow-based quadtree grids for the case of a single phase flow

show reasonable agreement with more computationally demanding fine-scale models and

local-global upscaled models. For the multiphase case, the agreement is less evident,

especially in piston-like displacement cases with sharp frontal movement. Furthermore,

existence of barriers in a porous medium complicates both upscaling and grid adaptivity.

This issue is addressed by adjusting the grid using a combination of flow information

and a permeability based heuristic criterion.

The computational saving by using a quadtree grid is obvious once we consider fewer

grid blocks in the model than the uniform coarse grid model. Given that in our examples

the construction was procedurally simple and renormalization was readily used, the use

of the quadtree models looked very promising and rendered a good alternative for the

adaptive local global upscaling. In reservoir applications, however, it is very rare to

see uniform size grid models represented in quadtree or octtree (for 3D) structures.

For unequal size grid models, as long as they are structured (similar to corner point

geometry grids), we can perform divisions and mergers fairly easily. Then the concern

is the criteria of grid generation. It might be not easily feasible to run a fine scale flow

simulation on a million grid block model to decide where to coarsen and where to leave

at fine scale or finer scales. One suggestion is to use parts of the model separately to run

the flow and generate the grid. Then the parts of the system that are fairly homogeneous

can be discarded for flow-based grid generation stage. Another concern is the boundary

conditions and changes in them throughout the simulation. The practical implications

that decide whether we are able to adjust the grid to varying global boundary conditions

by a dynamic adaptive setting and by an optimised and computationally reasonable

procedure should be carefully considered.

As mentioned above any upscaling technique can be used for assigning equivalent

permeability values to the generated non-uniform grid. For example a non-iterative

transmissibility upscaling procedure for quadtree grid can significantly reduce the errors

and make the non-uniform quadtree grid more comparable to the iterative adaptive

local-global upscaling. In this case, although we might avoid iteration to correct the

boundary conditions for the quadtree grid transmissibilities, for multiphase flow case we

can update the transmissibilities to account for the total mobility change throughout

the simulation.
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7.2 Future Work

This thesis focused on looking at the permeability and transmissibility upscaling coupled

with static downscaling or combined with non-uniform Cartesian quadtree grid gener-

ation. To build on the results of this research, for three topics of upscaling, upscaling-

downscaling and non-uniform grid generation combined with upscaling, the followings

are recommended.

For upscaling:

• Advanced techniques such as near well upscaling can resolve adequately around

the well so that we do not need downscaling to reduce the diffusion error.

• It should be investigated whether an optimised, process independent multiphase

flow upscaling of relative permeability curves, can be a solution to reducing the

numerical diffusion error. If this is the case, downscaling is not recommended.

• For three dimensional case, an efficient adaptive local global upscaling method

enhanced with full tensor permeability or transmissibility upscaling may result in

more robust upscaling-downscaling performances.

• Use of a higher order accurate finite difference scheme for the simulation which

minimizes numerical diffusion is recommended. Such implementations may also

lead to adequate reduction of numerical diffusion such that downscaling becomes

redundant.

For upscaling-downscaling:

• An application of downscaling for practical cases of reservoir simulation in con-

junction with the use a commercial simulator such as ECLIPSE to provide coarse

scale velocity field from a realistic model. The downscaling can be performed

separately, and the results fed back to the commercial simulator. We have to be

very consistent about the read and write formats for ECLIPSE and equally careful

about rather more sophisticated well and boundary conditions and their effects

on downscaling.

• The addition of gravity and capillarity on upscaling-downscaling is recommended.

The operator splitting procedure that was suggested should allow us to be still able

to use the basis function of the incompressible cases. However the gravity velocities

need a frequent updating because they are more dynamic than the incompressible

viscous velocities. In such cases the computational savings by static downscaling

will be less pronounced.
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• The investigation of upscaling-static-downscaling for the reservoir processes other

than incompressible displacements is recommended. The performance of our pro-

posed upscaling-static-downscaling may be different for compressible, composi-

tional or miscible flow cases. The methodology may need complete revisions and

may not even work for dynamic flow cases such as compressible flow. The pressure-

dependent densities for compressible cases may cause serious errors once we switch

the scale in upscaling-downscaling. As we just proposed in the thesis, corrective

terms can be added to account for the changes in the properties of fluid that are

averaged out in upscaling and introduces error in downscaling.

