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A COUPLED-CLUSTER ANALYSIS OF ONE-COMPONENT COULOMB PLASMAS

R.F. Bishop
Theoretical Physics Group, Department of Mathematics

University of Manchester Institute of Science and Technology
P.O. Box 88, Manchester M60 lQD, United Kingdom

The coupled-cluster formulation of quantum many-body theory has been
discussed in some detail by Luhrmann and the present author [lJ, where
attention was focussed on the problem of ground-state correlations in the
one-component electron plasma (or "e lectron qas " or "jellium") and the
associated problems due to the long-range interactions and correlations.
This initial work was restricted to the high-density limit and we showed
then how to solve the problem exactly within the coupled-cluster formalism
(CCF) in both the random-phase approximation (RPA) and the Tamm-Dancoff
approximation (TDA) -- both of which are mathematically non-trivial in the
CCF. This earlier CCF analysis has now been extended [2J into both the
low-density regime and to intermediate densities appropriate to real metals,
and it is this work that now forms the main topic for discussion.

As is by now well known, the CCF exactly decomposes the N-body system
into a set of mutually interacting n-body subsystems (n = 1, ••• , N) by use
of the familiar exp(S) Ansatz acting with reference to some quite arbitrary
model (or reference or non-interacting) N-body state, which we shall consis-
tently take to be the usual filled Fermi sea (or Slater determinant of
plane-wave states) appropriate to an unpolarized, spin-~, homogeneous
system. The exp(S) Ansatz is then really just a convenient rewriting of the
usual linked-cluster theorem for the ground-state (g.s.) wavefunction. The
resulting subsystems are thus described by a set of correlation operators
Sn' whose matrix elements give the amplitudes for exciting n particle-hole
pairs from the model state. The exact N-body g.s. Schrodinger equation may
then formally be decomposed into a coupled set of N nonlinear ("linked")
microscopic equations for these matrix elements, or subsystem amplitudes,
in which all macroscopic terms (i.e., those proportional to NV for v ~ 1)
are absent. -

The general structure of this set of equations is that the nth equation
in the hierarchy for Sn is coupled, in the general case where the funda-
mental hamiltonian contains up to j-body interactions, to all higher
amplitudes Sn+i with 1 $ i $ j as well as to all lower S~ with ~ < n.
In the present case we are concerned only with the j = 2 Coulomb interaction.
Clearly, in order to be of practical use, this hierarchy of equations (which
is otherwise an exact decomposition for the N-body g.s.) must be truncated,
and the so-called Jinaturalll or SUBn approximation scheme, with which we shall
largely be concerned henceforth, does this by setting each S2 to zero for
i > n. In the case of translationally-invariant systems, momentum conser-
vation implies Sl = 0, and we shall thus initially focus attention on the
SUB2 approximation. Working in the natural single-particle momentum-
eigenstate (i.e. plane-wave) basis appropriate for an infinite, homogeneous
system, the S082 equations are nonlinear integral equations in three three-
momenta for the (antisymmetrized) matrix elements,
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-+ -+where the "hole" states are labelled by momenta kl and k2 inside the
Fermi sphere, and where spin labels have been suppressed for ease of notation.

It is worth stressing again that the basic SUB2 approximation is exact
apart from neglecting interactions with higher-order subsystems. Otherwise,
all two-body effects are included, and it is not therefore surprising that.tne equations are complex. As drastic sub-approximations to itself, the
SUB2 approximation wholly contains such other familiar approximations as RPA
and TDA; the Bethe-Goldstone equation which sums the two-particle llladder"
series of diagrams, and more generally the whol~ of (lowest order) Brueckner
theory; and the Galitskii approximation which represents the ladder approxi-
mation to the Bethe-Salpeter equation.

In the high-density limit (i.e., the weak-coupling limit rs -+ 0, in
terms of the dimensionless couplTng parameter rs' which is the average
interparticle spacing in units of the Bohr radius), the RPA gives the leading
contribution to the correlation energy £ (i.e. the g.s. energy per particle
relative to the energy of the uncorrelate~.modeT state, which is also just the
energy in the (Hartree-) Fock approximation, with all energies expressed in
Rydberg units). The nonlinear (and highly non-trivial!) RPA integral equa-
tion for S2 was solved exactly and in some detail in Ref. [lJ.

