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The roles of microstructure and mechanics in 
intergranular stress corrosion cracking 

A P Jivkov, N P C Stevens and T J Marrow 
School of Materials, The University of Manchester, Manchester M60 
1QD, UK. 

Abstract 

Previous work on the prediction of intergranular stress corrosion cracking 
resistance in grain boundary engineered microstructures has used two 
dimensional percolation models, in which the grain boundaries are assumed to be 
either resistant or susceptible to cracking, depending on the grain boundary 
character. One limitation of such models is that they do not necessarily account 
for the mechanical crack driving force. Further, they cannot capture 
experimentally observed phenomena such as the formation of isolated ductile 
bridging ligaments by resistant boundaries. These arise due to the three-
dimensional character of crack propagation. A new mechanical crack 
propagation model is presented which, via finite element solutions, addresses 
these limitations. The model is based on a regular discrete representation of the 
material’s microstructure and is applicable to both 2D and 3D behaviour. Results 
are reported for 2D-hexagonal microstructures, and are compared with 
percolation models. The results demonstrate the influence of stress on crack path, 
as well as the influence of the rupture strain of susceptible boundaries on crack 
behaviour. Further, the effect of crack bridging, which arises from ductile 
resistant boundaries is studied.  
Keywords:  Intergranular stress corrosion; Microstructure; Mechanics; Crack 
bridging; Finite elements; Monte Carlo simulations.  

1 Introduction 

It has been increasingly realised during the last two decades, that the grain size is 
not the only meso-scale factor influencing the strength of polycrystalline 
materials. Two other factors have been brought to wider attention. The first is the 



grain boundary character distribution (GBCD) which describes the fractions of 
boundaries with different energies, with “special” or low-energy boundaries 
having higher resistance to intergranular deterioration mechanisms and “random” 
or high-energy boundaries having lower resistance. The second factor is the 
topological connectivity of “random” boundaries. In connection to these 
findings, the concept of grain boundary engineering has been introduced by 
Watanabe [1]. The primary purpose of grain boundary engineering has been to 
improve the bulk mechanical properties of polycrystalline materials by 
increasing the number of “special” boundaries. Together with applications to 
enhance general fracture toughness [2-4], it has been shown that the “special” 
grain boundaries can be much less susceptible to intergranular corrosion and 
stress corrosion cracking (SCC) [5-7]. Since the introduction of grain boundary 
engineering, characterisation of grain boundary networks has been an important 
topic in grain boundary engineering research [8-11]. Predictive stress corrosion 
cracking models aim to determine the probability of crack arrest and distribution 
of arrested crack lengths for given grain boundary network characteristics. 
Previously proposed models [12-16] used a percolation-type process to 
determine the probable extent of crack growth. These are binary models, i.e. a 
grain boundary is assumed to be either entirely resistant or entirely susceptible to 
SCC. In the early models [12, 13], the probability of crack advance at a junction 
is based on the GBCD and orientation of the grain boundary with respect to the 
applied stress. Later models [14-16], additionally account for the network 
connectivity via the distribution of triple junctions. All these models, however, 
cannot describe the effects of the applied stress magnitude or stress redistribution 
during crack evolution. Hence, they stand close to a pure geometrical percolation 
model, giving the critical share of “random” boundaries above which a 
continuous crack path across a given microstructure is always possible. For the 
most widely used two dimensional hexagonal cell structure [12,13,15], the 
critical share of resistant boundaries (i.e. the percolation threshold) is found to be 
around 0.65, while for the space-filling tetrakaidecahedral structure in three 
dimensions [1,5], the threshold is around 0.23 (see e.g. [14]). Previous 2D 
models also cannot account for the experimentally observed crack bridging 
behaviour. Bridging is created by the yielding of ductile ligaments, formed by 
resistant boundaries left behind the advancing crack front in the real 3D 
geometry. A recently proposed analytical model [17], has attempted to take into 
account the effects of crack bridging on the local crack tip stress intensity factor, 
thus mimicking 3D crack behaviour. 
The objective of the present work is to combine the structural development of a 
percolation model with actual finite element calculations of the stress after each 
change in geometry due to crack advance. This allows for a more accurate 
simulation of crack evolution, as the probability of crack advance depends upon 
the actual mechanical conditions at the crack tip. This is affected by the crack 
propagation history, i.e. the effects of crack branching, crack bridging and 
redistribution of the initial stress state. The work utilises a regular 2D hexagonal 
cell structure. Grain boundaries are assumed to belong to either of the two 
classes – susceptible or resistant to stress corrosion. All boundaries belonging to 



one class are assigned identical mechanical properties. Susceptible boundaries 
are assumed to fail at crack opening displacements of the order of several nano-
meters. This represents a local crack propagation criterion requiring a small level 
of crack tip strain, suggested by experimental observations of intergranular stress 
corrosion [18]. Resistant boundaries are assumed to deform in a ductile manner, 
as demonstrated by in-situ high resolution tomographic and fractographic 
observations of intergranular stress corrosion cracking [19]. The particular 
physical mechanism of cracking and hence the time-scale of crack propagation 
process are not involved in this work. 

