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Abstract

In his 1999 paper with Breusch, Qian and Wyhowski in the Journal of Econometrics,

Peter Schmidt introduced the concept of “redundant” moment conditions. Such conditions

arise when estimation is based on moment conditions that are valid and can be divided

into two sub-sets: one that identifies the parameters and another that provides no further

information. Their framework highlights an important concept in the moment-based esti-

mation literature namely, that not all valid moment conditions need be informative about

the parameters of interest. In this paper, we demonstrate the empirical relevance of the

concept in the context of the impact of government health expenditure on health outcomes

in England. Using a simulation study calibrated to this data, we perform a comparative

study of the finite performance of inference procedures based on Generalized Method of

Moment (GMM) and info-metric (IM) estimators. The results indicate that the properties

of GMM procedures deteriorate as the number of redundant moment conditions increases;

in contrast the IM methods provide reliable point estimators but the performance of as-

sociated inference techniques based on first order asymptotic theory, such as confidence

intervals and overidentifying restriction tests, deteriorates as the number of redundant mo-

ment conditions increases. However, it is shown that bootstrap procedures can provide

reliable inferences. We use IM and bootstrap methods to perform inference about the

impact of government health expenditure on health outcomes in England.

Key words: Generalized Method of Moments, Info-metric estimation, Empirical Like-

lihood, Exponential Tilting



1 Introduction

The introduction by Lars Hansen (Hansen 1982) of Generalized Method of Moments (GMM)

provided a method for obtaining estimators of the parameters of economic models based on

the information in population moment conditions. Providing this information is both valid

and (strongly) identifies the parameters, Hansen (1982) established the consistency and

asymptotic normality of the estimator, and proposed a variant known as the “two-step”

GMM estimator which is asymptotically efficient in class of semi-parametric estimators

based on the population moment condition in question, see Chamberlain (1987).

In practice, the underlying economic/statistical model typically implies an array of pos-

sible moment conditions, and it has been recognized that the choice of which to use impacts

on the comparative statistical properties of the resulting estimator. In essence, moment

conditions contain differing amounts of information about the parameters of interest. To

pursue this point further, we restrict attention to the class of population moment condi-

tions associated with generalized instrumental variables (IV) estimation that is, in which

the moment condition states the orthogonality of vector of instruments to a model resid-

ual. This is because this class of moment conditions is the most commonly encountered in

econometrics and is the type involved in our analysis below.

A lot of attention has focussed on the two extreme cases, namely optimal instruments

and weak instruments. Hansen (1985) characterized the asymptotic efficiency bound for

IV, and, since then, various papers have examined how to construct so-called optimal in-

struments that achieve this bound in certain cases of interest.1 However, a drawback to

their use is that the construction of the optimal instrument can be complicated and may

require additional assumptions about the data generation process beyond those implied

by the economic model; this often proves a significant limitation and the use of optimal

instruments is not common in empirical practice. At the other extreme is the weak instru-

ment case. Following the insight in Nelson and Startz (1990), Staiger and Stock (1997)

demonstrated that the standard first order statistical analysis of Hansen breaks down if the

1For references see the survey in Newey (1993) or Hall (2005)[Ch. 7.2].
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instrument is weak; that is, the population moment condition provides insufficient infor-

mation to (strongly) identify the parameters. Driven by a number of high profile empirical

examples, the problem of inference in the presence of weak instruments has received a lot

of attention in the literature.2

However, while both these extremes are of interest, they are not the only information

scenarios of relevance in empirical applications. In his 1999 Journal of Econometrics paper

with Breusch, Qian and Wyhowski, Peter Schmidt introduced the concept of redundant

moments—or instruments—which represents an important information scenario that, in

some sense, lies in between the two extremes described above. This covers the situation

in which a subset of the instruments, z1 say, lead to moment conditions that strongly

identify the parameters and the remainder, z2 say, provide no additional information. In

such circumstances, Hansen’s (1982) analysis still applies and implies that the first order

asymptotic properties of the estimator are the same whether estimation is based on z1 or

z1, z2; in this case z2 is said to be redundant given z1. While this result implies no (first

order) asymptotic cost to the inclusion of redundant instruments, there is evidence that the

finite sample properties of IV are adversely affected by the inclusion of redundant moment

conditions.

The concept of redundancy, as originally stated, is occasionally criticised for being

unrealistically strict in the sense that z2 provides no additional information beyond that

in z1. However, this seems pedantic to us: the key insight is to realize that there are

situations where some instruments provide identification and most of the information, and

the remainder of the instruments provide very little, for which redundancy, as defined above,

is just the limit case.3

In this paper we illustrate these ideas using an important empirical example in which

exactly this type of structure is present. For any economy, a key policy question is the

extent to which the level of government expenditure on health influences the populations

2For a review of the weak instrument literature see Stock, Wright, and Yogo (2002) and Hall (2005)[Ch.
8.2].

3For example, the ideas can equivalently be expressed using the concept of near-redundancy as in Hall,
Inoue, Jana, and Shin (2008).
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health. Even though there are surprisingly few estimates of the elasticity of health out-

comes with respect to government health expenditure in the literature, estimates of this

parameter have been found by regressing (log) mortality on (log) health expenditures, typ-

ically exploiting cross-section variations in both variables by region/county/state etc. In

the empirical example we use in this paper, the data are from England (in 2005–06) and

the unit of observation is a so-called Primary Care Trust (PCT), of which there are 152.

However, in this model, expenditures are correlated with the regression error because ex-

penditure is determined by a funding rule that involves four key variables, one of which,

a composite need index, is endogenous. As a result, OLS estimation is inappropriate as

it leads to inconsistent estimators of the elasticity. However, instrumental variables esti-

mation is feasible because the three other key variables in the funding rule are arguably

exogenous and can be used as instruments. Given the construction of the funding rule,

these three instruments are important determinants of expenditure. In addition to these

three variables, it is possible to include other instruments, such as variables that are related

to the needs index but not to mortality, which tend to be of lesser importance in the deter-

mination of expenditure. The funding rule instruments identify the parameters of interest

and contain most of the information, whereas the remaining instruments add little extra

information. Thus the funding rule instruments can be considered—and are referred to—as

“stronger instruments” and the remaining instruments are “nearly redundant” given the

stronger instruments.

The key question for policy maker is which instruments to use in the estimation: just the

stronger instruments, or the stronger and nearly redundant instruments? Or put another

way, does the presence of the near redundant instruments has an adverse effects on the

GMM estimator when using small sample sizes as in our example? We explore this issue

via a simulation study calibrated to our empirical example, and find evidence that the

inclusion of the near redundant instruments does have an adverse effect.

