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Cluster detection has been widely applied to the problem of efficient data delivery in highly
dynamic mobile ad hoc networks. By grouping participants who meet most often into clus-
ters, hierarchical structures in the network are formed which can be used to efficiently
transfer data between the participants. However, data delivery algorithms which rely on
clusters can be inefficient in some situations. In the case of dynamic networks formed
by encounters between humans, sometimes called Pocket Switched Networks (PSNs), clus-
ter based data delivery methods may see a drop in efficiency if obsolete cluster member-
ship persists despite changes to behavioural patterns. Our work aims to improve the
relevance of clusters to particular time frames, and thus improve the performance of clus-
ter based data delivery algorithms in PSNs. Furthermore, we will show that by detecting
spatio-temporal clusters in PSNs, we can now improve on the data delivery success rates
and efficiency of data delivery algorithms which do not use clustering; something which
has been difficult to demonstrate in the past.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cluster detection has been an essential part of a data
analysts’ toolkit ever since Sokal and Sneath first refined
it in the field of numerical taxonomy in the early 1960s
[1]. Since then, many distributed cluster detection tech-
niques have been developed [2–4] and applied to the prob-
lem of opportunistic data delivery in highly dynamic
Mobile Ad hoc Networks (MANETs) where the probability
of a device being able to deliver a packet is unknown or dif-
ficult to calculate.

One example of a highly dynamic MANET where con-
nections between participants are often short lived and dif-
ficult to predict is sometimes called a Pocket Switched
Network (PSN) [5]. PSNs are created by personal mobile
devices carried by humans forming opportunistic connec-
tions with each other over short range wireless interfaces
such as Bluetooth and Wi-Fi. As a result, end-to-end paths
between participants in PSNs are relatively unstable when
compared to other types of MANETs due to link quality [6]
and the different movement patterns of participants [7].

By providing data-sets containing encounters between
personal mobile wireless devices, some recent Reality Min-
ing experiments [8] provide researchers with a valuable re-
source with which to explore the possibilities of PSNs. By
analysing Reality Mining data centrally, or by taking into
account all previous encounters using distributed meth-
ods, people and/or their devices can easily be grouped to-
gether to form aggregated clusters. In this paper,
aggregated clustering refers to clustering based on all of
the available data, without looking at the situational rele-
vance or time passed since the data was collected. Thus,
if cluster size is not controlled, aggregated clustering can
give rise to monotonically increasing cluster sizes over
time [4], and obsolete cluster memberships can persist if
movement patterns change [9]. Even if clusters in dynamic
networks are given an upper bound for size as in budget-
based clustering [10], it is not easy to infer temporal infor-
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mation from the resulting clustered data. Therefore, data
delivery methods which rely on aggregated or monotonic
clustering techniques to pass data between participants
in PSNs can suffer efficiency losses as packets are dupli-
cated along obsolete or slower paths.

With the help of Fig. 1 and a simple example, we will
now attempt to define this problem in a little more detail.
Imagine that di in a PSN wishes to send a message to an-
other called dk, but does not know the exact location or
have the ability to find the quickest path to dk. Because
end-to-end paths are unstable or unlikely in PSNs [11],
MANET routing protocols such as AODV [12] and OLSR
[13] cannot be used, as flooding route discovery packets
may not be able to identify an end-to-path at a particular
time, or paths change more often than they are discovered.
However, information such as a cluster label [14] which
identifies the cluster to which a device belongs could be
easily obtained on an opportunistic basis from directly
connected devices. Then the process with which di might
get a message to dk could be summarised as follows:

1. Device di wants to send a message to dk. di comes into
contact with device dj from cluster B who reports that
its cluster also contains dk. So di passes a copy of the
message to dj. di does not need to duplicate this mes-
sage further unless it meets another device from
cluster B.

2. Device dj does not have a direct link to dk according to
the graph in Fig. 1. However, it knows it belongs to
the same cluster and copies the message to whoever
it encounters within the cluster boundaries. This pro-
cess is repeated until the message is delivered to dk.

Upon consideration of this simplistic example, it may be
apparent that the number, size, and membership of the
clusters will impact upon message duplication. In a more
detailed description of the problem there is also the added
complication that clusters must be generated by devices
themselves using distributed cluster detection algorithms,
di

dk

A

B

C

dj

Fig. 1. Data delivery example using clusters to limit data duplication in
MANETs where paths are unknown.
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and confirmation that a message has been delivered may
not be able to be sent across a wide area. Indeed, when
the Quality distributed cluster detection and data delivery
algorithm [4] is used, the delivery cost per message in-
creases linearly with cluster size. Like the cluster detection
in Quality, the Simple [15] distributed cluster detection
method produces monotonically increasing cluster sizes.
In Simple, k is one of the parameters used to govern cluster
membership, and controls how fast clusters grow. In the
example in Fig. 2a, mean cluster size can be seen to in-
crease monotonically or not at all depending on the k value
chosen. Using the same clusters produced in Fig. 2a, the
cluster based data delivery algorithm Bubble [15] exhibits
very low efficiency when k is below 0.2 as shown in Fig. 2b.