In the intermediate-coupling regime (l ~ rs ~ 5) appropriate to
metallic densities, it is certainly not expected that the RPA will remain a
good approximation. Thus, quite apart from ignoring (i) even the simple
exchange t~rms needed to antisymmetrize the RPA itself, we have further
neglected, even in SUB2 approximation: (it) the combinations of two-particle
and two-hole ladder terms, some at least of which are vital for correct short-
range behaviour; (iii) the self-energy correction terms which self-consistently
generate both the particle potential and, more importantly, the hole potential;
(iv) classes of particle-hole ladder interaction terms; and (v) higher
exchange terms which are necessary to preserve the overall anti symmetry. In
this last context it is also worth noting that the fermion statistics are
exactly obeyed in each complete SUBn truncation, although further sub-
approximations such as the RPA may of course violate them. In order now to
proceed systematically beyond the RPA by including these extra 5UB2 effects,
we have developed a further necessary "state-aver aqinq" approximation in
order to make the resulting SUB2 equations amenable to numerical solution.
This approximation, which is motivated by analogy to the much simpler equa-
tions for the corresponding many-boson system, takes the basic torm of -+

averaging over the interior of the Fermi sea the hole momenta kl and k2
in S2(R1, R2; q), but at the same time preserving the Pauli prlnciple by
requiring that the particle momenta (Rl + q) and (it2 - q) .. lie outside. the
Fermi sea. In this way the exact S2(kl, k2, q) is replaced by an averaged
<S2(q»,

(-+ -+ -+) () (-+ -+) ( ~k -+q)S2 kl, k2; q -+ <52 q > o kl, q e - 2'
-+ -+ -+ -+e (k, q) ::e{kF-k)e (lk+ql-kF)

where e(x) is the usual unit-step function defined to be one (zero) for x
greater (less) than zero, and kF is the Fermi momentum. The resul ttnq CCF
equation must now still be suitably averaged over [1 and [2' and although this
latter step is clearly not unique, we may turn this to our advantage by
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making a suitable choice on physically-motivated grounds. Furthermore,
since we know exact results for S2 in at least one limit, namely the RPA
and TDA results for rs + 0, the errors induced by the state-averaging
procedures may be cheCked and controlled in this limit at least.

As a simple illustration of the above procedure, let us imagine putting
it into effect for the RPA which in our CCF language comprises an equation
for S2 which involves only the one-body bare kinetic energy (KE) and the
RPA terms (and see Ref. [lJ for further details). After the replacement
52 + <5z> as indicated above, the only dependence on hole-state momenta is
in the KE term which takes the very familiar form of being proportional to

+ + + + .
[lk1 +q12 + Ik2 _q12 - k12-k}J <S2(q» :::e <52(q»

As two obvious candidates for the final averaging one could now imagine
either (i) replacing e + <e>; or (ii) the intuitively and physically more
aprealin~ proc~dure of fi~st dividing thr?u~hout bye, and then replacing
e- +. <e 1>, ~. averaqmq the two-partic Ie iJare propagator or "energy
denomlnatorlJ• We show that the former procedure leads precisely to the
"mean spherical approximation" discussed by Zabolitzky [3J in this context
via his state-independent variational treatment of the electron gas in the
Fermi hypernetted chain (FHNC) formalism, in this same rs + 0 limit.
l~hereas this approximation gives £,c + 0.0570 ln rs as rs + 0, which is
8.4% in error by comparison with the exact result, the latter <e-1>-averaging
scheme is in fact exact in this limit (giving £c +O.06221n rs). and over
the entire range 1 $ rs $ 5 gives results to wlthin 2% of the exact RPA
results. Furthermore, there is no reason to expect markedly worse accuracy
for any of the other terms in the Fermi 5UB2 equations.