This raises the question of how to proceed. One option is to use GMM with just the

stronger instruments. However, a second option is to use a member of the class of info-metric
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(IM) estimators that are argued to have better finite sample properties than GMM.4 This

class includes both Empirical Likelihood (EL) and Exponential Tilting (ET) estimators.

We therefore also explore the performance of these IM estimators in our simulation study.

While we find that IM estimators provide more reliable point estimates than GMM, we

also find that first order asymptotic theory provides a poor approximation to the coverage

probabilities of confidence intervals and rejection frequencies of model specification tests.

However, we find these problems can be remedied by employing a bootstrap procedure

proposed by Brown and Newey (2002) based on the probabilities obtained as part of the

IM estimation.

We contrast the inferences based on GMM and IM, and find significant differences in

the elasticity of interest. Because the elasticity can be interpreted as the “cost per life”, if

our estimates are taken at face value, this has important policy implications.

In Section 2 we report our own estimates of the elasticity of interest using English data,

together with some background describing how funding is allocated in England. Section 3

provides the econometric analysis, and Section 4 reports the simulation study. In Section 5,

we return to our empirical example. Section 6 concludes.

2 The impact of government health expenditure on health

outcomes in England

From a policy perspective, a key question is whether, and, if so, to what extent, the allo-

cation of funding to public sector health agencies can impact on population health. Such

evidence is required to inform decisions about appropriate levels of overall funding and

questions of distribution, such as whether differential allocation of funds can contribute to

the reduction of inequalities in population health between areas. The extent to which the

level of government expenditure on health influences the population’s health is particularly

important when assessing the wisdom of the UK Government’s decision, in 2000, to increase

4IM estimators can be characterised as Generalized Empirical Likelihood (GEL) estimators (Smith 1997).
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health expenditure to the EU average by 2006 (Appleby and Boyle 2000). It is also relevant

for the measurement of public service productivity (ONS 2006).

As noted above, our empirical example comes from England. The National Health

Service in England is financed almost entirely from national taxation. The Department of

Health negotiates every year with HM Treasury over how much money the National Health

Service can spend. The size of the budget in 2005-06 was £53.9 billion, which averaged at

£1,097 per person.

The NHS is organised in geographical areas, with Primary Care Trusts taking responsi-

bility for local administration and purchasing of services. These PCTs receive fixed annual

budgets from central government and are required to meet their populations’ expenditure

needs on hospital and community-based services (including pharmaceuticals) and to im-

prove their local population’s health.

In England, a funding rule is used to allocate the overall budget to each PCT (DOH

2005). This funding rule creates shares of the overall budget for each PCT that reflect their

population size, age and other measured need factors, and expected input prices. These

target shares are used to calculate a “Distance From Target” (DFT) for each PCT, which

measures the extent to which their actual share of the national budget last year differs from

that indicated by their target share. All PCTs receive a minimum level of funding uplift

and the residual funds are then distributed on the basis of the Distance From Target, with

the most under-target PCTs receiving the largest increases in budget.

A PCT’s budget can therefore be expressed as:

Budget per head = (National budget per head) * (Age Index) * (Additional

Needs Index) * (Input Price Index) * (DFT Index)

in which each of the four index adjustments takes a mean value of one.

The data are sourced from government websites. The health measure is a directly

age-standardised mortality rate for the period 2005-2007, expressed as deaths per 100,000

European Standard population.5 The funding variable is the 2005/6 allocations from the

5https://indicators.ic.nhs.uk/webview/

5



Unified exposition book: 2003/04, 2004/05 & 2005/06 PCT revenue resource limits.6 The

formula adjustments are those for the Hospital and Community Health Services element

of the formula, taken from Table 5.12 of the same exposition book. The “Distances From

Target” are the closing figures for 2005/6 taken from Table 4.2 of the same exposition

book. The population counts used to calculate the allocations per head are based on the

2004 Attribution Data Set scaled to Office for National Statistics population projections.

In what follows, we estimate the following equation with PCT-level data:

ln(H) = βln(E) + controls + u, (1)

where ln(H) denotes the log of the mortality rate, ln(E) is the log of the allocation of health

expenditure per head. The exact specification of our observed control variables is irrelevant

at this stage. u denotes everything that is unobserved or not included in the model. The

variable ln(E) is potentially endogenous because it is easy to see why expenditure levels

might be a function of historical mortality (reverse causality) and because expenditure

levels may reflect unobserved area-specific effects (unobserved heterogeneity). It is easy to

show that both sources of endogeneity mean that OLS is biased upwards.

With panel data, we might be able to deal with the latter, but the former can only

be addressed using IV. But can suitable instruments be found? For this example, such

variables naturally occur because of the funding rule duscussed above, namely: the Age

Index (Z1), the Additional Needs Index (N), the Input Price Index (Z2), and the DFT

Index (Z3). Although N is endogenous, because it depends on historical mortality levels,

the other three variables are arguably uncorrelated with u and can be used as instruments.

In practice, the funding rule is not exact but Z1, Z2 and Z3 are the main determinants

of E; as a result, we refer to these variables as “stronger instruments” to reflect their

relative importance in the determination of E. We also consider the inclusion of other

other instruments, such as variables that are related to N (but not H), which tend to be of

6http://webarchive.nationalarchives.gov.uk/+/www.dh.gov.uk/en/Managingyourorganisation/Financeand
planning/Allocations/DH 4000344
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lesser importance in the determination of E; these variables we have already labelled “near

redundant”, and are similar to those used by Martin, Rice, and Smith (2008).

To give a flavour of the issues that this paper addresses, we estimate the model in

Equation (1) using the following variables as controls: income deprivation among older

people, education deprivation, and a constant term. The sample consists of the 152 PCT’s

in England in 2005-06. Summary statistics for the data variables are presented in Table 2.

When the model is estimated using OLS, β is estimated as 0.090 with a robust stan-

dard error of 0.064. If taken at face value, this elasticity would imply increases in health

expenditure levels have a positive, but statistically, insignificant effect on mortality. From a

policy perspective, this positive elasticity is counter intuitive. When re-estimated by 2SLS,

using only the three “stronger instruments” for E, the estimate changes considerably, be-

ing −0.705 with a robust standard error of 0.245. In other words, increases in spending do

have the expected negative effect on mortality, and the effect is significant, in spite of the

increase in its standard error by a factor of 3.8.