When using either Simple or Quality, cluster size can be
seen to increase monotonically in many other Reality Min-
ing data-sets because of the densification [17,18] over time
in graphs generated from the encounters between devices.
Due to this densification and the changing movement pat-
terns of humans, obsolete membership within clusters per-
sists for the duration of experiments. Therefore, clustering
algorithms used for data delivery should take into account
temporal considerations such as; Do some participants
only meet during certain times of the day? How likely
are participants to meet again?
Day
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Fig. 2. Cluster size and data delivery efficiency (packets delivered/
relayed) over time using Simple, and Bubble using the same clusters to
deliver data with the Cambridge Reality Mining data-set [16].
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In 2008, Hui [9] stated that spatio-temporal clusters
may only be valid for a particular time, such as during a
conference or meeting with friends. He also stated that
the current distributed cluster detection algorithms cause
spatio-temporal clusters to be lost entirely due to aggrega-
tion of individual encounters between participants. Our
approach in this paper, called Distributed Rise And Fall
spatio-Temporal clustering (DRAFT) presented in Section 3,
aims to detect the lost spatio-temporal clusters by allow-
ing clusters to decay over time. As part of our analysis
we will look at the spatio-temporal clustering behaviour
of participants in Reality Mining experiments in Section 4,
and then show how spatio-temporal clusters can improve
on the long term efficiency of cluster based data delivery
algorithms in Section 5.

1.1. Related work

Considering temporal behaviours along with clustering
can give us new insights into cluster characteristics and
relevance. Recent work from Pietilainen and Diot [19] has
identified a number of clusters which occur within short
time frames, and found a correlation between clusters that
occur within several time frames, and social characteristics
such as friendship and home city.

Pietilainen and Diot also went onto show that devices
that spend the most time within these social clusters do
not impact on data delivery performance metrics as much
as other devices. Moreover, Gaito et al. [20] have shown
that less than 10% of online friends met during experi-
ments with students. So methods which hope to bootstrap
the clustering process using social clusters generated from
social networking websites [21] may not provide an
improvement to data delivery efficiency in PSNs.

Contacts between non-social devices, also known as
vagabonds [22], significantly outnumber social contacts
and therefore have a greater collective effect on data deliv-
ery in PSNs [19]. Therefore, it may be reasonable to suggest
that non-social or spatio-temporal, clusters which include
social and non-social devices, may lead to more efficient
data transfer.

Two of the most advanced data delivery schemes for
PSNs that have the capability to consider transient social
as well as non-social links are PRoPHETv2 [6] and Bubble
[2]. PRoPHETv2 consistently performs well in a variety of
simulated MANETs as well as in the Networking for Com-
munications Challenged Communities (N4Cs) deployment
[6]. This makes PRoPHETv2 the protocol to beat in terms
of data delivery and efficiency. PRoPHETv2 uses the history
of previous encounters to estimate delivery predictability
for messages and gives more weight to recent ties. PRo-
PHETv2 works because individual devices have different
chances of delivering a particular message, but it does
not use the clustering paradigm where messages are dupli-
cated amongst cluster members.

It was shown in the N4C experiment that some of the
parameters PRoPHETv2 needs to function correctly (typical
inter-connection times and a suitable constant for delivery
predictability ageing [6]) are difficult to calculate for differ-
ent areas of the network. The N4C network also high-
lighted the Parking Lot Problem in which many short
Please cite this article in press as: M. Orlinski, N. Filer, The rise and fa
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encounters are separated by short time periods, whilst hu-
man movement patterns dictate longer durations. These
short encounters are attributed to poor Wi-Fi connections,
and are the justification for using cumulative encounter
times rather than single encounter times when deciding
whether to include devices in clusters later on in Section 3.

Like PRoPHETv2, Bubble [2] contains a directional rout-
ing protocol in which paths to destinations are found by
bubbling data through the network. Bubble uses global cen-
trality (which is difficult to estimate distributively [23]) as
a guide for the bubbling process, but unlike PRoPHETv2,
Bubble uses clusters provided by distributed cluster detec-
tion algorithms such as Simple to prune the epidemic [24]
distribution tree once messages reach a cluster containing
the destination.

To ensure high delivery success rates, messages can be
duplicated within clusters that grow quickly. The Quality
[4] distributed cluster detection and delivery mechanism
depends on the identification of pairs of devices with high
cumulative encounter times to each other. These well con-
nected pairs add each other to their respective local clus-
ters, which are an individual’s view of the cluster to
which they belong held in local memory. If devices with
different local clusters meet and exchange their local clus-
ters, a wider view of the network is seen by both devices.
Local clusters help to prune the epidemic distribution tree
of the network because messages will only be copied to de-
vices which contain the message destination in their local
cluster. Quality produces very large monotonically increas-
ing local clusters, and duplicates messages across a large
number of devices in order to ensure delivery. As a result,
Quality has a tendency to deliver more messages than Bub-
ble, but suffers from poor efficiency, especially when run
for long periods [18].