2 Model description 

A possible approach to modelling an assembly of hexagonal cells (grains) in a 
finite element environment could be based on continuum mechanics. Each cell 
could be tessellated into continuum elements, e.g. triangles, and connected to the 
neighbouring cells with interface elements representing the boundary between 
the two grains. Such a direct strategy would require significant computational 
resources for the simulations when the size of the assembly increases. A simpler 
structural model of the grain network is proposed and used in this work. In this 
model, each cell is represented by a geometrical point and its connections to the 
neighbouring cells are represented by linear structural members. The scheme is 
illustrated in Fig. 1, where a portion of a plane hexagonal mesh and its 
corresponding structure are shown. The finite element model consists of nodes in 
the centres of the grains, and plane beam elements as structural members.  
Let D denote the diameter of a hexagonal cell. With respect to a fixed coordinate 
system (X1, X2), the assembly of grains studied in this work fills the rectangular 
region {-50D ≤ X1 ≤ 50D, 0 ≤ X2 ≤ 50D}. This region contains 7740 grains, 
which form 22850 internal grain boundaries, modelled by 7740 nodes and 22850 
beam elements in the finite element model. 
An initial crack, extending along three grain boundaries, is introduced from the 
surface point at the origin of the two axis in the coordinate system and running in 
towards the centre of the element assembly. This is schematically shown with a 
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Figure 1: Illustration of the discrete model of hexagonal microstructure 



dashed line on the right of Fig. 1, where the length of the pre-crack is also given 
as 1.25D. The geometry of the crack and the boundary conditions define an 
initial stress intensity factor approximately as 
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where σ∞ is the remotely applied stress and the stress pre-factor accounts for the 
edge crack geometry (see e.g. [20]). 
An important question in the proposed structural model of a polycrystalline solid 
is the choice of geometrical and mechanical properties of structural members, so 
that the model represents properly the assembly behaviour. In this work, the 
cross section of the beam elements is chosen in such a way that their elastic 
properties (Young’s modulus, E, and Poisson’s ratio, ν) coincide with the bulk 
metal properties, namely E = 200 GPa and ν = 0.3, while at the same time the 
assembly overall deformation under considered boundary conditions is the same 
as the deformation of a continuous solid of the same geometry.  
Two groups of grain boundaries in an assembly are considered: those susceptible 
and those resistant to corrosion. The susceptible boundaries are assumed to fail at 
a small crack opening displacement when encountered by the propagating crack. 
The strain at failure, εf, is the property that determines the mechanical behaviour 
of these susceptible boundaries. The resistant boundaries are assumed to be 
elastic-plastic with linear isotropic hardening described by the following 
parameters: yield stress σy = 200 MPa at yield strain εy = 10-3; ultimate strength 
σu = 400 MPa at ultimate strain εu = 0.1. The constitutive boundary properties 
are illustrated in Fig. 2. In summary, all boundaries have identical elastic 
properties, but the susceptible ones fail completely if the prescribed critical strain 
is reached, while the resistant ones yield. For a given fraction of susceptible 
boundaries a random distribution of these boundaries are applied to the structural 
elements. 
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Figure 2: Schematic for constitutive behaviour of boundaries 