This is an excellent example of where 2SLS works: the instruments can only plausibly

work through the funding rule, and the upwards bias in OLS is ameliorated. The instru-

ments are clearly not “weak” in the usual sense of the label, given the 3.8 factor. To

illustrate the marginal contribution of some near redundant instruments, we re-estimate

once more, adding the 7 further instruments (see Table 2 for full descriptions). Note that

the R-squared from the first-stage regression with only the three stronger instruments is

0.793, and this rises to 0.833 when the 7 near redundant instruments are added. Now the

2SLS estimate is −0.587 with a robust standard error of 0.132. The question is, which

estimate should the policy maker use? Or maybe use just a sub-set of the near redundant

instruments? Given the small sample size, do ET and EL estimators give different answers?

Do they perform better?

In the next two sections, we develop the appropriate econometric framework to address

these issues and report what happens when we simulate the data generation process to

assess the properties of the competing estimators. We then return to the above example in
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Section 5.

Table 1: Summary statistics of variables in health expenditure example∗

Variable Mean S.D.
Dependent variable
Directly standardised mortality rate per 100,000: all causes (ln(H)) 614.5 76.33

Endogenous explanatory variable
Allocation per head (ln(E)) 1,106 138.5

Controls
Income deprivation among older people (proportion) 0.176 0.065
Education deprivation (proportion) 0.229 0.094

Stronger instruments
Age index (Z1) 0.994 0.051
Input price index (Z2) 1.036 0.159
Distance from target (DFT) index (Z3) 1.005 0.081

Near redundant instrumentsa

A: Inflow of persons all ages (rate per 1,000 persons) 0.845 0.140
A: Outflow of persons all ages (rate per 1,000 persons) 0.864 0.183
B: Proportion of people aged 16+ who have never married 0.314 0.077
B: Proportion of people in households that own their home 0.693 0.118
B: Proportion of houses failing ODPM ‘Decent Homes Standard’ 0.346 0.053
C: Proportion of people aged 16-74 that have never worked 0.031 0.021
C: Proportion of people aged 16-74 that are long-term unemployed 0.011 0.005

* Notes: All variables are subsequently expressed in natural logarithms in the regressions.
a We collect the near redundant instruments into 3 groups later in the analysis, labelled A,
B, and C.

3 Moment based inference and redundancy

The model in Section 2 fits the following generic linear specification:

yt = x′tθ0 + ut, t = 1, 2, . . . T, (2)

where yt is the dependent variable, an observed scalar; xt is a (p × 1) vector of observed

explanatory (or regressor) variables; ut is the unobserved error term. The t subscript

indicates the observations pertain to the tth member of the sample, and T denotes the
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sample size. The parameters of interest are denoted by the p× 1 vector θ0.

As noted above, IV involves the use of a set of variables as “instruments”; these are

denoted by zt, a (q × 1) vector of instruments. We assume these instruments are valid in

the sense that they are orthogonal to the error so that the following population moment

condition holds

E[ztut(θ0)] = 0, (3)

where ut(θ) = yt − x′tθ. For IV to work, it must be the case (amongst other things) that

there are at least as many instruments as parameters, and so we assume q ≥ p. For ease

of presentation we assume all variables, vt = (x′t, ut, z
′
t)
′ are independently and identically

distributed.

There are a number of ways in which the information in (3) can be exploited to produce

estimators of θ0. As discussed in the Introduction, we focus on Two Stage Least Squares,

Generalized Method of Moments and the class of IM estimators. Below we describe both

the methods and also their statistical properties, with particular emphasis on the impact

of redundant moment conditions on the latter.

3.1 2SLS and GMM estimation

As the name suggests, 2SLS was originally presented as a method of IV estimation based

on two least squares estimations; for example see Greene (2003)[p.398-400]. However, 2SLS

can also be derived as a special case of GMM and so for economy of presentation we focus

solely on the latter framework.

The GMM estimator based on (3) is defined to be:

θ̂T = argminθ∈ΘQT (θ)

where

QT (θ) = gT (θ)
′WT gT (θ),

9



gT (θ) = T−1
∑T

t=1 zt(yt − x′tθ), and WT is known as the “weighting matrix”.

For the method to work, the weighting matrix needs to satisfy certain restrictions.7

Nevertheless, there are many candidates for the weighting matrix, and, in general, the

value of θ̂T depends on this choice. If we set

WT = (T−1
T
∑

t=1

ztz
′
t)
−1

then the GMM estimator based on (3) equals the 2SLS estimator. While the GMM esti-

mator is consistent for θ0 for all valid choices of weighting matrix, the specific choice of WT

affects inferences about θ0 through the large sample variance of θ̂T . It is therefore desirable

to choose the weighting matrix that yields the smallest large sample variance for θ̂T . Based

on this criterion, and under the conditions assumed here, the optimal choice of WT is a

matrix converging in probability to W = {V ar[ztut]}−1; the estimator obtained with this

choice of weighting matrix is referred to as the “optimal GMM” estimator. As an important

consequence, it follows that if ut is conditionally homoscedastic given zt, then the optimal

choice of weighting matrix yields the 2SLS estimator, and so the latter is efficient in large

samples. But if ut is conditionally heteroscedastic given zt, then 2SLS is inefficient in large

samples relative to the optimal GMM, and is therefore sub-optimal. The latter provides

the motivation for using GMM rather than just 2SLS to implement IV.

First order asymptotic analysis

To develop our analysis, we impose a number of conditions that are collected together in

the following assumption.

Assumption 1 (i) (ut, x
′
t, z

′
t)
′ are independently and identically distributed and yt is gen-

erated via (2); (ii) E[ztut] = 0, and rank{E[xtz
′
t]} = p; (iii) V ar[ut|zt] = σ2.

7WT must be a positive semi-definite matrix that converges in probability to a positive definite matrix
of constants; see, for example, Hall (2005)[Chap.1].
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Assumption 1(ii) states that the instruments are both valid and relevant. Assumption

1(iii) states that the errors are conditionally homoscedastic (given the instruments) as a

consequence of which 2SLS and optimal GMM are the same.

Under this assumption (and certain other regularity conditions), it can be shown that8

T 1/2(θ̂T − θ0)
d→ N ( 0, Vθ ) . (4)

This result can be interpreted as meaning the large sample distribution of θ̂T is approxi-

mately normal with a mean of θ0 with variance Vθ.

Notice that the mean of this large sample distribution is the true value of the param-

eter provided that the instrument satisfies the generic conditions stated in Assumption 1.