Our most complete results for metallic densities include the completely
integrated and self-consistent effects of the terms which by themselves
generate: (i) RPA and its exact long-range screening effects; (ii) the
extra exchange effects to preserve antisymmetry in the RPA; (iii) the self-
consistent particle-particle ladders (LAD) that describe two-electron
scattering within the many-electron system, and which describe the exact
short-range limiting behaviour; (iv) a class of particle-hole ladder diagrams;
and (v) the self-consistent hole-potential. Particular attention is paid
to the important effects caused by the interference at intermediate separations
of the long-range RPA and short-range LAD effects; and this in fact even leads
us to go partially beyond 5UB2 approximation to include a much broader class
of.generalized ladder terms by incorporating part of the coupling to the
three- and four-body subsystem amplitudes S3 and S respectively, and
which are hence no longer set to zero. The outcome of this partial inclusion
of the coupling terms to higher subsystems is that the bare Coulomb potential
which appears in the other SUB2 terms is ~eplaced by a self-consistent
G-matrix (obtained from the full S2 solution itself). Finally we also
give arguments that all other SUB2 terms either approximately cancel among
themselves, or are negligibly small at metallic densities.

The results of our coupled cluster calculation so described are shown
in Table I in the column headed CC, and are there compared with RPA results
and results from several other recent calculations. The electron gas is
probably the most well-studied of all quantum many-body problems. and hence
a vast number of calculations on it exist. We restrict comparison therefore
to some few representative alternative approaches. Since the RPA was
developed by Bohm and Pines [4J, much work has been invested in going beyond
it to incorporate the effects due to short-range correlation and exchange
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Table 1. The correlation energy per particle, £C' in Rydbergs
for the unpolarized electron gas at varlOUS densities.

rs
- EC

RPA RPA+ CC GFMC AP' FHNC VSRPAEX(l)

1 0.1576 0.1182 0.123 0.121 0.117 0.1141 0.130
2 0.1236 0.0885 0.0917 0.0902 0.086 0.0859 0.098
3 0 e .1055 0.0733 0.0751 (0.074) 0.069 0.0710 0.081
4 0.0936 0.0637 0.0644 (0.064) 0.058 0.0612 0.070
5 0.0849 0.0568 0.0568 0.0563 0.051 0.0541 0.062

which are so important in the metallic density range. For example, Singwi
and his co-workers (see e.g. Refs. [5,6J and other references cited therein)
developed a phenomenology based on the dielectric function which attempted
to include the effects of the ~Coulomb hole" £reated around each electron by
exchange effects and the correlations due to two-particle interactions.
The results of Vashishta and Singwi [6J, which represent perhaps the culmi-
nation of this approach, are shown for comparison in Table I in the column
labelled VS. Within the framework of perturbation theory similar considera-
tions have led many authors to improve upon RPA by including also the electron-
electron ladder diagrams. Typical of this approach is that of Lowy and Brown
[7],who obtained very similar results for the correlation energy to Singwi
et ale [5J,although their methods are quite different. The column headed
RPA+RPAEX(l) in Table I, which is included for purposes of later comparison,
represents the approximation of including all RPA ring diagrams plus all such
rings where only a single (first-order) exchange (i.e., between only one pair
of electrons) is allowed. -

More recently two new interesting approaches to this old problem have
appeared. Tbe first of these is the FHNC method. This is a variational
method based on a many-body wavefunction of Jastrow type,. in which the expan-
siQn for the two-body radial distribution function is truncated in the so-
ca-lled Fermi hypernetted chain (FHNC) approximation (thereby losing the
variational bound on the energy), and whence a self-consistent scheme emerges
to calculate the distribution function. The FHNC results of Zabolitzky [3J
are shown in Table I as being representative of the best of the currently
available variational results for this system.

The second recent study is that due to Arponen and Pajanne [8J. who
employ a boson formulation of the many-fermion problem in which the basic idea
is to find suitable boson images for the fermion particle-hole pair operators,
which satisfy the same exact commutation relations as their fermion-pair
counterparts. A further canonical transformation is then made to the Sawada
bosons which are just the elementary RPA excitations. The resulting boson
hamiltonian then contains the RPA as the lowest order (non-interacting)
piece, plus the further terms which represent interactions among the Sawada
bosons and which go beyond the RPA. The full interacting boson hamiltonian
is then treated by Arponen and Pajanne by the bosonic exp(S) or CCF method,
and they also employ the analoqous SUB2 approximation. Their results are
shown in Table I in the column headed AP.
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Finally, all of these calculations may be compared with the essentially
exact benchmark results of Ceperley and Alder [9J in the column headed GFMC,
which derive from ~he very lengthy computer runs on stochastic simulations of
the many-body Schrodinger equation employing Green function Monte Carlo (GFMC)
techniques. Since these results were not given for "s = 3, 4, the corres-
ponding values in parentheses in this column have been interpolated from the
computed values shown by Vosko et al. [lOJ, using a Pade approximant technique.
It is clear by comparison that ourrully microscopic and non-phenomenological
results over the entire metallic density range are at least as good as any of
the best of the alternative approaches. It is also interesting to note that
inclusion of just first-order exchange terms beyond RPA gives remarkably good
results for the correlation energy. We believe this result is essentially
fortuitous, since for quantities other than the fully-integrated energy the
RPA+RPAEX(l) approximation is surely not expected to give such good agreement.
However what this result clearly shows-fs that the sum of all the higher-order
di agrams, whi ch are undoubtedly individua lly very important for a proper
description of the electron liquid at these densities, is close to zero. It
is undoubtedly for just this reason that the electron gas has proved such a
difficult many-body problem.