The load is symmetric and applied via prescribed displacements: u1 = -0.025D 
along the boundary {X1 = -50D, 0 ≤ X2 ≤ 50D} and u1 = 0.025D along the 
boundary {X1 = 50D, 0 ≤ X2 ≤ 50D}. Displacements u2 = 0 are prescribed along 
the boundary {-50D ≤ X1 ≤ 50D, X2 = 50D}, while zero stresses are prescribed 
for all other boundary conditions. This introduces a homogeneous strain in the 
assembly ε∞ = 5x10-4, equivalent to a homogeneous stress σ∞ ≈ 0.5σy.  
Two types of crack advance behaviour have been considered: Type A, where no 
bridging by ductile ligaments (resistant boundaries) is allowed and the crack 
arrests when it cannot rupture any boundary adjacent to the crack surface; and 
Type B, where the crack is effectively allowed to by-pass resistant boundaries 
and propagate further if a susceptible boundary from the first subsurface layer 
adjacent to the arrested crack tip could be ruptured, i.e. cracks which would 
arrest in Type A may be able to propagate further in type B, leaving a ductile 
ligament behind the crack tip. In Type B, a reduced rupture strain, εr, is used for 
the failure criterion of subsurface boundaries. This accounts for the propagation 
of the crack in three dimensions around the resistant boundary, which would 
locally raise the strain at the subsurface boundary in the 2D model. In order to 
define the reduced rupture strain used for Type B propagation, it is important to 
estimate the strain at the midpoints (which are also the integration points) of the 
beam elements in the vicinity of the crack tip. This can be approximately done 
by imagining a straight crack in a homogeneous body under plane strain 
conditions with the same X2-extension as the intergranular crack. Fig. 3 
illustrates the argument for the two possible cases of the imaginary crack 
position, denoted by 1 and 2 respectively (see also Fig. 1). For this purpose, it is 
useful to express the tangential strains in polar coordinates (e.g. [20]):  
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where KI is the current stress intensity, r and θ are the polar coordinates of the 
point in question with respect to a polar coordinate system centred at the tip and 
having a zero axis parallel to crack propagation direction. 

D 

Imaginary cracks 

ε12

ε11

 

2 ε21

ε22

' 
2' 

 
Figure 3: Estimation of grain boundary strains. 



For the closest boundary in case 1, the tensile strain in the corresponding beam 
element is approximately equal to ε11, which could be calculated from Eqn (2) 
with r = D / 4 and θ = 0. For the closest boundaries in case 2, the tensile strain in 
the corresponding beam element is approximately equal to ε21, calculated from 
Eqn (2) for r = D / 8 and θ = π / 3. From (1) and (2), for example, the initially 
introduced crack in Fig. 1 causes a tensile strain in the two adjacent inclined 
beam elements approximately equal to 0.5ε∞. This is a conservative estimate, but 
offers an indication of the susceptible boundaries’ failure strain. The use of a 
much larger εf would make crack advance impossible. 
In a similar but more elaborate way, the strains in the subsurface boundaries, ε12, 
and ε22, could be calculated. In Type B crack advance, if the boundaries adjacent 
to the tip are resistant, it is assumed that the crack bypasses them, mimicking 3D 
behaviour, and arrives at point 1’ or 2’ in Fig. 3. Then the real strain in the 
subsurface boundaries for case 1 would be approximately ε21, while the real 
strain in the subsurface boundaries for case 2 would be approximately ε11 
(neglecting the small change in stress intensity due to crack advance). In order to 
simulate this situation in the 2D settings, the failure strain of the subsurface 
boundaries should be reduced by a factor α1 = ε12 / ε21 ≈ 1.0 for position 1 and by 
a factor α2 = ε22 / ε11 ≈ 0.77 for position 2, respectively. To simplify the 
calculations a reduction factor α = (α1 + α2) / 2 is chosen for all subsurface 
boundaries, so that εr = α εf. 

3 Crack advance simulations 

The problem of crack propagation is split into evolution and equilibrium parts 
and these are handled by two separate software components. The first 
component, an in-house made program, is used for preparation of initial 
geometry, boundary conditions and a randomised distribution of the structural 
members’ properties. The boundary value problem thus formulated is solved by 
the commercial finite element program ABAQUS [21]. The solution delivered 
by ABAQUS is used by the in-house program, which traverses all elements with 
nodes belonging to the crack surface to localise the most strained element. The 
decision on whether the crack will propagate is based on the following rules: 
(1) If the most strained element is susceptible and the tensile strain ε > εf, then 

the element is removed from the structure and the simulation continues. 
(2) If the most strained element is resistant and yields, then: 

(2a) For series A the crack is assumed arrested and the simulation 
terminates. 

(2b) For series B the elements in its immediate vicinity under the crack 
surface are considered; if the most strained of them has a tensile strain 
ε > εr, then this element is removed from the structure and the 
simulation continues. If there is no such element the crack is arrested 
and the simulation terminates. 

In case of crack continuation, at most one structural member is allowed to fail 
and is then removed from the structure. This changed geometry constitutes a new 



boundary value problem, which is formulated by the in-house program and 
solved by ABAQUS.  The process is repeated either until crack arrest or until the 
crack X2-extension reaches a prescribed limit of half the assembly, L = 25D. It is 
assumed that a crack reaching the limit L fractures the assembly. 