The variance of the large sample distribution, on the other hand, is affected by the choice

of zt. To demonstrate the nature of its dependence, we focus on the case that arises in

our empirical examples, namely where there is one parameter of interest. Accordingly we

partition xt = [wt, z
′
1,t]

′ where wt is the scalar endogenous regressor and z1,t is the vector

of controls, and then also partition θ conformably as θ = (α, φ′)′. Thus α is the scalar

parameter of interest and φ is the (p− 1)× 1 vector of parameters on the control variables.

Let α̂T be the GMM estimator of α0 and Vα be the (1, 1) element of Vθ.
9. We further par-

tition zt = [z′1,t, z
′
2,t], where z

′
2,t are the identifying instruments, ie those not used as controls.

Proposition 1 If Assumption 1 (and certain other regularity conditions) hold then:

Vα =
σ2

σ2
w

(

1

R2
w,z − R2

w,z1

)

(5)

where R2
w,z1 is the population multiple correlation coefficient from the regression of wt on

the controls z1,t, R
2
w,z is the population multiple correlation coefficient from the regression

of wt on zt, and σ2
w denotes the variance of w.

8For example, see Hall (2005)[Chap. 2.3].
9It follows from (4) that T 1/2(α̂− α0)

d→ N ( 0, Vα ).
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Proposition 1 reveals that the large sample variance of the estimator depends inversely on

additional explanatory power (over that of the controls) of the instruments z2,t for wt. Thus

the greater the additional explanatory power of z2,t then the more precise the estimator.

To consider the implications of this first order asymptotic result for the issue of in-

strument selection, we frame our discussion in terms of considering the consequences of

augmenting an existing set of instruments zt by the addition of one extra instrument de-

noted z3,t. From Proposition 1, it follows that the addition of z3,t to the instrument vector

can never increase Vα because R2
w,[z,z3]

≥ R2
w,z by construction. If the inclusion of z3,t to

the instrument vector has no effect on Vα (that is, R2
w,[z,z3]

= R2
w,z) then z3,t is said to be a

redundant instrument for estimation of α0 given zt. Thus, a first order asymptotic analysis

suggests that the inclusion of an extra instrument can never hurt and may help.

Second order asymptotic analysis

For this part of our analysis, we impose one additional condition.

Assumption 2 (i) E[u3t |zt] = 0; (ii) E[utvt|zt] = σuv 6= 0.

Here, vt is the implied reduced-form error term. Part (i) of this assumption states that

the errors are symmetrically distributed conditional on zt; part (ii) states implies that the

covariance of ut and vt is non-zero. Using results in Newey and Smith (2004), we can show

the following.

Proposition 2 If Assumptions 1, 2 (and certain other regularity conditions) hold then:

bias(α̂T ) =
(q − p− 1)σuv

Tσ2
w

(

1

R2
w,z − R2

w,z1

)

. (6)

Proposition 2 reveals that the second order bias depends on the number of instruments (q),

the explanatory power (over that of the controls) of the instruments for wt (R
2
w,z − R2

w,z1),

the covariance between ut and vt (σuv) and the sample size (T ).

12



To consider the implications of this second order asymptotic result for the issue of

instrument selection in our examples, we again frame our discussion in terms of considering

the consequences of augmenting an existing set of instruments zt by the addition of one

extra instrument denoted z3,t. Inspection of the formula for bias(α̂T ) in Proposition 2 it

can be seen that introduction of an additional instrument impacts both the numerator

(by increasing q) and the denominator (by increasing R2
w,z). The outcome is therefore

ambiguous except in one special case: if z3,t is redundant given zt then the denominator of

the bias term is unaffected by the introduction of z3,t but the numerator increases, meaning

the bias must also increase. However, note that this bias disappears as T increases: thus,

ceteris paribus, the larger the sample, the less the bias.

3.2 Info-metric estimation

Concerns about the finite sample performance of GMM have led to interest in alternative

methods of estimation based on the information in moment conditions. Leading examples

of such estimators are Empirical Likelihood (EL) (Qin and Lawless, 1994 or Owen, 2001)

and Exponential Tilting (ET) (Kitamura and Stutzer, 1997). While EL and ET can be

derived from distinct estimation principles, it has been recognized that they have a common

structure that has led to development of generic approaches of which both are special cases.

The two such generic approaches are Generalized Empirical Likelihood (GEL) (Smith 1997)

and Info-metric methods (Golan 2006). We focus on the second approach.

Within the Info-metric approach, the population moment condition (pmc) is viewed as

a constraint on true probability distribution of data. If M is set of all probability measures

then the subset that satisfies pmc for a given θ is

P(θ) =

{

P ∈ M :

∫

f(v, θ)dP = 0

}

,

13



and the set that satisfies the pmc for all possible values of θ is

P = ∪θ∈ΘP(θ).

Estimation is based on the principle of finding the value of θ that makes P(θ) as close as

possible to true distribution of data.

To operationalize this idea, we work with discrete distributions. Let pt = P (v = vt) and

P = [p1, p2, . . . , pT ]. Assuming no ties, the empirical distribution of the data is: µ̂t = T−1;

let µ̂ = [µ̂1, . . . µ̂T ]. The Info-metric (IM) estimator is then defined to be:

θ̂IM = arg inf
θ

ρT (θ, µ̂)

where

ρT (θ, µ̂) = infP̂ D(P ‖ µ̂),

P̂(θ) =

{

P̂ : pt > 0,
T
∑

t=1

pt = 1,
T
∑

t=1

ptf(vt, θ)

}

,

and D( · ‖ ·) is a measure of distance. An interpretation of the estimator can be built up as

follows. P̂(θ) is the set of all discrete distributions that satisfy the pmc for a given value of

θ. ρT (θ, µ̂) represents the shortest distance between any member of P̂(θ) and the empirical

distribution for a particular value of θ. θ̂IM is the parameter value that makes this distance

as small as possible over θ.

To implement the estimator, it is necessary to specify a distance measure. A popular

choice in this literature is the Cressie and Read (1984) distance measure, defined as

D
(η)
CR(p‖q) =

η

1 + η

T
∑

t=1

pt

{(

pt
qt

)η

− 1

}

which is defined for −∞ < η < ∞. This distance measure nests EL and ET as special

cases: limη→0D
(η)
CR(·‖·) yields the ET optimand; limη→−1D

(η)
CR(·‖·) yields the EL optimand.
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In terms of statistical properties, EL/ET are consistent and have same limiting distri-

bution - and thus the same first order asymptotic properties - as optimal GMM. However,

their second order asymptotic properties are different. Using the same set-up as before and

the results in Newey and Smith (2004), we can show the second order bias properties of

EL/ET are as follows.