• For large scale reservoir simulations, parallelisation of computations is recom-

mended. We may be able to benefit from decoupled process of downscaling form

a coarse grid block to another. In case that grid blocks contain considerable num-

ber of fine cells (large upscaling ratio), the decoupled process will allow us to

implement a parallelisation in calculating the basis functions at initial time. Such

implementation will lead to higher computational efficiencies.

• To build basis functions for the transport or saturation equation, is another line of

research that we recommend for future work. Such development requires special

inter-scalar interpolation operators that map each coarse grid saturation field onto

a fine scale saturation profile that is close to the corresponding profile that one

would get by solving saturation equation on the global fine grid.

• Use of upscaling-static-downscaling in conjunction with a streamline-based rank-

ing approach that will adequately represent the uncertainties in the reservoir per-

formance predictions is also recommended.

For grid generation combined with upscaling:

• Generation of dynamic adaptive non-uniform quad-trees or oct-trees is recom-

mended. Testing such grids combined with procedurally simple permeability or

transmissibility upscaling and combined with downscaling (if needed) can be a

promising line of future research. The combination, however, must result in better

computational runtime and more accuracy compared to the unstructured geomet-

rically flexible grids.
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Gómez-Hernández, J.J. & Journel, A.G. (1990). Stochastic characterization of

grid-block permeabilities: from point values to block tensors. In Proceedings of 2nd

European Conference on the Mathematics of Oil Recovery, Arles, France, 83–90, Ar-

les, France. 32

Green, D.W. & Willhite, G.P. (1998). Enhanced Oil Recovery , vol. 6 of SPE text-

book series. Society of Petroleum Engineers, Richardson, TX. 110, 113

Guérillot, D.R. & Verdière, S. (1995). Different pressure grids for reservoir sim-

ulation in heterogeneous reservoirs. In SPE Paper 29148-MS, Proceedings of SPE

Reservoir Simulation Symposium, San Antonio, Texas. 18, 45, 79

Guzman, R.E., Domenico, G., Fayers, F.J., Antonella, G. & Aziz, K. (1999).

Evaluation of dynamic pseudofunctions for reservoir simulation. SPE Journal , 4. 42

Haar, A. (1909). Zur Theorie der orthogonalen Funktionensysteme. Ph.D. thesis, Goet-

tingen. 48

Hajibeygi, H. & Jenny, P. (2009). Multiscale finite-volume method for parabolic

problems arising from compressible multiphase flow in porous media. Journal of Com-

putational Physics, 228, 5129–5147. 88

Hauge, V.L., Lie, K.A. & Natvig, J.R. (2012). Flow-based coarsening for multiscale

simulation of transport in porous media. Computational Geosciences, 16, 391–408.

90

He, C. (2005). Structured flow-based gridding and upscaling for reservoir simulation.

Ph.D. thesis, Stanford University. 20, 91

He, C. & Durlofsky, L.J. (2006). Structured flow-based gridding and upscaling for

modeling subsurface flow. Advances in Water Resources, 29, 1876–1892. 20

Heinemann, Z.E., Gerken, G. & von Hantelmann, G. (1983). Using local grid

refinement in a multiple-application reservoir simulator. In SPE Paper 12255-MS,

Proceedings of SPE Reservoir Simulation Symposium, San Francisco, California. 163

Heinemann, Z.E., Brand, C.W., Munka, M. & Chen, Y.M. (1991). Modeling

reservoir geometry with irregular grids. SPE Reservoir Engineering , 6, 225–232. 20