Work by Borgia et al. [25] proposed a temporal adapta-
tion to the Simple distributed clustering algorithm [15]
which can be used to inhibit local cluster growth. Their
proposal called AD-Simple, relies on pruning clusters of ob-
solete members using a timer which counts down from the
moment devices are entered into local clusters. However,
AD-Simple maintains home clusters for long periods, thus
AD-Simple may not be suitable as a purely spatio-temporal
approach to cluster detection.

Another distributed clustering mechanism often used is
epidemic label propagation [26]. Like AD-Simple, the clus-
ter sizes produced by epidemic label propagation are not
monotonic. However, they can sometimes suffer from the
monster cluster problem where a single cluster evolves
to dominate the entire network. SHARC [27] prevents mon-
ster clusters from forming but suffers from the wandering
cluster problem which is caused when large groups of de-
vices propagate their cluster labels elsewhere.

The work in this paper will focus on the detection of lo-
cal spatio-temporal clusters which are made up of both so-
cial and non-social devices, and which are only relevant to
a particular space and time. The approach is similar to that
of our recent Distributed Expectation-Based Spatio-Tem-
poral (DEBT) clustering algorithm [18] where time is split
into a number of discrete time frames in order to judge
connectivity using cumulative encounter times. However,
increasing data delivery rates whilst maintaining efficiency
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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in DEBT proved difficult. This paper details our newest ap-
proach where clusters are non-monotonic and devices
cooperate to remove others from the spatio-temporal clus-
ters. This approach will be shown to be able to compete
with PRoPHETv2 on both data delivery success rates and
efficiency.

2. Temporal data in Reality Mining experiments

Spatio-temporal clusters were extracted from the Real-
ity Mining data-sets Infocom5, Infocom6, Cambridge [16],
and Reality [28]. Each of these is available from the CRAW-
DAD repository 1 and each has been converted to run in The
One Simulator [29]. As the encounters within these Reality
Mining experiments are recorded using Bluetooth, they are
not symmetric [30]. However, because this paper is explor-
ing what might be possible using PSNs [31], the data-sets
are used to represent ‘‘data transfer opportunities that each
of the participants would have, if they were equipped with
devices which are always-on and always carried’’ [16]. Fur-
thermore, when using Bluetooth on modern smartphones,
there is often a period of time where user interaction is
needed to ‘‘pair’’ devices so that data can be exchanged. This
is obviously not ideal for PSNs which would require autono-
mous networking; so that consideration is also dropped
from our analysis. We believe these assumptions are not
unrealistic. In the near future, autonomous ad hoc network
technologies, perhaps even Bluetooth Scatternets [32,33],
will become more widely available. These will also offer fas-
ter device discovery [30] so that data can be exchanged sym-
metrically between nearby devices for most of the duration
of the encounter.

Many observations about the temporal information in
the current Reality Mining data-sets have been made pre-
viously. Henderson et al. [7] showed that encounter pat-
terns change hour-to-hour and day-to-day, yet human
movements are often repeated on a day to day (diurnal)
or week to week basis. The daily habits of individuals also
cause changes to measurements such as degree centrality,
closeness, geodesic betweenness, shortest-path, and fast-
est-path when analysing traces from rush hour or non-rush
hour traffic [34].

The diurnal movement patterns of the human working
day affect the probability of a meeting between devices
and total encounter times at different times of the day
[35]. Furthermore, the distribution of inter-contact times
in the data-sets has been shown to differ greatly in 3 h long
time frames [36], and the global centrality of devices in 6 h
time frames was shown to correlate well with a device’s
global centrality when calculated across an entire experi-
ment [2]. Table 1 expands on this by showing the changing
probability of a meeting between any two devices within
6 h time frames. We only studied the internal devices from
each data-set and did not include external devices found
by participants in our analysis. This was for two reasons;
Firstly, it was unclear which external devices were static
and which were mobile, and secondly, some of the external
devices found were only seen once. The different probabil-
ity for each quarter day confirms the observations made by
1 CRAWDAD Repository http://crawdad.cs.dartmouth.edu/.
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Leung et al. [34] that network measurements change at dif-
ferent times of the day, and it hints that cluster member-
ship may also be different if calculated separately in each
time frame.

2.1. Dynamic encounter graphs

PSNs are made up from many personal mobile devices
forming opportunistic, ad hoc connections between them-
selves. In each of the Reality Mining data-sets used to de-
scribe PSNs in this paper, new encounters arrive in a
bursty fashion, with periods of high activity lasting up to
12 hours often followed by much quieter periods, as illus-
trated by Fig. 3.

Despite this temporal behaviour, encounters within
PSNs and MANETs are commonly expressed spatially using
aggregated contact graphs wherein devices are repre-
sented as vertices and pair-wise encounters between de-
vices are shown as edges. In aggregated contact graphs,
edges often contain information from many separate
encounters and details such as the bursty behaviour in
Fig. 3 are missing.