Proposition 3 If Assumptions 1, 2 (and certain other regularity conditions) hold then:

bias(α̂IM ) =
σuv
Tσ2

w

(

1

R2
w,z − R2

w,z1

)

(7)

A comparison of the results in Propositions 2 and 3 reveals that the denominator of the

bias terms for GMM and IM estimators are the same but there is a crucial difference in

the numerators: for GMM the numerator depends on the number of instruments, for IM it

does not. So returning to the analysis of the consequence of including an extra instrument,

the inclusion of z3,t never increases the absolute bias. So, for IM estimators, there are

no potential negative consequences in terms of first or second order asymptotic properties

from the inclusion of an additional instrument. This indicates that IM estimators can be

expected to yield more reliable point estimators in moderate–sized samples.

4 Simulation study

4.1 Design

In the simulation, we mimic the key properties of our empirical health example introduced

in Section 2. However, for ease of exposition, we dispense with all the controls in the

regression model apart from the constant (z1,t ≡ 1), and so the model being estimated is

written

yt = αwt + φ0 + ut, t = 1, 2, . . . T. (8)
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In other words, there are p = 2 regressors. Because we need to distinguish our strong

instruments from our near redundant instruments, we write the reduced-form explicitly as

wt = z′2,tπ2 + z′3,tπ3 + π0 + vt, t = 1, 2, . . . T. (9)

z2,t is (3 × 1) vector of strong instruments, and z3,t is (k × 1) vector of near redundant

instruments, with the reduced-form parameter vectors π2 and π3 having 3 and k elements

respectively. In other words, there are q = k + 4 instruments in total, and the model is

over-identified by k + 2. k is the first important parameter in the simulations, because the

number of near redundant instruments has an ambiguous effect on the second order bias of

α̂ identified by Proposition 2.

In the simulations, throughout we fix the following parameters as follows. First, α =

−0.5, so that the true elasticity of health outcomes with respect to health expenditure is

negative; second, both constants φ0 and π0 are normalised to zero; third, π2 = 13, so that

the effect of the strong instruments on health expenditures is normalised to unity; and

fourth, π3 = a1k, where 1k is a (k × 1) vector of ones and a is a scalar. a is the second

important choice parameter, because it captures the relative strength of the near redundant

instruments compared with their stronger counterparts.

All k + 3 instruments are Normally distributed and are drawn independently of each

other, each with a variance σ2
z . σ2

z is the third choice parameter in the simulation design.

The reduced-form error vt and the regression error ut are drawn independently of the k+3

instruments, but are jointly Normally distributed with the variance of vt denoted σ2
v , the

variance of ut normalised to unity, and the covariance between vt and ut denoted c. When

c is non-zero, wt is endogenous. c is the fourth choice parameter in the simulation design.

As already explained, we restrict c to being positive because OLS is upwards biased. Also,

because the correlation between u and v is c/σv, and is less than unity, c is ultimately

restricted to 0 ≤ c < σv. Finally, all of ut, vt, z2,t, z3,t have zero mean, which implies that

yt and wt also have zero mean (given φ0 = π0 = 0).
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Of the 4 important parameters yet to be fixed, namely a, c, σ2
z and k, we note that the

number of near redundant instruments k varies hereafter as 0, 4, 7, and 10. Although the

other three parameters are allowed to vary, in what follows we report only what happens

when a = 1/
√
10, σ2

z = 1/4, and σ2
v = 3/2.10 Our choices are explained as follows. We

choose σ2
v = 3/2 because this is what happens in the data. We then set the covariance to

c = 1 to ensure a strong degree of endogeneity of the health expenditure variable w, with

the correlation between u and v being c/σv = 0.816. Noting that

R2
w,z2 =

3σ2
z

3σ2
z + σ2

v

,

and setting R2
w,z2 = 1/3 throughout, again because of the real data, this implies that

σ2
z = 1/4 throughout. Next, note that

σ2
w = σ2

z(3 + ka2) (10)

and

R2
w,[z2,z3]

=
σ2
z(3 + ka2)

σ2
z(3 + ka2) + σ2

v

. (11)

We now choose ka2 = 1 so that the contribution of the near redundant instruments moves

R2
w,z2 from 1/3 to R2

w,[z2,z3]
= 2/5 when there are k = 10 near redundant instruments in the

reduced form for w. Hence a = 1/
√
10 throughout. To check that these are sensible choices,

when k = 7 and σ2
w = 2.425, the bias in the OLS estimator, c/σ2

w, is 0.412. In other words,

a true α of –0.5 is estimated, on average, as –0.088 using OLS, which is roughly consistent

with the real data described in Section 2.

Table 2 summarises the population values of the key parameters for k = 0, 4, 7, 10,

together with the second order population biases given in Propositions 2 and 3 above.

The table shows that magnitude of the second order bias for the IV and IM estimators

is the same when there are no near redundant instruments, because q−p−1 = 1. The bias

10A wider set of results is available on request.
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Table 2: Summary of simulation design as number near redundant instruments varies

Number near redundant instruments k
0 4 7 10

Variance of endogenous regressor σ2
w
(Equation 10) 2.250 2.350 2.425 2.500

First stage R2
w,[z2,z3]

(Equation 11) 0.333 0.362 0.381 0.400

Variance of IV estimator Vα (Equation 5) 1.333 1.176 1.081 1.000
Second order bias IV estimators (Equation 6) 0.00889 0.03921 0.05766 0.07233
Second order bias IM estimators (Equation 7) 0.00889 0.00784 0.00721 0.00667
First order bias OLS c/σ2

w
0.444 0.425 0.412 0.400

* Data generation process given by Equations (8, 9). T = 150, p = 2, q = k+4, α = −0.5, φ0 = π0 = 0,
π2 = 13, π3 = a1k, and σ2

v = 3/2. In these simulations, a = 1/
√
10, σ2

z = 1/4, and c = 1.

is 0.00889. We now see what happens as more and more near redundant instruments are

added. The variance of the endogenous regressor σ2
w increases, and so the first stageR2

w,[z2,z3]

also increases. As the Propositions assert, the second order bias for the IM estimator falls,

to 0.00667 for k = 10, whereas that for IV increases to 0.07233. For the latter, this is

sizeable, as a true parameter of –0.5 will estimated as -0.4277 on average; in Equation (6),

the effect of q in the numerator is outweighing the increase in the fit in the denominator.