Turning finally to the very interesting strong-coupling limit, rs + 00,

one may not at first sight expect the SUB2 approximation to give a reasonable
approximation since. one imagines that n-body clusters with n» 2 are of
importance here. Indeed we expect the system to undergo a phase transition to
a Wigner so 1id , and such a crystal phase is archetypa 1 of a s itua tion where
N-body correlations dominate. However, in SUB2 approximation we find that
e + Ars-1+ Brs-3h + O(rs-ras rs + 00. (Strictly we prove this result only
for the one-component boson Coulomb plasma, but we note that the exact effects
of quantum statistics becomes exponentially small in this limit.) The KE term
contributes only to the constant B in leading order, and whereas each of the
three remaining terms (in boson SUB2 approximation) is necessary for a quantita-
tive evaluation of the constant A, they play quite different physical roles.
Thus whereas the RPA terms continue to be vital for the correct analytiC beha-
viour by providing the correct long-range Coulomb screening, the condensate
potential (which for boson systems is the analogue of the hole potential for
fermions) now plays a similarly crucial role in the short-range limit. Whereas
the inclusion of the only remaining term (namely the two-particle ladder term)
quantitatively changes the constants A and B it may safely be omitted witbout
changing the analytic form of the lOW-density energy expansion. The virial
theorem may also be used to show that in this low-dens ity expansion the leading
term is purely potential energy, whereas the much more interesting second term
is half each kinetic and potential energy -- a result strongly reminiscent of
the simple harmonic motion (SHM) expected of the zero-point motion of a solid.
Indeed, Wigner first pointed out that in this limit where the potential energy
dominates, the energy is minimized by the particles crystallizing, and this.
leads to an electrostatic energy - r~l. Whereas in a fluid phase the particles
are free to occupy the whole volume and hence by the uncertainty principle have
a KE - r~2, the particles in the Wigner solid. are constrained to oscillate
about fixed lattice sites and hence to have a greater KE, which by SHM consider-
ations is readily seen to vary as rs-3/2. Thus our SUB2 g.s. energy has the
correct analytic form of a solid, even though the coefficients A and Bare
not very close to the true g.s. results for ab.c.c. crystal. It is however
important to realize that even the lowest SUB2 approximation in the CCF gives
a lOW-density energy which cannot possibly represent a fluid phase since the
particles are not free to occupy the whole volume.

It is clear therefore that our everywhere translationally-invariant g.s.
CCF approach well describes both fluid and solid phases, all the way from the
exact high-density RPA plasma limit, through the intermediate-coupling range of
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metallic densities, to the (strong-coupling) low-density crystalline solid
phase which is now approximated as an amorphous, glassy solid phase.
Although one might be surprised that our fluid-like SUB2 wavefunction (built
from the non-interacting model state) is capable of describing an (amorphous)
solid phase, it is clear that strong many-body correlations are built into it.
On the other hand it is clear that in this low-density limit-rne third- and
higher-order correlations obtained from the (so-far) neglected coupling terms
to the amplitudes Sn with n > 2, are still very strong, and need to be
incorporated for a better quantitative description. Nevertheless, the SUB2
description of the one-component Coulomb plasmas is seen to be remarkably
successful over the entire density range, and now gives what is perhaps the
best available microscopic description of the 9.s. of this most well-studied
of all quantum many-body systems.
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