In a dynamic encounter graph [37], encounter data is
split into short sequential time frames. Each time frame
contains an aggregated form of a contact graph albeit
retaining some relevance to certain periods depending on
the time frame length. This is sometimes called stratified
sampling [34]. An illustration of one possible dynamic
encounter graph G is given in Fig. 4. Within G there are a
number of devices which do not change between time
frames t1 � t3, and pair-wise observations within time
frames are independent of observations from other time
frames. For example, an edge representing an asymmetric
encounter between devices di and dj within time frame t1

in Fig. 4 is represented as et1
didj

.
As in aggregated contact graphs, the interactions be-

tween devices represented in dynamic encounter graphs
can be arbitrary measurements, such as signal strength
and the number of messages transferred. Suppose that
the dynamic encounter graph in Fig. 4 shows transient
asymmetrical connections between devices where data
transfer is possible. Then it is important to note another
property of these MANETs which can be lost during aggre-
gation: the shortest path between devices in a dynamic
encounter graphs is often not the quickest [36]. Further-
more, until the relationship between edges in Reality Min-
ing data is fully understood, every edge should be believed
to be independent of each other, which means a connec-
tion between two devices does not guarantee a second
connection between two other devices in the next time
frame.

Even within shorter time frames, temporal information
about interactions between devices could still be lost in
dynamic encounter graphs. Occasions within each time
frame where the frequency of encounters varies may not
be retrospectively identified. It has been found in previous
work on temporal contact graphs [38] that identifying
meaningful resolution levels is critical to matching the rate
of change in network structure. To guard against loss of
temporal information, a number of other strategies for
labelling edges can be adopted:
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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Fig. 3. New contacts in hourly time frames for the different Reality Mining data-sets.

Table 1
Comparison of mobility traces and the average encounter probability between devices for the 1st, 2nd, 3rd, and 4th quarter of the day.

Infocom5 Infocom6 Cambridge Reality

Environment Conference City Campus
Duration (day) 3 3 12 246
Number of devices 41 78 36 97
Inter-probe time (s) 120 120 600 300
Daily encounter probability 0.7807 0.7324 0.24 0.0022
Prob. 1st 1/4 day 0.3892 0.3549 0.0122 0.0003
Prob. 2nd 1/4 day 0.4049 0.0447 0.1754 0.0011
Prob. 3rd 1/4 day 0.0173 0.3116 0.0852 0.0019
Prob. 4th 1/4 day 0.4086 0.4683 0.0113 0.0012
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1. Edges between vertex pair di and dj which occur
between times tstart and tend can be represented in the
form etstart tend

ij . Furthermore etstart tend
ij could be weighted to

represent connection strength between di and dj during
the interval tstart to tend.

2. Edges between di and dj could be weighted to show
total encounter or connection time after tstart. E.g. etstart

ij

could be used to express the duration of an encounter
which started at tstart between di and dj.

However, neither of these approaches are adopted for
this paper. The creation of dynamic encounter graphs al-
lows us to easily identify collective behaviours of devices
in temporal regions within Reality Mining data-sets, simi-
lar to the identification of the bursty behaviour seen previ-
ously in Fig. 3. Furthermore, the slight aggregation of
Please cite this article in press as: M. Orlinski, N. Filer, The rise and fa
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encounter data allows us to mitigate for the Parking Lot
Problem in our analysis.
3. Distributed spatio-temporal clustering

Distributed Rise and Fall spatio-Temporal (DRAFT) clus-
tering is our proposed method to provide spatio-temporal,
non-social clustering within dynamic encounter graphs. It
combines spatial clustering with a decay function. This
means that clusters reflect current and recent behaviour
patterns by excluding devices which have not been seen
for a long time.

The protocol needs three parameters to govern the rate
at which clusters grow and decay, suggested values for
which will be discussed in the following sections and de-
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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pend on the mobility, expected encounter duration, and
what length of time spatio-temporal clusters describe:

1. The familiar threshold of length s seconds is the thresh-
old at which cumulative encounter durations between
devices trigger the cluster inclusion process.

2. A time frame of length t seconds governs the interval at
which the cumulative encounter durations for each
device are decayed.

3. The decay ratio d which should be in the range 0 6
d 6 1 governs how much the cumulative encounter
durations are reduced at the end of each time frame.

The reason why cumulative encounter durations are
stored for neighbouring devices running DRAFT, rather
than a single encounter or inter-encounter times [6], is to
allow for the Parking Lot Problem. If encounters are fre-
quently interrupted by lost neighbour discovery requests,
then basing cluster membership on single encounter dura-
tions or the time between encounters will be unreliable. It
is also important to note that after the first time frame,
pair-wise encounter durations are no longer truly cumula-
tive. They have been decayed by a certain amount, but fu-
ture encounter durations between the pair will continue to
be added to the new amount. Also, encounter duration de-
cay is multiplicative rather than additive because some de-
vices may have very different mean encounter durations to
others. Thus encounter time decay being multiplicative al-
lows for different levels of connectivity, and so decay can
be specified easily for the entire network.

3.1. Building clusters

Spatio-temporal clusters in DRAFT are formed opportu-
nistically by non-social [19], pair-wise encounters, which
are then used as a network hierarchy with which to relay
messages within PSNs. The process with which devices
are added to local spatio-temporal clusters involves three
data structures for efficient processing. A device di main-
tains the following information:
Please cite this article in press as: M. Orlinski, N. Filer, The rise and fa
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1. A set of tuples containing encountered devices and
associated encounter durations, called the neighbour
set Ni.