We now examine the other properties of the IV estimators (2SLS and GMM) and

IM estimators (ET and EL) assuming that the sample size is large whereas, in fact, it

is a moderate T = 150. All estimations are performed using the Matlab R© Optimization

Toolbox. The EL and ET estimations utilize a GEL toolbox written by Kostas Kyriakoulis;

this toolbox uses fmincon with the so-called interior point algorithm. The number of

replications is N = 1000.

4.2 First order asymptotics

Table 3 summarises the properties of the estimators; that is, biases, coverage proportions,

and rejection frequencies based on first order asymptotics (FOA).

The results for the 2SLS and GMM estimators are roughly the same throughout Table 3

because there is no heteroskedasticity in the simulation design. Given the analytical formu-

lae already discussed, the biases reported in the first row of the table can be compared with

Table 2: we see that the biases for the 2SLS/GMM estimators are close to their theoretical
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Table 3: Coverage and rejection proportions assuming first order asymptotics

2SLS GMM
0 4 7 10 0 4 7 10

Biasa 0.006 0.043 0.052 0.066 0.006 0.042 0.052 0.067
Bias (median)b 0.014 0.051 0.059 0.069 0.015 0.050 0.059 0.071

Coverage prop, 95% nominal, t-statc 0.930 0.882 0.837 0.773 0.925 0.845 0.807 0.732
Coverage prop, 99% nominal, t-stat 0.972 0.953 0.936 0.899 0.968 0.938 0.905 0.850

Rejection prop, 5% nominal, Jd 0.046 0.075 0.066 0.079 0.042 0.053 0.045 0.047
Rejection prop, 1% nominal, J 0.009 0.017 0.017 0.019 0.005 0.008 0.007 0.009

EL ET
0 4 7 10 0 4 7 10

Bias -0.012 -0.004 -0.010 -0.009 -0.012 -0.005 -0.010 -0.009
Bias (median) -0.008 0.003 0.000 -0.002 -0.007 0.001 0.000 -0.003
Bias mean corrected este -0.003 0.003 -0.003 -0.004 -0.003 0.002 -0.003 -0.004

Coverage prop, 95% nominal, t-stat 0.944 0.914 0.906 0.889 0.943 0.909 0.899 0.882
Coverage prop, 99% nominal, t-stat 0.980 0.966 0.967 0.960 0.979 0.964 0.960 0.951

Rejection prop, 5% nominal, LRf 0.052 0.108 0.120 0.178 0.065 0.139 0.173 0.262
Rejection prop, 1% nominal, LR 0.010 0.028 0.041 0.064 0.015 0.044 0.072 0.115
Rejection prop, 5% nominal, LM 0.055 0.111 0.137 0.208 0.045 0.071 0.075 0.079
Rejection prop, 1% nominal, LM 0.010 0.032 0.045 0.087 0.007 0.015 0.019 0.018
Rejection prop, 5% nominal, W 0.055 0.111 0.137 0.208 0.070 0.165 0.232 0.350
Rejection prop, 1% nominal, W 0.010 0.032 0.045 0.087 0.019 0.077 0.121 0.215

a Bias is N−1
∑

r
α̂r − α, where α̂r is the estimate of α on the r-th replication.

b As [a], but using median rather than sample mean.
c Proportion of replications where H0 : α = 0 is not rejected using the t-statistic

√
T α̂/

√

V̂α.
d Proportion of replications where usual GMM overidentifying restrictions test is rejected.
e Estimate of α̂r is bias-corrected using suggestion of Newey and Smith (2004).
f Same as [d], but for LR, LM, and Wald analogues of overidentifying restrictions test for ET/EL.
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counterparts, but for ET/EL they have the wrong sign. The biases reported in the second

row use the median rather then mean over N = 1000 replications; this is because the true

sampling distributions might be non-symmetric. Now the biases for 2SLS/GMM get worse,

whereas EL/ET get better.

For the EL/ET estimators, we implement a second-order bias-correction using a sug-

gestion of Newey and Smith (2004). Now the biases for ET are very similar to EL, and are

small, and so we conclude that our simulations confirm that EL/ET are not biased, even

when there are k = 10 near redundant instruments. On the other hand, it is clear that

the 2SLS/GMM estimators are biased, and the bias gets worse as more near redundant

instruments are added.

We now examine whether we get correct inference when testing the null hypothesis that

α = −0.5. The table shows that the coverage proportions are all too small for k = 0 (for

example, the ET coverage is 0.943 instead of 0.95 and is 0.979 instead of 0.99) and these

get worse as k increases. This deterioration is much worse for the 2SLS/GMM estimators.

When examining the standard overidentifying restrictions test, the so-called J-statistic,

the table shows that the GMM estimator has the correct rejection proportions, and they

are marginally worse for 2SLS. For the EL estimator, when there are no near redundant

instruments, they are also correct, but slightly worse for ET. However, when k increases, for

the ET/EL estimators they fall apart (for example, for ET and k = 10, the null hypothesis

is rejected 35.0% of the time when it should be 5%).

Thus, while EL and ET provide accurate point estimators, inferences based on the first

order asymptotic distribution of the estimator and overidentification restriction tests are

unreliable in these samples when nearly redundant instruments are included. In the next

sub-section, we explore whether a bootstrap can correct this problem.

4.3 Bootstrap

In this sub-section, we outline Brown and Newey’s (2002) bootstrap procedure for construct-

ing confidence intervals for the parameter estimators and performing the various versions
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of the overidentifying restrictions tests. For purposes of presentation, we let the random

vector containing the data variables be d = [y, w, z′]′, and dt denote the tth observation in

the sample on d, that is dt = [yt, wt, z
′
t]
′. The statistics of interest are:

t-statistics:

τ(·)(θ̂j , β0,j , V̂jj) =

∣

∣

∣

∣

θ̂
(·)
j − θ0,j
√

V̂jj

∣

∣

∣

∣

for (·) = GMM , EL, ET with θ̂j and V̂jj denoting the appropriate estimator and its

estimated first order asymptotic variance based on estimation method indicated by

(·).

Overidentifying restrictions tests: O
(·)
s (d1, d2, . . . dT ) where (·) =GMM , EL, ET , and

for (·) = GMM then s = 1 denotes the usual GMM overidentifying restrictions test,

for (·) = EL or ET then s = 1 denotes the Wald statistic for the overidentifying

restrictions, s = 2 denotes the LR statistic and s = 3 denotes the LM statistic.

Brown and Newey (2002) propose a version of the bootstrap based on GEL estimation

of this model. To describe their procedure, we introduce the following definition.

• Let πt = P (d = dt) and π̂t denote the GEL estimator of π based on the sample.

