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Centrality measures are based upon the structural position an actor has within the network. Induced
centrality, sometimes called vitality measures, take graph invariants as an overall measure and derive
vertex level measures by deleting individual nodes or edges and examining the overall change. By taking
the sum of standard centrality measures as the graph invariant we can obtain measures which examine
how much centrality an individual node contributes to the centrality of the other nodes in the network,
we call this exogenous centrality. We look at exogenous measures of degree, closeness and betweenness.
. Introduction

Centrality has always been of primary interest to social network
nalysts. It is possibly the technique most commonly applied when
nalyzing network data. In addition, it has attracted the attention of
hose interested in devising new methods and there are a plethora
f techniques available. The software package UCINET (Borgatti et
l., 2002) for example currently implements 16 different centrality
easures directly and it also produces a number of other centrality
easures as direct products of other routines.
Freeman’s (1979) classic paper brought together the important

easures of the time and gave a general framework for understand-
ng centrality measures. More recently Borgatti (2005) provided a
ramework and typology by considering network flow and Borgatti
nd Everett (2006) examined and categorised measures based on
raph theoretic properties. The goal of the present paper is to con-
inue this stream of research into the fundamental nature and
nterpretation of centrality in social networks. As such, it is not
ur primary goal to introduce new centrality measures, although it
ill be clear that our approach lends itself to creating new centrality
easures appropriate for any specific research objective.
In this paper we examine a technique which has been in use

knowingly or not – for several decades. The basic strategy is to

ake any whole network property, such as density or maximum
ow, and derive a centrality measure by deleting nodes and mea-
uring the change in the network property. Measures derived in
his way have been called “vitality measures” for a brief review see
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Koschützki et al. (2005), although we prefer the more descriptive
term “induced centrality measures”.

One of the advantages of this approach is that centrality mea-
sures can be constructed in a customized way for any research need,
avoiding having to use an “off-the-shelf” measure which may not
be wholly appropriate in a given setting. The technique is also eas-
ily extendable to the case of edge centralities by measuring the
impact of removing an edge, and also to the case of group central-
ities (Everett and Borgatti, 1999; Borgatti, 2006), by removing sets
of nodes or edges.

2. Induced centrality

A graph invariant is any quantitative graph property which only
depends upon the graph structure and not on a representation or a
labelling of a graph. For example, the density and the transitivity of
graphs (proportion of transitive triples) are examples of invariants,
as is the property of containing a cycle of length 5. The graph may
be weighted or directed. In general, a graph invariant is usually a
single number but the concept can be easily extended to sets or
vectors. For example, the degree sequence of a graph is a graph
invariant that is not a single number.

2.1. Definition

Let f be a graph invariant and G a graph with vertex (or edge) x.
Then the induced centrality Cf of vertex (or edge) x is given by

C (x) = f (G) − f (G − {x}) (1)
f

where G − {x} is the graph G with vertex (or edge) x deleted, in
an abuse of notation we shall often write this as G − x. It should
be noted that we can induce centrality on nodes or edges for any
graph invariant that is defined for all graphs. If the invariant is not

dx.doi.org/10.1016/j.socnet.2010.06.004
http://www.sciencedirect.com/science/journal/03788733
http://www.elsevier.com/locate/socnet
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ig. 1. A graph in which the deletion of vertex A or B results in the same subgraph.

single number then we will need to define the difference of the
ets or vectors appropriately. For convenience, we assume that the
o-domain of f is a subset of the set of real numbers.

Several well known measures of centrality can be formulated
s induced centralities. For example, if the graph invariant is the
otal number of edges in a graph, then the induced vertex central-
ty is simply degree centrality. If the graph invariant is the total

aximum flow in the network then the induced vertex central-
ty is the max-flow betweenness (Freeman et al., 1991; Koschützki
t al., 2005). These two examples exploit a simple and direct rela-
ion between the invariant chosen and the contribution that a node

akes to that invariant.
Given that we can formulate degree and max-flow betweenness

s induced centrality measures, it is reasonable to ask if all central-
ty measures are induced by some graph invariant. The answer to
his question is no. Consider the graph in Fig. 1, then the deletion of
ither A or B results in the same residual graphs (i.e., G-A is isomor-
hic to G-B). This means that for any graph invariant we choose, the

nduced centrality for nodes A and B must be the same value. Yet,
f we measure the closeness centrality of each node, we find that A
as a score 14 and B has a score of 13. Hence, closeness cannot be
n induced centrality.

