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Abstract  Tensile behaviour of concrete is controlled by the generation and growth of micro-cracks. A 3D 

lattice model is used in this work for generating micro-crack populations. In the model, lattice sites signify 

solid-phase grains and lattice bonds transmit forces and moments between adjacent sites. The meso-scale 

features generating micro-cracks are pores located at the interfaces between solid-phase grains. In the model 

these are allocated to the lattice bonds with sizes dictated by an experimentally determined pore size 

distribution. Micro-cracks are generated by removal of bonds when a criterion based on local forces and pore 

size is met. The growing population of micro-cracks results in a non-linear stress-strain response, which can 

be characterised by a standard damage parameter. This population is analysed using a graph-theoretical 

approach, where graph nodes represent failed bonds and graph edges connect neighbouring failed bonds, i.e. 

coalesced micro-cracks. The evolving structure of the graph components is presented and linked to the 

emergent non-linear behaviour and damage. The results provide new insights into the relation between the 

topological structure of the population of micro-cracks and the macroscopic response of concrete. They are 

applicable to a range of quasi-brittle materials with similar dominant damage mechanisms. 
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1. Introduction 
 

The mechanical behaviour of quasi-brittle materials, such as concrete, graphite, ceramics, or rock, 

emerges from underlying microstructure changes. At the engineering length scale it can be 

described with continuum constitutive laws of increasing complexity combining damage, plasticity 

and time-dependent effects [1-4]. In these phenomenological approaches the damage represents 

reduction of the material elastic constants. From the microstructure length scale perspective damage 

is introduced by the nucleation and evolution of micro-cracks. While the population of micro-cracks 

formed under loading could be sufficiently well captured by various continuum damage models, the 

latter cannot help to understand the effects of the population on other important physical properties 

of the material. In many applications the quasi-brittle materials have additional functions as barriers 

to fluid transport via convection/advection and/or diffusion. It is therefore important to take a 

mechanistic view on the development of damage by modelling the evolution of micro-crack 

population, which can inform us about changes in the transport properties. Such a mechanistic 

approach needs to account for the material microstructure in a way corresponding to the mechanism 

of micro-crack formation [5]. Micro-cracks typically emerge from pores in the interfacial transition 

zone between cement paste and aggregate in cement-based materials [6].      

 

Discrete lattice representation of the material microstructure seems to offer the most appropriate 

modelling strategy for analysis of micro-crack populations. This is a meso-scale approach, where 

the material is appropriately subdivided into cells and lattice sites are placed at the centres of the 

cells. Discrete lattices allow for studies of distributed damage without constitutive assumptions 

about crack paths and coalescences that would be needed in a continuum finite element modelling. 

The deformation of the represented continuum arises from the interactions between the lattice sites. 

These involve forces resisting relative displacements and moments resisting relative rotations 

between sites. Two conceptually similar approaches have been proposed to link local interactions to 

continuum response. In the first one, the local forces are related to the stresses in the continuum 

cell, e.g. [7, 8]. In the second one, the interactions are represented by structural beam elements, the 

stiffness coefficients of which are determined by equating the strain energy in the discrete and the 
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continuum cell, e.g. [9, 10]. In both cases explicit relations between local and continuum parameters 

can be established for regular lattices [11], but the only isotropic material that can be represented in 

3D is a material with zero Poisson’s ratio. A bi-regular lattice that can represent all materials of 

practical interest has been proposed recently [12]. This lattice, currently formed by beams clamped 

at sites, is used in the current work together with microstructure data for concrete obtained with 

X-ray computed tomography. Failure models based on microstructure data and the new lattice have 

been previously used for modelling tensile and compressive behaviour of cement [13] and the 

compressive behaviour of concrete under various complex loading conditions [14]. This work 

makes a step into developing our understanding of the micro-crack population and its relation to 

macroscopic damage. 

 

Most of the work relating micro-crack populations to elastic moduli follows the fundamental paper 

[15], where analytical statistical derivation of the relation was provided. We follow the 

interpretation given in [16], in which the damage is measured as a relative change of the elastic 

modulus and related to micro-crack population via 
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where c is some measure of micro-crack size, N(c) is the number of micro-cracks of size c, NT is the 

total number of sites capable of nucleating micro-cracks, and  is a scaling parameter reported as 

0.47 for cracks in a 2D medium. Eq. (1) is our point of comparison for the simulations performed 

with the lattice model for various tensile loading cases. In the current work we are interested in 

testing the range of applicability of Eq. (1) and understanding the reasons for deviation from this 

rule, should such occur, by explicitly analysing the micro-crack population growth. 