For the purposes of the bootstrap, we treat d as discrete random vector with sample space

DT = {dt; t = 1, 2, . . . , T} and probability distribution function PT (d = dt) = π̂t.
11 The

bootstrap samples are then created by sampling from replacement from this distribution

for d. Let B be the total number of bootstrap samples generated, and index the bootstrap

sample by b; so we have b = 1, 2, . . . , B. Then, for each step of the bootstrap b, we proceed

as follows.

1. On the bth step of the bootstrap, draw a sample T observations d
(b)
t with replacement

from PT (d = dt) = π̂t.

11We ignore the possibility here that dt = ds for some t 6= s as this does not occur in our simulations or
the health data.
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2. Based on {d(b)t ; t = 1, 2, . . . , T}, calculate:

• the GEL and GMM estimators, denoted here by θ̂
(b)
GMM , θ̂

(b)
EL and θ̂

(b)
ET .

• the test statistics:

– τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ) where θ̂

(b)
j and V̂

(b)
jj denote the appropriate estimator and

its estimated first order asymptotic variance based on estimation method

indicated by (·)

– O
(·),b
s (d

(b)
1 , d

(b)
2 , . . . d

(b)
T ) where (·) =GMM , EL, ET and s is defined as above.

As a result of applying the bootstrap, this procedure generates a sampling distribution

for each statistic of interest. It uses these distributions to provide bootstrap-based con-

fidence intervals for the parameters and bootstrap-based p-values for the overidentifying

restrictions tests as follows:

• bootstrap-based confidence interval for β0,j : Let τb = τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ), that is the

value of τ
(b)
(·) (θ̂

(b)
j , θ̂j , V̂

(b)
jj ) based on the bth bootstrap sample12. From the boot-

strap, the procedure generates the following sampling distribution for τ(·)(θ̂j , β0,j , V̂jj),

{τb}Bb=1. Let q
B
α be the 100(1− α)th quantile of {τb}Bb=1: the 100(1− α)% bootstrap-

based symmetric confidence interval for β0,j is:

θ̂j ± qBα

√

V̂jj . (12)

• bootstrap-based p-values for the overidentifying restrictions tests: To illustrate, con-

sider the overidentifying restrictions test based on GMM, denotedOGMM
1 (d1, d2, . . . dT )

above. Put Ob = OGMM
1 (d

(b)
1 , d

(b)
2 , . . . d

(b)
T ), that is the value of the GMM overiden-

tifying restrictions test based on the bth bootstrap sample - again, for simplicity of

notation, we suppress dependence (this time) on (·) and s. From the bootstrap,

the procedure generates the following sampling distribution for OGMM
1 (d1, d2, . . . dT ),

12Note this depends on j but this suppressed to simplify the notation
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{Ob}Bb=1. Redefine qBα to be the 100(1−α)th quantile of {Ob}Bb=1: then the bootstrap

version of the decision rule for this test is as follows: reject H0 : E[ztut(θ0)] = 0

if OGMM
1 (d1, d2, . . . dT ) ≥ qBα , that is test statistic from original data is compared to

the appropriate quantile obtained from the bootstrapped sampling distribution.

Table 4 reports the outcomes, and shows that all the coverage and rejection probabilities

are consistent with the nominal size.

Table 4: Coverage and rejection proportions using the bootstrap

EL ET
0 4 7 10 0 4 7 10

Coverage prop, 95% nominal, t-stat 0.958 0.941 0.944 0.942 0.955 0.941 0.938 0.938
Coverage prop, 99% nominal, t-stat 0.989 0.983 0.985 0.983 0.989 0.988 0.985 0.983

Rejection prop, 5% nominal, LR 0.038 0.051 0.045 0.039 0.043 0.057 0.047 0.045
Rejection prop, 1% nominal, LR 0.003 0.009 0.007 0.006 0.005 0.011 0.007 0.007
Rejection prop, 5% nominal, LM 0.043 0.057 0.045 0.043 0.039 0.041 0.029 0.019
Rejection prop, 1% nominal, LM 0.007 0.009 0.009 0.006 0.004 0.007 0.003 0.004
Rejection prop, 5% nominal, W 0.043 0.057 0.045 0.043 0.049 0.060 0.051 0.047
Rejection prop, 1% nominal, W 0.007 0.009 0.009 0.006 0.007 0.010 0.011 0.006

* See Tablenotes to Table 3. The number of bootstrap samples is B = 999.

5 The health expenditure example continued

We continue with the empirical example we introduced in Section 2 above. Table 5 reports

results from 2SLS and GMM estimation of the model using various choices of instrument.13

To recap Section 2, in contrast to the OLS estimate of 0.090 (0.064), the 2SLS estimate with

no near redundant instruments is –0.705 (0.245) (see the column labelled “Base” and row

labelled “2SLS”). We now report what happens when we add up to seven near redundant

instruments, and re-estimate the models using GMM, EL and ET.

In the rest of the row labelled “2SLS”, the near redundant instruments are added in

13We have applied standard tests available in the literature to confirm the relevance and validity of all
choices of instruments considered here. Details are omitted for brevity.
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Table 5: 2SLS, GMM, EL and ET estimates of β and standard errors∗

Estimator Base A B C AB AC BC ABCa

2SLS –0.705 –0.656 –0.705 –0.642 –0.608 –0.625 –0.641 –0.587
(0.245) (0.148) (0.158) (0.148) (0.135) (0.142) (0.145) (0.132)

GMM –0.627 –0.593 –0.574 –0.518 –0.527 –0.536 –0.507 –0.511
(0.200) (0.192) (0.175) (0.172) (0.162) (0.171) (0.160) (0.157)

EL –0.743 –0.787 –0.683 –0.658 –0.753 –0.694 –0.642 –0.734
(0.218) (0.233) (0.192) (0.191) (0.204) (0.200) (0.179) (0.196)

ET –0.747 –0.786 –0.681 –0.665 –0.729 –0.709 –0.642 –0.710
(0.218) (0.231) (0.190) (0.192) (0.197) (0.201) (0.178) (0.189)

Bias corrected
EL –0.711 –0.756 –0.655 –0.633 –0.725 –0.670 –0.619 –0.708
ETa –0.731 –0.770 –0.663 –0.653 –0.716 –0.698 –0.629 –0.698