Borgatti and Everett (2006) show that betweenness can be for-
ulated in a way similar to an induced centrality measure as

ollows:

x =
∑

i,j

wx
i,j

− w∗x
i,j

wx
i,j

(2)

In (2) wx is the geodesic count matrix of the original graph with
ow and column x deleted and w∗x is the geodesic count matrix of
he graph with vertex x deleted. The i,jth entry of a geodesic count

atrix is the number of geodesics connecting vertex i with vertex j.
he reason this is not an induced measure is that we do not directly
efine a graph invariant but only consider measures that depend
n identifying x.

.2. Graph invariants

There are a large number of graph invariants in use today (and
ew ones being invented all the time) and in principle any of them
ould be used to define a new centrality measure. However, there
re a number of properties of invariants that affect how useful they
re in defining induced centrality measures.

First, the graph invariant should be defined on all graphs so that
ertex (or edge) deletion does not result in a graph in which the

nvariant is not defined. For example, if we use graph diameter as
ur invariant, we will be unable to compute a centrality score for
ny node whose removal disconnects the graph. This is especially
n issue with directed graphs. Graph invariants that suffer from
his can usually be modified or extended to overcome this prob-
etworks 32 (2010) 339–344

lem; we give a detailed example of this for closeness later in the
paper.

Second, graph invariants should not be normalized for the num-
ber of nodes in a graph (or edges if computing an edge centrality)
since the normalization may well remove the contribution made
by the deleted vertex or edge. As an extreme example consider
the case where we use density as the graph invariant. Suppose we
have a complete network, so that density is 1.0. Removing a node
leaves a residual network that is also complete and therefore also
has density 1.0. As a result, each node would have an induced cen-
trality score of zero, incorrectly indicating that no node contributes
to the density of the graph. Other invariants that fall in this category
are average path length and fragmentation (proportion of pairs of
vertices that cannot reach each other, see Borgatti, 2006).

Third, invariants should be sufficiently sensitive to node
removal so that they change significantly under vertex (or edge)
deletion. For example, a graph invariant that is insensitive to node
removal is the clique number of a graph. The clique number is the
size of the largest clique. If the graph has two largest cliques, and
they are disjoint, then vertex deletion will not change the invariant.
Even if the graph has a unique largest clique then deletion of ver-
tices not in this clique will not change the invariant while vertices
in the largest clique will all have an induced centrality score of 1.
Thus all values in the resulting centrality measure will be either 0
or 1.

Fourth, to be interesting, the change in an invariant due to the
removal of a node should be dependent on the structure of the
residual graph. This ensures that the measure is not just a simple
count of a node’s properties. For example, we could take as our
invariant the total number of edges in a graph. Deleting a vertex
removes all edges incident upon it and so the resultant induced
measure is a simple count of the number of edges the node is
involved in. Similarly, if we take as our invariant the number of
transitive triples in a graph, the resulting induced measure is sim-
ply a count of the number of transitive triples containing the deleted
vertex.

3. Endogenous, exogenous and total centrality

An interesting class of invariants to use for induced centrality
is based on aggregating other centrality measures. That is, we can
take as our invariant the sum of centrality scores (using any mea-
sure C we like) for all vertices in a network. Deleting a node x and
recalculating the invariant gives us an induced centrality that we
call the “total centrality” CT(x) of node x. This is shown in (3)

CT (x) =
∑

j ∈ V(G)

C(j) −
∑

j ∈ V(G−x)

C ′(j) (3)

where V(G) is the vertex set associated with the graph G and C′ is
calculated on the graph G − x. The idea is that a node’s total cen-
trality reflects not only the node’s direct contribution to the overall
centrality in the graph, but also the centrality that it gives to other
nodes by being adjacent to them or being along paths that connect
them. For example, consider a measure of centrality based on the
shortness of paths from a node to all others, so that the shorter
the paths, the greater the centrality. (We leave the details of such a
measure for another section.) If we sum the centralities of all nodes,
we obtain a network-level statistic—our graph invariant. Now let
us consider the contribution of a node x to that invariant. Clearly,
a piece of the invariant is the node’s measured centrality, since it

was one of the n quantities summed to get the invariant. This is
the direct or endogenous contribution of the node to the invariant.
But consider that if the node were to sever all ties with the rest of
the network, it would not be just its own centrality that would be
reduced. The node could have been a shortest path intermediary
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Table 1
Induced centrality scores using betweenness for endogenous centrality.