 

2. Model and method 

 
2.1. The site-bond model 

 

The lattice model used in this work is illustrated in Fig. 1. The unit cell, shown in Fig. 1(a) is a 

truncated octahedron – a solid with six square and eight regular hexagonal boundaries. The 3D 

space can be compactly tessellated using such cells, with each cell representing a material 

meso-scale feature, e.g. grain, in an average sense. This representation is supported by physical and 

statistical arguments [12]. A discrete lattice is formed by placing sites at the centres of the cells and 

connecting each site to its 14 nearest neighbours; example is shown in Fig. 4(b). The lattice contains 

two types of bonds. Bonds denoted by B1 are normal to square boundaries and form orthogonal set. 

For convenience this set is coincident with the global coordinate system and B1 are referred to as 

principal bonds. Bonds denoted by B2 are normal to hexagonal boundaries. The hexagons lie on the 

octahedral planes with respect to the selected system, hence B2 are referred to as octahedral bonds. 

 

           
Figure 1. Lattice illustration: (a) Unit cell showing the site with 14 coordinating bonds: six principal, B1, and 

eight octahedral, B2; (b) Discrete lattice of beam elements. 
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If the spacing between sites in the principal directions is denoted by L, bonds B1 have length L1 = L, 

and bonds B2 have length L2 = 3 L / 2. Presently, the bonds are represented by structural beam 

elements of circular cross sections, with R1 and R2 denoting the radii of beams B1 and B2, 

respectively. The beams are clamped at the lattice sites. The two types of beams have identical 

modulus of elasticity, Eb, and Poisson’s ratio, b. With this setup, it has been previously shown that 

by calibrating four parameters: R1 / L, R2 / L, Eb, and b, the lattice can produce a large class of 

isotropic elastic materials with Poisson’s ratios of practical interest [12]. The reference material in 

this work is a concrete with E = 46 GPa and  = 0.27, for which the calibration, assuming isotropic 

elasticity, yields R1 / L = 0.2; R2 / L = 0.32; Eb = 90 GPa; and b = 0.4 [14]. The commercial 

software Abaqus [17] with Euler-Bernoulli beam formulation has been used for the calibration and 

the analyses reported in this work. The behaviour of the beams is linear elastic. 

 

2.2. Pore distribution and failure criterion 

 

Microstructure data for the reference material was obtained using X-ray Computed Tomography as 

reported in [14]. The pore size distribution was obtained by segmentation of reconstructed 3D 

images. The studied regions of interest had dimensions of 1700 x 1200 x 1200 voxels with a voxel 

size of ca. 15 m, allowing for a minimum detectable pore radius of ca. 15 m. The number of 

pores measured experimentally was n  41500. The measured pore radii, ci, were used to construct a 

cumulative probability distribution (CPD) with standard median ranking, where for pore radii 

ordered as c1 ≤ c2 ≤…≤ cn, the cumulative probability for pores with radii less than ci is given by F(c 

< ci) = (i - 0.3) / (n + 0.4). The CPD for the reference material is shown in Fig. 2(a), where the 

minimum and maximum pore radii are also depicted. The CPD is used to assign pore sizes to the 

lattice bonds. For each bond a uniformly distributed random number 0 ≤ r < 1 is generated and the 

assigned pore radius is calculated from c = F
-1

(r). This ensures that the distribution of pore sizes in 

the model comes from the same population as in the experiment. A fragment of the model with 

distributed pores is given in Fig. 2(b). The cell size, L, is calculated such that the volume of all 

distributed pores divided by the volume of the cellular structure equals the material porosity, which 

is ca. 5% for the reference material. The pore sizes shown are to scale with the sketched cellular 

structure. With respect to the cellular structure pores reside at cell boundaries, i.e. interfaces 

between grains. The lattice bonds are also depicted (diameters not to scale) in order to show that 

pores reside at bond centres. 

 

           
Figure 2. Pore distribution: (a) Cumulative probability of pore radii in the concrete; (b) Segment of model 

illustrating pores distributed to cell boundaries and corresponding. Pore sizes are to scale with the cell size. 

 

Damage in the lattice model is introduced by removal of bonds. Propensity for bond failure is 

measured by the parameter 
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where N and S are the normal and shear forces in the beam; T and M are the twisting and bending 

moments; Nf, Sf, Tf, and Mf are critical values. N is positive for tension and negative for 

compression. S and M are obtained from the values in the two directions normal to the beam axis 

using the square root of squares rule. Eq. (2) provides an interaction between the different forces 

that allows for failure when  ≥ 1 under the combined action of normal and shear stresses [18, 14]. 

Taking only the first and fourth term was previously used in criteria with no account for shear, e.g. 