Bootstrap-based p-values for the overidentifying restrictions testsb

EL, LR 0.81 0.74 0.47 0.75 0.69 0.65 0.41 0.57
EL, LM 0.80 0.73 0.45 0.74 0.68 0.63 0.39 0.56
EL, Wald 0.80 0.73 0.46 0.74 0.68 0.64 0.39 0.56
ET, LR 0.80 0.71 0.47 0.74 0.65 0.63 0.41 0.53
ET, LM 0.83 0.77 0.55 0.77 0.72 0.68 0.49 0.61
ET, Wald 0.79 0.70 0.44 0.72 0.64 0.62 0.39 0.52

Bootstrapped-based confidence intervalc

EL (upper) -0.204 -0.166 -0.171 -0.199 -0.216 -0.169 -0.175 -0.152
EL (lower) -1.218 -1.347 -1.138 -1.068 -1.235 -1.172 -1.063 -1.264
ET (upper) -0.160 -0.186 -0.088 -0.205 -0.193 -0.163 -0.119 -0.120
ET (lower) -1.334 -1.387 -1.275 -1.125 -1.265 -1.254 -1.165 -1.299

* Notes: for definitions see Table 2. “Base” specification is 3 stronger instruments only.
“A” adds 2 migration variables as near redundant instruments; “B” adds 3 further so-
cioeconomic variables; “C” adds 2 further labour market variables; so that . . . “ABC”
adds all 7 variables as near redundant instruments.

a ET based on B ≈ 950 because ET did not always converge.
b See Section 4.3 for full details. (The numbers of bootstrapped samples that were discarded
are 41, 30, 51, 21, 38, 29, 43, and 54 resp.)

c See Equation (12).
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groups, so that the final column has 7 near redundant instruments. Now the estimate is

−0.587 (0.132). Recall that the first stage R-squared is 0.793 for the Base model and rises

to 0.833 when there are 7 extra near redundant instruments. In the second row, all the

models are re-estimated using GMM. All the estimates are smaller in absolute value, and

have larger standard errors, except for the Base model.

The issue we have addressed in this paper is the fact that the 2SLS/GMM estimates

are sensitive to the number of near redundant instruments. In particular, we note that

the estimated elasticity tends to become smaller in absolute value as more instruments are

included. By contrast, the EL/ET estimates exhibit far less sensitivity to the choice of

instrument than their 2SLS/GMM counterparts. In particular, it is interesting to compare

the estimates of the Base specification (stronger instruments only) with the “ABC” specifi-

cation (all the instruments). For GMM, the estimates for Base are −0.627 and with “ABC”

are −0.511; where as for EL they are −0.743 and −0.734 respectively, and for ET, −0.747

and −0.710 respectively. As is apparent, the EL and ET estimates are close and different

from those obtained via 2SLS/GMM.

Given the insights from first and second order asymptotic theory described above, we

believe that the EL/ET estimates are the more reliable. Our simulations also suggest that

the Newey and Smith (2004) second order bias correction reduces the bias when k = 0;

see the second panel of the table. However, our simulations also show that the “usual”

inference techniques based on first order asymptotic theory are unreliable and this problem

can be corrected using the bootstrap. Therefore, we apply Brown and Newey’s (2002)

procedure, described in Section 4.3, to our example. In the third panel, the p-values for the

overidentifying restrictions tests all pass comfortably, and, in the fourth panel, we report

the corresponding bootstrapped-based confidence intervals.

Of the second order biased corrected EL/ET estimates, which should we choose? Whilst

the EL estimates range between –0.619 and –0.756 and the ET estimates range between

–0.629 and –0.770, because this paper is concerned with the relevance of near redundant

instruments, we focus on the ABC specifications, namely –0.708 for EL and –0.698 for ET.
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These estimates are roughly in the middle of the 8 possibilities.

Thus we conclude that elasticity of mortality with respect to health expenditure is

roughly −0.71. The equivalent GMM estimate is roughly −0.51, which we believe is biased

because of the near redundant instruments. In terms of policy implications, the differences

between the GMM and EL estimators can be demonstrated as follows: the GMM estimates

imply that increasing NHS expenditure by 10% leads to a 5.1% reduction in deaths which

translates to a cost per death averted of approximately £350,000, but the EL estimates

imply that a 10% increase in NHS expenditure would lead to 7.3% fewer deaths which

translates to a cost per death averted of £250,000.14 However, the bootstrap confidence

intervals suggest that there is considerable uncertainty about the estimate, with, for exam-

ple, the EL estimate having a confidence interval of (–0.152, –1.264). The corresponding

cost per death calculations turn out to be £1,120,000 and £140,000 respectively.

6 Concluding remarks

In his 1999 paper with Breusch, Qian and Wyhowski in the Journal of Econometrics, Peter

Schmidt introduced the concept of “redundant” moment conditions. Such conditions arise

when estimation is based on moment conditions that is valid and can be divided into two

sub-sets: one that identifies the parameters and another that provides no further informa-

tion. Their framework highlights an important concept in the moment-based estimation

literature namely, that not all valid moment conditions need be informative about the

parameters of interest.

In this paper, we demonstrate the empirical relevance of the concept in the context of

the impact of government health expenditure on health outcomes in England because this

is where exactly this type of structure is present. In estimating the elasticity of mortality

14These figures are obtained as follows. Using the summary statistics reported in Table 2 above, an
increase in NHS expenditure by 10% would cost £107 per capita. The death probability is 0.006 and a 5.1%
reduction in the death probability (from GMM) is a change of 0.000306. The cost per death averted is then
£107/(0.000306) = £350,000 approximately. With the coefficient estimated from the EL (–0.71) the change
in death probability is 0.000426, giving a cost per death averted of £250,000 approximately. In general, the
cost per death averted is £180, 000/β.
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with respect to health expenditure using English data for 152 PCTs in 2005–06, the 2SLS

estimate falls from –0.705 (0.245) with no near redundant instruments to −0.587 (0.132)

when 7 are added. This raises the obvious question of which figure the policy maker should

use.

Using a simulation study calibrated to these data, we perform a comparative study of

the finite performance of inference procedures based on Generalized Method of Moment

(GMM) and info-metric (IM) estimators. The results indicate that the properties of GMM

procedures deteriorate as the number of redundant moment conditions increases; in con-

trast the IM methods provide reliable point estimators but the performance of associated

inference techniques based on first order asymptotic theory, such as confidence intervals

and overidentifying restriction tests, deteriorates as the number of redundant moment con-

ditions increases. These results suggest that IM estimates combined with the Brown and

Newey (2002) bootstrap provide reliable inferences.

When we return to the health example, we find that the IM point estimate implies a

substantially lower cost per life saved than the GMM estimator. However, the bootstrapped

confidence intervals suggest that there is considerable uncertainty about the estimate.
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