2. A local spatio-temporal cluster Ci.
3. A table Di, containing devices marked for deletion from

the local spatio-temporal cluster, and devices already
deleted.

The process with which clusters are then built up can be
summarised as:

Rule 1 Initially Ci is set to {di}, Ni and Di are set to ;.
Rule 2 When di encounters another device dj, di enters dj

into Ni if it is not already there, and begins to add
the duration of the encounter to the corresponding
record in Ni.

Rule 3 If the encounter time stored in Ni for dj, called Nij,
exceeds the familiar threshold s; or di encounters
a device dj which is already a member of Ci; or it
is the end of the current time frame on di and Nij > -
s; then di requests information from dj i.e. di

requests Cj and Dj from dj. If the request is success-
ful the algorithm then:
1. Adds dj to the local spatio-temporal cluster, Ci of

di.
2. If dj has been marked for deletion by being pres-

ent in Di (see Section 3.2), then dj is ‘‘forgiven’’
and removed from Di.

This process is performed independently by all the
other devices in the network, including dj.

3.2. Cluster decay and device cooperation

To facilitate cluster decay, the passage of time is split
into a number of discrete time frames of length t. At the
end of each time frame, associated encounter times in
neighbour sets are decreased by multiplying them by the
decay ratio d (d = 1 no decay, d = 0 absolute decay). Cluster
membership is reassessed by each device:

Rule 4 Once the requested information from Rule 3 in Sec-
tion 3.1 has been received and processed, the algo-
rithm also tries to delete old records:
1. di checks records in Di against those in Dj. As

encounters in PSNs are opportunistic, a spatio-
temporal commonality test has been passed
and any devices which are in both Di and Dj

are deleted immediately from Di and Ci without
waiting until the end of the next time frame.

2. If a record in Di is in Cj but not Dj then the device
is not deleted.

3. If a record is in Di but not in Cj or Dj then the record
is left in Di in case another device is encountered
with a matching record in the future.

Rule 5 At the end of each time frame:
1. Any records still in both Ci and Di are considered

old and removed from Ci.
2. The records are kept in Di for commonality tests

with other devices, or until the device in the
record is added to Ci once more.
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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3. All connected times for devices in Ni are multi-
plied by the decay ratio d in order to keep
records fresh. Any records which fall below the
familiar threshold s are marked for deletion by
being added to Di ready for the end of the next
time frame.

To save memory, devices are also removed from neigh-
bour sets once their associated encounter durations decay
to below a small number e.g. 0.1 s. Informally, the values of
d, t, and s will be related to the mobility of the participants
and how reactive cluster membership should be, which is
determined by the application and/or user. As inter-human
encounters are transient and diurnal [7], the length of s for
PSNs should be greater than the mean encounter duration
for each device, but less than 24 h. The combination of
these three variables makes the DRAFT algorithm tunable
for a variety of applications. If clusters are needed which
grow rapidly and decay quickly, s should be close to the
mean encounter duration, and d should be closer to 0 than
1. Another way to phrase this is that if mobility is high, and
clusters should reflect recent encounters, d should be low
but not zero, and s close to the mean encounter duration.
Conversely, if clusters are needed that reflect longer peri-
ods, d can be made higher.

3.3. Data delivery

One of the aims of this work is to test spatio-temporal
clustering for data delivery efficiency against aggregated
monotonic clustering. For this reason, the semi-oblivious
data forwarding mechanism used in Quality [4] is adopted,
thus testing only the different cluster definitions. This data
forwarding method floods clusters with duplicate packets.
It is unforgiving in that many duplicate packets will be cre-
ated if clusters do not accurately reflect current or future
connectivity.

Algorithm 1. Data delivery in DRAFT.

for each connected device as e do
if NotInLocalCluster(e) then

RequestLocalClusterFrom(e)
end if
if HaveLocalClusterOf(e) then

for each message as m do
if e = DestinationOf(m) then

DeliverMessage(e,m)
DeleteMessage(m)

els if LocalCluster of e contains
DestinationOf(m) then

CopyAndTransferMessage(e,m)
end if

end for
end if

end for

The ability of devices to request local clusters from
nearby devices allows them to check for possible 2-hop
paths. Note, no explicit extra roles for devices are assigned
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during this process. 2-Hop routing is simply a consequence
of the movement patterns of participants, and being able to
either:

1. Ask a remote device if it has a message destination in
it’s local cluster.

2. Or inspect a copy of the remote device’s local cluster to
see if it contains a message destination.

Both approaches would work with DRAFT, but as de-
vices may have many messages ready to transmit and
the DRAFT algorithm can request a remote device’s local
cluster, the later approach is used to cut down on the num-
ber of requests. The actual checks performed before mes-
sage duplication are detailed in Algorithm 1. They do not
include checks for devices further than 2 hops away as this
would require devices to exchange and store a large
amount of additional data.