[19]. The second and third term allow for shear failure similarly to [10]. The failure parameters Nf, 

Sf, Tf, and Mf can be related [18]. For a beam of circular cross section of radius R, the tensile failure 

stress is f = Nf / (R
2
). The maximum bending stress is max = 4M / (R3

), which equals f when 

Mf = Nf R / 4. Similarly, the shear failure stress is f = Sf / (R
2
). The maximum torsion stress is max 

= 2T / (R3
), which equals f when Tf = Sf R / 2. Thus  requires two material parameters: f and f. 

Noting that for quasi-brittle materials typically 1 ≤ f /f ≤ 2 [18], in this work f = 2f is used, 

representing more brittle materials. 

 

The tensile failure strength of a bond, f, is related to the size of the pore assigned to the bond. The 

relation used here is simpler than in the previous work [14] and based on the assumption that f is 

the beam remote stress for which the average stress in the beam ligament outside the pore attains a 

critical value 0. Thus 






















2

0 1
R

c
f  ,          (3) 

where c and R are the pore and beam radii, respectively, and 0 can be interpreted as the tensile 

strength of the material without a defect. With this setup and the choice f = 2f the failure model 

requires a calibration of a single parameter, 0, against experimental stress-strain curve. However, 

since the beams behaviour is linear elastic, the choice of 0 would affect only the calculated 

macroscopic stresses but not the order in which damage (beam failures) would evolve in the system. 

Because the interest here is investigating the evolution of damage, 0 = 1 MPa is used for the 

calculations, noting that macroscopic stress response can be simply scaled by another value of 0. 

 

2.3. Load cases and solution 

 

A model of size (20L, 20L, 20L) was used. The lattice contained 17261 sites and 113260 bonds: 

49260 B1 and 64000 B2. The coordinate system (X1, X2, X3) was coincident with B1, so that the 

boundary planes X1 = 0, X1 = 20L, X2 = 0, X2 = 20L, X3 = 0, X3 = 20L contained 21×21 sites (nodes). 

Boundary conditions normal to each plane were only applied. Thus Ui and Fi denote displacements 

and forces of nodes on plane with normal Xi, while other displacements and rotations on this plane 

were unconstrained. Table 1 shows the conditions on planes X1 = 20L, X2 = 20L, and X3 = 20L for 

the analysed cases. Additionally, U1 = 0 on X1 = 0; U2 = 0 on X2 = 0; U3 = 0 on X3 = 0, apply to all.  

 
Table 1. Boundary conditions for loading cases.  

Values given in bold denote applied conditions. A stands for values obtained from finite element analyses. 

Case U1 U2 U3 F1 F2 F3 Note 

C1 d1 A A A 0 0 Uniaxial unconfined extension 

C2 d2 d2 A A A 0 Plane stress 

C3 d3 d3 0 A A A Plane strain 

C4 d4 0 0 A A A Uniaxial confined extension 

 

For cases where nodal reaction forces were determined from analysis, the macroscopic stress in the 
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respective direction was calculated as the ratio between the total reaction force and the boundary 

area, i.e. i = Fi / 400L
2
. For the cases where nodal displacements were determined from analysis, 

the macroscopic strain in the respective direction was calculated as the ratio between the average 

displacement and the model length, i.e. i = Ui / (21
2
×20L). 

 

The evolution of damage was simulated by failure of bonds, controlled by an in-house code, and 

repetitive solution for equilibrium performed by Abaqus with constant applied displacements. The 

values of di were selected so that the strain energy density in the system prior to damage was one for 

the four cases for the purpose of comparison. At each step the in-house code obtains the forces and 

moments in all bonds and calculates the propensity for failure, , for each bond. The bond with 

maximum  is then removed and the updated lattice is solved for equilibrium. This leads to 

redistribution of forces for the continuous damage evolution. The magnitudes of  at which 

consecutive failures occurred can be used to cut-back the applied strain and resulting stress and 

obtain a macroscopic stress-strain response. The focus of this work is not on determining the 

stress-strain response, but on the relation between damage and crack population. To this end we 

define four damage parameters, measuring the relative changes of the hydrostatic stress and the 

three components of the stress deviator by: 
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Note that for isotropic deformation and damage these parameters must be equal and equivalent to 

the damage parameter defined via relative reduction of Young’s modulus or shear modulus. 