Hesse, M.A. (2008). Mathematical modeling and multiscale simulation of CO2 storage

in saline aquifers. Ph.D. thesis, Stanford University. 45

178



Hinrichsen, E.L., Aharony, A. & Feder, J. (1993). A fast algorithm for estimating

large-scale permeabilities of correlated anisotropic media. Transport in Porous Media,

12, 55–72. 36

Holden, L. & Nielsen, B.F. (2000). Global upscaling of permeability in heteroge-

neous reservoirs; the output least squares (OLS) method. Transport in Porous Media,

40, 115–143. 40

Hou, T.Y. & Wu, X.H. (1997). A multiscale finite element method for elliptic prob-

lems in composite materials and porous media. Journal of Computational Physics,

134, 169–189. 75, 76, 78

Hristopulos, D.T. (2003). Renormalization group methods in subsurface hydrology:

overview and applications in hydraulic conductivity upscaling. Advances in Water

Resources, 26, 1279–1308. 34

Hristopulos, D.T. & Christakos, G. (1999). Renormalization group analysis of

permeability upscaling. Stochastic Environmental Research and Risk Assessment ,

13(12), 131–160. 34

Jacks, H., Smith, O. & Mattax, C.C. (1973). The modeling of a three-dimensional

reservoir with a two-dimensional reservoir simulator-the use of dynamic pseudo func-

tions. SPE Journal , 13, 175–185. 42

Jenny, P., Lee, S.H. & Tchelepi, H.A. (2003). Multiscale finite-volume method for

elliptic problems in subsurface flow simulation. Journal of Computational Physics,

187, 47–67. 75, 84

Jenny, P., Lee, S.H. & Tchelepi, H.A. (2005). Adaptive multiscale finite-volume

method for multiphase flow and transport in porous media. Multiscale Modeling and

Simulation, 3, 50–64. 44, 76, 77

Jenny, P., Lee, S.H. & Tchelepi, H.A. (2006). Adaptive fully implicit multiscale

finite-volume method for multiphase flow and transport in heterogeneous porous me-

dia. Journal of Computational Physics, 217, 627–641. 77, 80

Journel, A.G., Deutsch, C. & Desbarats, A.J. (1986). Power averaging for block

effective permeability. In SPE Paper 15128-MS, Proceedings of SPE California Re-

gional Meeting . 18, 32

Khoozan, D., Firoozabadi, B., Rashtchian, D. & Ashjari, M.A. (2011). An-

alytical dual mesh method for two-phase flow through highly heterogeneous porous

media. Journal of Hydrology , 400, 195–205. 85

179



King, P.R. (1987). The use of field theoretic methods for the study of flow in a het-

erogeneous porous medium. Journal of Physics A: Mathematical and General , 20,

3935–3947. 33

King, P.R. (1989). The use of renormalization for calculating effective permeability.

Transport in Porous Media, 4, 37–58. 34, 35

King, P.R. (1996). Upscaling permeability: Error analysis for renormalization. Trans-

port in porous media, 23, 337–354. 36, 65

King, P.R., Muggeridge, A.H. & Price, W.G. (1993). Renormalization calcula-

tions of immiscible flow. Transport in Porous Media, 12, 237–260. 34

Kippe, V., Aarnes, J.E. & Lie, K.A. (2008). A comparison of multiscale methods

for elliptic problems in porous media flow. Computational Geosciences, 12, 377–398.

45, 70, 90, 105

Kyte, J.R. & Berry, D.W. (1975). New pseudo functions to control numerical dis-

persion. Society of Petroleum Engineers Journal , 15, 269–276. 42

Landau, L.D. & Lifshitz, E.M. (1960). Electrodynamics of Continuous Media. Perg-

amon, Oxford. 32

Lantz, R.B. (1971). Quantitative evaluation of numerical diffusion (truncation error).