Fig. 5 illustrates the resulting 2-hop delivery possibili-
ties using example local spatio-temporal clusters of di

and dj. Upon meeting dj, the device di can inspect dj’s clus-
ter information Cj to see if the destination of a message lies
within Cj. If it does, then the message can be copied to dj.
There is no guarantee that a message will be delivered
immediately, or even by device dj due to device mobility.
However, the message is now with both di and dj which
may increase the chance of the message reaching the des-
tination without obviously flooding the network.

3.4. Simulation environment

The experiments contained within this paper were con-
ducted using The One [29] network simulator and encoun-
ters provided by the Reality Mining data-sets from
Section 2. Using this method, simulations attempt to create
the conditions found in future PSNs. As encounters found
in the Reality Mining data-sets are records of real events,
the resulting simulations are free from errors introduced
when using synthetic movement models such as The
Working Day Movement Model [35]. However, one
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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Table 2
Average number of instructions per device issued by DRAFT to increase
(Inc.) and decay (Dec.) cluster size.

Data-set Simple DRAFT

Inc. Dec. Inc. Dec.

Infocom5 17.6 n/a 46.1 17.5
Infocom6 29.8 n/a 136.4 116.3
Cambridge 10.6 n/a 29.5 12.5
Reality 16.3 n/a 34.4 25.3

Table 3
Mean local cluster size.

Data-set Simple DRAFT

Infocom5 81.46 75.20
Infocom6 79.59 49.99
Cambridge 86.81 54.37
Reality 55.84 13.62
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drawback to this approach is that the networks are frag-
mented as increasing participation in Reality Mining
experiments can be expensive.

Even though our simulations assume symmetric
encounters and communication channels with a 2 Mega-
bits per second data rate up and down, the DRAFT algo-
rithm does not break down if requests for information
fail. In fact, failures to reply to requests is handled in the
DRAFT protocol and this helps to prune the epidemic dis-
tribution tree of unreliable links.

In the experiments in Section 5, all messages are
160 bytes in size to model typical mobile phone text mes-
sage size. New messages are generated to be sent between
random pairs of devices at 30 s intervals. For controlled
experiments, the same five random message generation
patterns were used for DRAFT 2 and other protocols against
which we compare data delivery. The message Time To Live
(TTL) was set at 1 h for all the data-sets other than Reality,
where message TTL was set at 1 day due to the sparsity of
the encounters. Once the TTL for a message has expired then
the message is deleted.

It is also important to note that for the Reality data-set,
we have truncated the data and only used data available
between the time-stamp ranges 1,094,545,041 and
1,111,526,856. This is because there is no significant activ-
ity before and after these times respectively. Furthermore,
the parameters suggested by the PRoPHETv2 [6], Bubble
[2] and Quality [4] research papers were used for their
respective protocols.
4. Spatio-temporal cluster analysis

This section will offer analysis of the spatio-temporal
clusters and possible 2-hop neighbours formed when using
the DRAFT algorithm with the chosen Reality Mining data-
sets. We will also attempt to describe some of the differ-
ences between building spatio-temporal and aggregated
monotonic clusters.

4.1. Updates to clusters

In both aggregate monotonic and spatio-temporal clus-
tering, clusters undergo a number of changes as they are
created. Table 2 shows the number of changes to spatio-
temporal clusters in DRAFT with d = 0.8, s = 120 s and
t = 3600 s as an example, compared to the aggregated
monotonic cluster detection method called Simple [15]
which was introduced in Section 1. Remember that cluster
decay is used by DRAFT to remove devices from clusters.
With DRAFT continuously assessing cluster membership,
it creates many more cluster formation related operations
in each data-set.

4.2. Resulting cluster size

As cluster membership in DRAFT (d = 0.8, s = 120 s, and
t = 3600 s) is continuously reassessed, cluster size varies
2 An implementation of the DRAFT protocol for The One Simulator can be
obtained from http://bit.ly/Rvvo86.
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over time as cluster members are added and removed.
Table 3 shows that normal local spatio-temporal clusters
also end up being smaller than aggregated monotonic clus-
ters from the Simple [15] algorithm used by Bubble.

When using cluster based forwarding, smaller clusters
may lead to fewer packets being delivered to their final
destinations [4]. However, the next subsection will show
that when considering the possible number of 2-hop
neighbours, smaller cluster size may not prove to be a bar-
rier to data dissemination.

4.3. Cluster size and composition over time

Fig. 6 shows daily snapshots of the mean number of de-
vices contained in local spatio-temporal clusters and the
mean number of possible 2-hop neighbours for each
data-set (DRAFT with d = 0.8, s = 120 s, and t = 3600 s). In
the Infocom and Cambridge data-sets, the number of 2-
hop neighbours is on average 87% larger than the number
of devices in local spatio-temporal clusters. In the Reality
data-set the proportion of 2-hop neighbours to local spa-
tio-temporal cluster size is much larger, with on average
three times more 2-hop neighbours than devices in spa-
tio-temporal clusters.

It is also interesting to note that the number of 2-hop
neighbours increases over time, despite local spatio-tem-
poral cluster size possibly decreasing over the same period.
Furthermore, the set of 2-hop neighbours usually contains
most of the devices in each experiment (>60% of devices in
Reality, and >90% in other experiments), but this may be
due to the experiment being enclosed in a relatively con-
fined geographic space.