 

2.4. Crack population analysis 

 

A bond failure is thought of as a micro-crack nucleation, specifically as a separation between the 

adjacent cells in the cellular structure along their common face. Initially, the micro-cracks may be 

dispersed in the model reflecting the random distribution of pore sizes and the low level of 

interaction due to force redistribution. Interaction and coalescence may follow as the population of 

micro-cracks increases. The structure of the failed surface can be represented with a mathematical 

graph, where graph nodes represent failed faces and graph edges exist between failed faces with 

common triple line in the cellular structure, i.e. where two micro-cracks formed a continuous larger 

crack. Generally, the graph of a failed surface is a disconnected set of sub-graphs or components, 

some of which could be single nodes as at the start of damage evolution, while others could be 

connected sets representing larger micro-cracks as the coalescence develops. For the analysis, nodes 

are equipped with weights equal to the failed face areas. Edges are equipped with weights equal to 

the shortest path along connected faces between their centres.  

 

The components of a failed surface graph are sorted into sets according to their areas A1 < A2 … < 

Ak, so that each set contains Ni disconnected components of area Ai. The linear size of a component 

is approximated with the square root of its area so that the moment of the crack population is 

formed using (compare to Eq. (1)) 
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where AT is the total area of the faces in the cellular structure. This can in principle be replaced with 

a linear measure to conform to Eq. (1). A realistic choice is to use the component diameter which is 

the maximal shortest path between component’s nodes calculated with the weighted edges. The 

process, however, is computationally expensive and does not lead to noticeable changes in the 
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results for the cases analysed here. Eq. (5) is used after each failure event to calculate the evolution 

of the moment with damage. In addition, the maximal component is monitored. This is the largest 

connected cracked surface. 

 

3. Results and discussion 
 

Figure 3 shows the results of the evolution of the damage parameters defined by Eq. (4) as functions 

of the moment of crack population defined by Eq. (5). Recall that a damage parameter, based on the 

relative change of the Young’s modulus equals the damage parameters based on the individual stress 

components, deviatoric and hydrostatic, when the material remains macroscopically isotropic. In 

this case the same damage parameter describes the relative change of the shear modulus. The results 

for the cases of uniaxial extension, unconfined (a) and confined (d), show equality of the four 

damage parameters (approximate in case 4). This suggests that microscopic isotropy is maintained 

during damage evolution and the results reproduce very closely the linear relation predicted by the 

theory and given by Eq. (1). Interestingly, an estimate for the slope of the linear function from the 

figures is about 1.5, which is very close to the value of  reported in relation to Eq. (1). 

 

      

      
Figure 3. Damage parameters relation to crack population moment. 

 

In the cases of plane stress (b) and plain strain (c), however, the development of damage is radically 

different, illustrating the development of damage-induced anisotropy. In this case the damage 

parameter Di represents the relative reduction of the longitudinal shear modulus in direction Xi. 

Note that this is not the shear modulus relating shear stress to shear strain. In both plane cases, the 

evolution of D1 suggest that the system undergoes transition into negative longitudinal shear 

resistance, quite more pronounces in the plane strain case (c), while the shear resistance in direction 

X2 increases from its initial value. This behaviour may seem unusual, but it is not impossible for 

anisotropic materials. The bounds for Poisson’s ratios in such materials calculated in [20, 21] allow 

for negative longitudinal shear moduli with the values recorded here. The results merely show that 

extreme anisotropy has been developed in the material with the evolution of micro-crack population 

under the two plane cases. The development of the hydrostatic damage is also affected in these 

cases, as it cannot be described as a linear function of the cracked area moment. 
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To understand what causes the anisotropy in the plane cases the structure of the crack population 

needs to be studied in more detail. This requires a single damage parameter; an appropriate choice 

is the relative reduction of the strain energy density in the system, D = 1 – W / W(0), which is found 

to be approximately equal to the damage parameter defined via the relative reduction of the 

hydrostatic stress in all cases, see Fig. 4(a). The development of the maximal graph component, i.e. 

the main crack, with damage is shown in Fig. 4(b) with the ratio between the area of the maximal 

component, Am, to the total cracked area, A. It is clear that the main crack becomes dominant very 

early in the development of damage (at damage less than 1%) and its relative area grows nearly 

exponentially for all cases. It seems therefore sufficient to examine the structure of the maximal 

component as the damage develops. 

 

      
Figure 4. Hydrostatic damage (a) and relative area of main crack (b) development with damage defined as 

relative reduction of strain energy density. 

 

Figure 5 shows the development of the maximal component area, split into the areas of surfaces 

normal to the three principal axes, A1, A2, A3, and the surfaces formed on octahedral planes, A4. All 

areas are normalised with the total areas of the corresponding boundaries in the cellular structure. In 

the cases of uniaxial extension, unconfined (a) and confined (d), the development of the main crack 

involves creation of surfaces normal to the applied load and on octahedral planes. Although there is 

a difference between the two cases in the rates of creation of normal and octahedral surfaces, the 

overall balance results in isotropic damage, see Fig. 3(a),(d). 