SPE Journal , 11, 315–320. 18

Lee, S.H., Wolfsteiner, C. & Tchelepi, H.A. (2008). Multiscale finite-volume for-

mulation for multiphase flow in porous media: black oil formulation of compressible,

three-phase flow with gravity. Computational Geosciences, 12, 351–366. 30

Li, D., Cullick, A.S. & Lake, L.W. (1995). Global scale-up of reservoir model per-

meability with local grid refinement. Journal of Petroleum Science and Engineering ,

14, 1–13. 20

Lie, K.A., Krogstad, S., Ligaarden, I., Natvig, J.R., Nilsen, H.M. &

Skaflestad, B. (2011). Open-source matlab implementation of consistent discreti-

sations on complex grids. Computational Geosciences, 1–26. 105

Lie, K.A., Natvig, J.R. & Nilsen, H.M. (2012). Discussion of dynamics and op-

erator splitting techniques for two-phase flow with gravity. International Journal of

Numerical Analysis and Modelling (Special issue in memory of Magne Espedal), 9,

684–700. 85

180



Mahani, H. & Evazi, M. (2010). Vorticity-based perpendicular-bisector grids for im-

proved upscaling of two-phase flow. SPE Journal , 15, 989–1002. 20

Mascarenhas, O. & Durlofsky, L.J. (2000). Coarse scale simulation of horizontal

wells in heterogeneous reservoirs. Journal of Petroleum Science and Engineering , 25,

135–147. 19

Matheron, G. (1967). Composition des permeabilites en milieu poreux heterogene:

Methode de schwyndler et regles de ponderation. Revue de l’Institut Francais du

Petrole, 22, 443–466. 32, 65

Mlacnik, M., Durlofsky, L.J. & Heinemann, Z. (2006). Sequentially adapted flow-

based PEBI grids for reservoir simulation. Society of Petroleum Engineers Journal ,

11, 317–327. 20

Muggeridge, A.H., Cuypers, M., Bacquet, C. & Barker, J.W. (2002). Scale-up

of well performance for reservoir flow simulation. Petroleum Geoscience, 8, 133–139.

19

Niessner, J. & Helmig, R. (2009). Multi-physics modeling of flow and transport

in porous media using a downscaling approach. Advances in Water Resources, 32,

845–850. 79

Palagi, C.L. (1992). Generation and application of Voronoi grid to model flow in

heterogeneous reservoirs. Ph.D. thesis, Stanford University. 20

Pancaldi, V. (2007). Coarse graining equations for flow in porous media: a Haar

wavelets and renormalization approach. Ph.D. thesis, Imperial College London. 38,

59, 62, 63, 67

Pancaldi, V., Christensen, K. & King, P.R. (2006). Permeability up-scaling using

haar wavelets. Transport in Porous Media, 67, 395–412. 38, 57, 61

Pancaldi, V., King, P. & Christensen, K. (2009). Hierarchical coarse-graining

transform. Physical Review E , 79, 036704. 38, 62, 63

Pau, G.S.H., Almgren, A.S., Bell, J.B. & Lijewski, M.J. (2009). A parallel

second-order adaptive mesh algorithm for incompressible flow in porous media. Philo-

sophical Transactions of the Royal Society A, 367, 4633–4654. 163

Pickup, G.E., Ringrose, P.S., Jensen, J.L. & Sorbie, K.S. (1994). Permeability

tensors for sedimentary structures. Mathematical Geology , 26, 227–250. 34

181



Pope, G. (1980). The application of fractional flow theory to enhanced oil recovery.

SPE Journal , 20, 191–205. 110

Prevost, M., Lepage, F., Durlofsky, L.J. & Mallet, J.L. (2005). Unstructured

3D gridding and upscaling for coarse modelling of geometrically complex reservoirs.

Petroleum Geoscience, 11, 339–345. 20

Qi, D., Wong, P. & Liu, K. (2001). An improved global upscaling approach for

reservoir simulation. Petroleum Science and Technology , 19, 779–795. 20

Quandalle, P. & Besset, P. (1985). Reduction of grid effects due to local sub-

gridding in simulations using a composite grid. In SPE Paper 13527-MS, Proceedings

of SPE Reservoir Simulation Symposium, Dallas, Texas. 144
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