4.4. Cluster size and 2-hop neighbours

Heat-maps for normalised local spatio-temporal cluster
sizes and 2-hop neighbours for hourly snapshots, using
DRAFT settings d = 0.8, s = 120 s, and t = 3600 s, are shown
in Fig. 7. They show a marked difference between the
Reality trace and other data-sets in terms of both
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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Fig. 6. Mean and max local spatio-temporal cluster sizes and 2-hop neighbours over time.
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spatio-temporal cluster sizes and 2-hop neighbours. In the
Reality trace, there are often many 2-hop neighbours but
cluster size remains low with a mean hourly cluster size
of just 10 devices compared with 16 in Cambridge, 25 in
Infocom5, and 38 devices in Infocom6. This limited cluster
size in Reality can have a negative effect on spatio-tempo-
ral cluster based data delivery as shown later in
Section 5.1.

4.5. Time spent in spatio-temporal clusters

The time spent in spatio-temporal clusters is dependent
on how the spatio-temporal clusters are defined. DRAFT is
no different and spatio-temporal cluster membership
times depend on factors such as decay rate, familiar
threshold and time frame size. Fig. 8 shows the probability
that spatio-temporal cluster membership time will exceed
a given value x in each data-set for d values of 0.1, 0.5, and
0.8 when using a time frame length of 1 h and a familiar
threshold of 120 s.

Interestingly, the data shows that with a fast decay rate
d = 0.1, over 81% of all cluster memberships still last longer
than 1 h. In Reality though, 98% of spatio-temporal clusters
memberships last longer than an hour, suggesting that the
number of vagabonds (devices which move between clus-
ters) in Reality is low.

There is also a marked difference in cluster duration be-
tween the conference and campus experimental environ-
ments. In the Infocom5 and Infocom6 data-sets, between
40% and 57% of spatio-temporal clusters last longer than
Please cite this article in press as: M. Orlinski, N. Filer, The rise and fa
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3 h. However in the campus datasets the time spent in spa-
tio-temporal clusters is generally less. In Cambridge less
than 30% of devices spent longer than 3 hours in DRAFT
clusters, and in Reality only 10%. This indicates that the
campus wide experiments have a more diverse selection
of participants who interact for shorter periods than par-
ticipants at a conference.
5. Data delivery results

In this section, the DRAFT protocol will be compared
against two opportunistic message delivery protocols, Bub-
ble [2] and Quality [4]. We also provide figures for the PRo-
PHETv2 [6] forwarding protocol which does not use
clustering but provides state of the art delivery success ra-
tios and efficiencies. For Bubble, both the K-clique and
Simple [15] clustering techniques were used to provide
the aggregated monotonic clusters needed for the
experiments.

For d values less than 0.5 (but s still 120 s and
t = 3600 s), spatio-temporal clusters in DRAFT decay too
rapidly to give reliable data-dissemination. It should also
be stressed that ‘‘cherry picking’’ parameters for protocols
in this way is acceptable and consistent with other works.
The Bubble and PRoPHETv2 algorithms were afforded the
same consideration, and only the value ranges from their
respected papers and One Simulator implementations
were used to give the best possible results for each
protocol.
ll of spatio-temporal clusters in mobile ad hoc networks, Ad Hoc
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Table 4
Mean data delivery results across all experiments. Time frame length for
DRAFT was always t = 3600 s.

Method Data delivery ratio Overheads

Bubble 0.1141 20.6972
PRoPHETv2 0.1445 25.6832
DRAFT (d > 0.5, s = 120 s) 0.1472 25.3480
Quality 0.1717 56.3885
DRAFT (d = 0.99, s = 5 s) 0.1620 37.1880
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Overall DRAFT with d values in the range 0.5 < d 6 0.99,
s = 120 s, and t = 3600 s delivers as many packets as PRo-
PHETv2, but with slightly lower overheads in the form of
duplicate packets (see Table 4). The data delivery results
for the algorithms presented here may seem low, but this
is not a result of a limitation in the technology. The low
data delivery success rates are a consequence of the ran-
dom message generation, short TTL of messages (see Sec-
tion 3.4), and the fragmented nature of the Reality
Mining data-sets due to low participation and long inter-
vals between neighbour discovery probes [30].

The variation of the data delivery results for each proto-
col can be found in Fig. 9. Generally, DRAFT can be counted
upon to deliver more packets than Bubble or PRoPHETv2.
However, Fig. 9 also shows that DRAFT’s data delivery rate
is comparatively lower than that obtained using PRo-
PHETv2 in the Reality case. A reason for this low delivery
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rate is likely to be the small size of spatio-temporal clus-
ters as seen previously in Fig. 6 and Section 4.4 which will
be explored more fully in the next section.