Total centrality Endogenous
centrality

Exogenous
centrality

Medici 73 48 25
Guadagni 38 23 15
Albizzi 43 19 24
Salviati 57 13 44
Ridolfi 9 10 −1
Bischeri 11 10 1
Strozzi 14 9 5
Barbadori 14 9 5
Tornabuoni 13 8 5
Castellani 18 5 13
Peruzzi 24 2 22
Pazzi 35 0 35
M.G. Everett, S.P. Borgatti / So

uch that without it the distances between certain pairs of nodes
ould be increased, reducing their centralities. This reduction in

ther node’s centrality is an indirect or exogenous contribution of
he node to the invariant.

To summarize, we are proposing the following. Given a suitable
entrality metric to serve as an endogenous centrality measure,
e can then construct an induced centrality by choosing as our

raph invariant the sum of centralities across all nodes. We can
hen subtract the endogenous centrality from the induced central-
ty to obtain what we are terming exogenous centrality. Thus, we
re decomposing an induced centrality based on a centrality sum
nto endogenous and exogenous contributions:

otal (induced) centrality = endogenous centrality + exogenous

We now consider several well-known kinds of centrality using
his approach.

.1. Degree

An illuminating example is provided by degree centrality in an
ndirected graph. We begin by calculating the simple degree of
ach vertex and setting this as our endogenous centrality mea-
ure. The graph invariant is the sum of all the degrees of all the
ertices. If we delete a vertex this sum will be reduced by twice
he degree centrality of that vertex and hence the induced central-
ty score for a vertex will be twice its degree. This total centrality
herefore reflects the degree of the deleted vertex plus the degree
iven to all the vertices it is adjacent to.

Now consider the case of in-degree in a directed graph. Our
raph invariant is now the sum of the in-degrees of all the vertices
nd the total centrality is the node’s in-degree plus its out-degree.
he in-degrees, of course, we were given and constitute the endoge-
ous centrality of the individual vertex. The total centrality is the
ertex’s centrality plus the centrality it gives to other vertices, in
his case simply its out-degree. Clearly we could just as well take the
ndogenous centrality as out-degree, in which case the exogenous
entrality becomes in-degree.

.2. Betweenness

We should first begin by noting that betweenness is in some
espects an unusual centrality measure. As many have noted, the
ddition or deletion of edges not incident to a given vertex can
n some cases increase that vertex’s centrality and in some cases
ecrease it. This is in contrast with degree or closeness centrality
here the addition of edges either increases the centrality or has
o effect but can never decrease it.

As an example we look at the network of marriages among
enaissance Florentine families compiled by Padgett and Ansell
1993). Taking betweenness centrality as our endogenous cen-
rality measure, Table 1 gives total, endogeneous and exogeneous
cores (rounded to nearest integer).

There are a number of things to note about Table 1. First, the
edici family have the most endogenous centrality and are also

uite high on exogenous centrality. As a result, they have the high-
st total centrality. The nodes with the highest exogenous scores
re Salviati followed by Pazzi, both of which have very low endoge-
ous scores (zero in the case of Pazzi). The main reason for their
igh exogenous scores is they are both on the one of the longer
eodesics in the graph. Long geodesics contribute more to the total

entrality since every actor on the path obtains a score for being
n intermediary. This of course is a direct consequence of the way
etweenness is constructed. Different betweenness type measures
ave been proposed that do not have this property, for example ego
etwork betweenness (Everett and Borgatti, 2005).
Ginori 28 0 28
Acciaiuoli 24 0 24
Lamberteschi 29 0 29
Pucci 0 0 0

It is also interesting to note the negative exogenous score of
Ridolfi showing that their presence takes centrality away from the
other vertices. In fact it is possible to construct examples with large
negative exogenous betweenness centrality scores so that the total
centrality is also negative. As mentioned in Section 1, this is because
deletion of edges can increase or decrease the betweenness of ver-
tices in the network.

There is a fundamental difference in the way the total centrality
and exogenous betweenness centrality scores are calculated com-
pared to endogenous measures, and this needs to be taken into
account when interpreting any results. If we take the approach
suggested by Borgatti (2005) and think about centrality in terms
of network flow then we can see that betweenness (that is the
endogenous score for betweenness) only considers the role of inter-
mediaries in the flow process. However, exogenous (and therefore
by implication total centrality) also takes into account the end
points of the geodesic path (provided it is not of length one) since
they do send and receive flow. Once they are removed it is not
possible for certain other vertices (e.g., the penultimate node in
a geodesic) to have betweenness as they are now endpoints. As
a result, nodes can contribute to the total betweenness centrality
even though they do not contribute to the endogenous value. In
the Padgett example we see that four actors with an endogenous
score of zero have non-zero total centrality. Note that for an actor to
have a zero total betweenness centrality score they would need to
be in a component consisting of a complete subgraph. Whilst stan-
dard betweenness does not take account of the endpoints Brandes
(2008) has proposed a number of variants of shortest path between-
ness and some of these do take account of the endpoints. It should
be noted that all of these variations can be used as a graph invariant
in the same was as we have used standard betweenness here.