4 Results and discussion  

4.1 2D simulations – Type A 

For 2D simulations without bridging, attention was focussed on the differences 
between strain-directed crack propagation in comparison with a pure percolation 
model. Simulations were performed for a series of susceptible boundary 
fractions, f = (Number of susceptible boundaries / Total number of boundaries), 
ranging from 0.1 to 0.9. For each f, a Monte Carlo type of solution was utilised, 
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Figure 4: Expected crack extension (a) and expected crack area (b) as a 

function of susceptible boundaries fraction for Type A advance 



with 30 different random distributions of susceptible boundaries. Each of these 
determined a separate crack evolution problem which was solved as described in 
the previous section. For comparison, pure percolation simulations for the same 
fractions and distributions were also performed. The parameters monitored for 
each finite element evolution problem or crack percolation problem were the 
final crack extension (the crack projection on X2-axis) and the total crack area 
(given by total number of ruptured boundaries, i.e. including all crack branches). 
For each f, the average of crack extensions and the average of crack areas from 
the 30 random distribution solutions was found, and is taken to represent the 
expected crack extension, a, and crack area, A, for this particular fraction of 
susceptible boundaries. Results for the crack extensions and crack areas are 
presented in Fig. 4a and Fig. 4b, respectively, for the pure percolation model and 
for the finite element model with three choices of susceptible boundary rupture 
strain, given by λ = εf / ε∞ = 0; 0.2; 0.4. The results are normalised with respect 
to the limiting crack length, L. Note that the simulations with λ = 0 correspond to 
the early percolation models based on GBCD and favourable orientation of grain 
boundary with respect to applied stress [12,13]. It is evident for the case λ = 0 
that the role of mechanical strain is to direct the crack growth by decreasing 
crack branching. There is also an increase in the fraction of susceptible 
boundaries needed to develop a crack of given extension compared to the pure 
percolation model. This case is effectively a limiting solution for infinite applied 
stress. For finite values of remotely applied stress, any increase of the strength of 
susceptible boundaries increases the fracture resistance of the assembly, by 
increasing the fraction needed for given crack extension at a given applied stress. 

4.2 Quasi 3D simulations – Type B 

The model with bridging allows more realistic simulations of crack propagation. 
It is expected that the model should show intermediate behaviour between pure 
2D and 3D percolation behaviour. Therefore, full 3D percolation simulations 
using assemblies of tetrakaidecahedrons were also performed for comparison. A 
tetrakaidecahedron is a body bounded by six squares and eight regular hexagons, 
having cubic and octahedral symmetry. As this structure cannot be directly 
represented in 2D, the 3D percolation results may be used as a qualitative 
illustration of the expected behaviour of a system in which fully three 
dimensional bridging is possible. As in the previous 2D model, finite element 
simulations were performed for f ranging from 0.1 to 0.9, and for each fraction 
30 different random distributions of susceptible boundaries were considered. The 
results of all simulations are summarised in Fig. 5, where the same notations and 
scaling conventions as in Fig. 4 are used. The results show that the bridging 
indeed gives behaviour closer to the 3D percolation, with a major controlling 
parameter being the failure strain of the susceptible boundaries, εf, for given 
applied strain, ε∞. Such a parametric study could be used to find an average value 
for εf from experimental results for crack length distributions, potentially turning 
the 2D-bridging model into predictive tool. The application of a true 3D 
tetrakaidecahedral model along the same lines as in this work is currently limited 



by the computational resources available. A small scale model could be useful 
for tuning the 2D-bridging model with information on crack bridging behaviour. 
The 2D model could then be used on larger grain assemblies to investigate crack 
behaviour in stress gradients, for example. 

5 Conclusions  

The proposed discrete structural model has the potential to simulate intergranular 
crack propagation in a realistic manner by including the phenomenon of crack 
bridging by ductile ligaments. It is applicable to sufficiently large grain 
aggregates in two dimensions to represent an entire test specimen. It accounts for 
the effects of external load magnitude and failure properties of susceptible 
boundaries. These effects are demonstrated in Fig. 4 and Fig. 5 in comparison to 
the results of previous percolation models. Parametric studies of the type 
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Figure 5: Expected crack extension (a) and expected crack area (b) as a 

function of susceptible boundaries fraction in Type B advance 



presented in the work related to experimental observations of intergranular stress 
corrosion crack extensions and distributions are expected to tune the model 
parameters. 
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