 

      

      
Figure 5. Structure of maximal graph component with damage. 
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In the plane stress (b) and plane strain (c) cases, the development of the main crack follows very 

different patterns. The parallel increase of normal to the first loading axis and octahedral surfaces in 

plane stress, Fig. 5(b), seems to be responsible for the immediate development of damage-induced 

anisotropy, which after that appears to be moderated by the development of surfaces normal to the 

second loading axis. The constraint in plane strain, Fig. 5(c), leads to a delayed but rapid increase of 

surfaces normal to the first loading axis together with a lower rate of creation of octahedral surfaces. 

This appears to delay substantially the development of cracked surfaces normal to the second 

loading axis and results in significantly higher anisotropy.  

 

It should be noted that the structure-damage relations reported here were found qualitatively 

independent of the random assignment of pores in the lattice model as well as of the shape 

parameter of the pore distribution. This has been confirmed by a number of simulations with 

different shape of distribution and random assignments. One parameter that may affect the 

outcomes is the shear to normal strength ratio; this is a subject of ongoing work. It is further 

understood that the outcomes reported here are principally related to the selected lattice connectivity. 

However, the detail to which the surface topography can be studied is higher than the detail allowed 

by models based on cubic lattices. One unknown in the analysis is whether the crack development 

in the lattice is energetically equivalent to the development of continuum cracks. This question 

remains to be addressed in a future work. The current observations suggest that a common, 

constraint independent, damage evolution law might not be feasible to achieve. In such case it 

seems that a lattice-based analysis might be necessary as a sub-modelling approach to inform the 

behaviour of finite elements in a continuum model. 

 

The last question of interest in this work is related to the use of the weakest-link statistics for global 

failure predictions. It was suggested in [16] that weakest-link should be applied to the population of 

micro-cracks in the system. However, from the simulations performed here it is evident that a single 

crack, the maximal connected component of the cracked surface, becomes rapidly dominating the 

behaviour, Fig. 4(b), with few much smaller components disconnected from the main crack. This 

does not allow for invoking the weakest-link as a descriptor of final failure.  

 

      

      
Figure 6. Probability density of pore sizes in the lattice (a) and in the maximal component at failure for three 

loading cases (b)-(d). Results obtain with the same distribution given by (a). 
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Another approach would be to base the weakest-link statistics on the microstructure information, in 

this case the size distribution of crack-initiation features, the pores. This is similar to the approach 

used in the modelling of cleavage fracture, where second-phase particles are considered to be 

cleavage initiators. In order to show whether this is a realistic approach, a comparison is made 

between the probability density of pore sizes distributed in the lattice and pore sizes contained in the 

maximal component at failure. The results are shown in Fig. 6 for the pores in the entire lattice (a) 

and three of the loading cases as depicted. The results shown correspond to one and the same 

random assignment of pore sizes. Evidently, the probability density of the pores belonging to the 

final fracture surface is different from the lattice distribution and depends on the loading mode. 

While the initial damage may start at one and the same location in the system, the nature of loading 

develops the main crack in different ways and the final failure cannot be described as a weakest-link 

event using the statistics of the sizes of the failure initiation sites. This makes it difficult to derive a 

load-independent, purely micro-structure based relation between the macroscopic damage and the 

probability of failure. The outcome supports further the suggestion that macroscopic failure analysis 

needs to be performed with an underlying lattice-based analysis of local micro-crack propagation. 

 

4. Conclusions 
 

 A microstructure-informed strategy for analysis of damage evolution in quasi-brittle 

materials was presented, whereas damage results from the formation, growth and interaction 

of a population of micro-cracks. 

 It was demonstrated that in cases of non-uniaxial extension, such as plane stress or plane 

strain found ahead of a main crack, the micro-crack population development was 

responsible for elastic anisotropy with extreme variations of longitudinal shear moduli. 

 It was shown that the damage-induced anisotropy was a complex function of the crack 

population structure. A load-independent damage evolution law might not be achievable and 

explicit analysis of crack population development, e.g. using a lattice model, might be 

necessary to complement continuum finite element analysis of failure. 

 It was shown that the maximal connected component of the crack population, i.e. the largest 

crack, became dominant very early in the process of macroscopic damage and controlled the 

ultimate failure. The analysis if this component suggested that the global failure could not be 

treated as a weakest-link event. 

 The graph-theoretical approach to the analysis of micro-crack populations showed 

significant potential to reveal the underlying topological structure of the cracked surface. 

Further work is required to link the topological structure to a measure for global probability 

of failure.  
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