5.1. Data delivery in the Reality data-set

One mechanism to increase average spatio-temporal
cluster size in DRAFT is to lower the rate of cluster decay.
For example, at d = 0.99 encounter durations are only de-
creased by 1% at the end of each window. Also, by lowering
the familiar threshold s, more devices are included in local
spatio-temporal clusters in the first instance. If t still
equals 3600 s but s is limited to 5 s and d set to 0.99, the
resulting clusters are three times larger in Reality than
when d = 0.8, s = 120 s, and t = 3600 s (see Fig. 10a), but
data delivery in the Reality data-set using these settings
is still 6% lower than that given by PRoPHETv2. The trade
off is still efficiency, with PRoPHETv2 needing to relay
twice as many packets as DRAFT to achieve that 6% in-
crease in data delivery, as illustrated by the duplicate pack-
et overheads over time in Fig. 10b.

Most of the efficiency gains of DRAFT over PRoPHETv2
in Fig. 10b come at the start of the experiment. Further
inspection of Fig. 10a shows that spatio-temporal clusters
during the early stages of the experiment are still very
small compared with later on. Moreover, Fig. 10c shows
that DRAFT is delivering slightly fewer packets than PRo-
PHETv2 during this period, for reasons which appear to
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be related to cluster size. As the early stages of the Reality
experiment have low delivery success rates, and local spa-
tio-temporal cluster sizes are lower than 25% of the total
data set size, the findings are consistent with those in [4]
which stated that large cluster sizes are needed to dissem-
inate the maximum amount of data using this 2-hop deliv-
ery method.
5.2. Efficiency over time

One of the predictions for spatio-temporal clustering is
that it could improve the data delivery efficiency from that
produced by aggregate clustering by lowering message
duplication overheads. This hypothesis in now explored
in more detail.

The data delivery mechanism in DRAFT is the same as in
Quality. Even so, Fig. 11 shows DRAFT is a marked
improvement on the data-delivery efficiency of Quality
across each of the data-sets explored. Therefore it is fair
to say that spatio-temporal clustering is more efficient as
it performs better than Quality in terms of creating fewer
duplicate data packets. However, Fig. 9 showed that DRAFT
does not deliver as many packets to their final destinations
as Quality in the Infocom6 and Reality data-sets. To at-
tempt to correct this, s was limited to 5 s and d set to
0.99, and all experiments were repeated. Table 4 shows
the results of doing this were that the data delivery rates
of DRAFT are only 6% lower than Quality with 34% fewer
packets relayed.
6. Conclusions

We set out to prove that spatio-temporal clusters can
achieve high delivery rates and efficiency in a specific type
of MANET called a PSN. We have shown that this is the case
when using the new DRAFT protocol, but also that the
choice of data-delivery mechanism to take advantage of
2-hop neighbours, and identifying suitable lower bounds
for spatio-temporal cluster sizes will be crucially impor-
tant in later editions of the protocol. By forwarding data
using non-social spatio-temporal clusters, we have shown
that it is possible to deliver 95% of all the messages it is
possible to deliver with Quality but more efficiently (see
Table 4), but how to deliver the final 5% of messages in a
timely and efficient fashion is still an open problem.

Whilst we could argue that the results in Sections 5.1
and 4.3 suggest that spatio-temporal clusters should con-
tain between 25% and 50% of the devices in the data-set
(10–38 devices), this may not be scalable for larger exper-
iments, and would depend on whether the goal is maxi-
mum or efficient data delivery. Similarly, we have not
made recommendations of best values to choose for d, t,
and s for other Reality Mining data-sets because we simply
do not have enough data to support such a claim. There-
fore, larger data-sets are needed before optimum spatio-
temporal cluster sizes, and suitable mechanics to control
clustering algorithm’s parameters can be determined.

As an interesting side note, because data delivery rates
and efficiencies are on a par overall with PRoPHETv2, we
tentatively conclude that spatio-temporal clusters formed
Please cite this article in press as: M. Orlinski, N. Filer, The rise and fa
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from well connected pairs in DRAFT are as good an indica-
tion of message delivery success as the predictions based
on previous encounters used in PRoPHETv2. At least when
considering human behavioural patterns. Therefore, future
work into this area may want to investigate if pair-wise
encounters in PSNs have the Markov property as future
encounters may depend upon the present state in some
predictable way. If this were true it may lead to cheaper,
faster PSN routers as there would be no need to store data
on encounters for longer than 24 h. The diurnal patterns
discovered by Henderson et al. [7] also hint that this may
be the case if predictions were taken based on day long
time frames.

An assumption we made at the start of this work is that
the data delivery success rates of cluster based routing can
never reach those achieved by oblivious forwarding of
packets along all possible paths (which is in effect what
Quality does by creating huge aggregated monotonic clus-
ters). Spatio-temporal clusters in DRAFT are typically much
smaller than Quality’s, and as a result the set of possible
paths which messages can follow are limited, but no more
so than with PRoPHETv2 or Bubble. In each protocol ana-
lysed there is a trade off between data delivery success
rates and efficiency. Therefore, without better methods of
predicting the whereabouts of devices, or knowing the
likelihood of there being some interaction with other de-
vices in the near future, it may not be possible to push
the efficiency of these protocols further. Some small gains
may be made by storing local clusters of encountered de-
vices to go beyond 2-hops as in DEBT [18], or use a hybrid
approach like Bubble [2], but neither of these methods
have been shown here to deliver as much data as effi-
ciently as DRAFT.
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