3.3. Reverse-closeness

Closeness centrality is defined by Freeman (1979) as the sum
of geodesic distances to all other nodes. As a reminder that larger
numbers indicate greater distance, we refer to this raw score as
“farness” and reserve “closeness” for a normalization of farness
obtained by dividing n − 1 by farness, where n is the number of
nodes in the graph. Hence, a node that is distance 1 from all other
nodes will receive a normalized closeness score of 1.0. Unfor-
tunately, neither the sum of farness nor normalized closeness

centrality scores satisfy our criteria for useful invariants since delet-
ing a vertex or edge can disconnect the graph, yielding undefined
distances between pairs of nodes in different components. There-
fore to use Freeman’s closeness to develop total centrality and
exogeneous centrality scores we would have to restrict ourselves to
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ig. 2. Graph with a cutpoint used to demonstrate reverse-closeness calculation.

i-connected graphs (or, in the case of edge centralities, bridgeless
raphs), which is less than satisfactory.

Alternatively, we could adopt one of many ways to assign a value
o the distance between two unreachable vertices. For example,
ne approach is to assign n to the distance between two unreach-
bles, since this is one more than the longest possible path length
n any graph with n nodes. Another approach is to redefine close-
ess in terms of reciprocal distances (proximities) and define the
roximity of unreachable nodes as zero. Of course, this is a differ-
nt measure of closeness centrality that will not necessarily give
alues linearly related to the Freeman measure even in connected
raphs (since taking reciprocals is a non-linear transformation).
et another approach is proposed by Valente and Foreman (1998)

n which unreachable pairs are assigned a distance equal to the
argest geodesic distance in the graph. For our purposes, however,
his approach would be problematic since the largest distance could
hange across different node (or edge) deletions.

For our purposes, the first method of substituting n for unreach-
ble distances works well, provided that instead of normalizing by
ividing n − 1 by the sum of distances, we instead simply subtract
he sum of distances from n(n − 1), which is the maximum possi-
le (this occurs when a node is an isolate, so that it is at a distance
from all n − 1 others). We refer to this measure of centrality as

everse-closeness centrality and define it as n(n − 1) minus farness,
here undefined distances are assigned a value of n. (Valente and

oreman, 1998 mention this but do not pursue it.) Note that in this
easure isolates have a score of zero. The reverse-closeness scores

or the graph in Fig. 2 which contains a cutpoint are given in Table 2.
We can now use the sum of reverse-closeness scores as our

raph invariant. However there is one subtle point about the revers-
ng process that requires us to make a small change when using it
n this context. Consider a three-vertex graph consisting of a single
ndirected edge and an isolate (P2 ∪ K1) (Fig. 3).

As shown in Table 3, the raw farness score for vertices a and b is 4,
nd the score for the isolate c is 6. Subtracting these from n(n − 1) = 6
ives the reverse-closeness scores of 0 for the isolate and 2 for the

ther two vertices. This gives a total reverse-closeness score of 4,
hich we now use as our graph invariant. If we now delete the

solate in order to calculate its total and exogenous contributions,
e obtain a new graph with n* = n − 1 nodes, and get a raw farness

able 2
arness and reverse-closeness for the graph in Fig. 2.

Vertex Farness Reverse-closeness

1 8 22
2 8 22
3 7 23
4 7 23
5 9 21
6 11 19
Fig. 3. The graph P2 ∪ K1 which shows how an isolate can have a non-zero contri-
bution to the non-adjusted total reverse-closeness score.

score of 1 for a and b. Subtracting these from n*(n* − 1) = 2 gives us
the reverse-centrality score of 1 for each node, and summing these
gives us a new graph invariant score of 2. The difference between
2 and the invariant for the graph as a whole is also 2, so the iso-
late contributes 2 to the invariant. This is counter intuitive and we
would expect isolates to contribute nothing. This occurs because
the maximum possible value for farness in the deleted graph is
smaller than in the original. (This does not happen in the degree or
the betweenness case as the minimum value is fixed at zero regard-
less of graph size.) This is easily remedied by using the size of the
original graph in calculating the reverse-centrality for each node in
the reduced graph, instead of using the size of the reduced graph.
The result of this is shown in the last column of Table 3, labelled
“adjusted reverse-centrality”.

Table 4 gives the total, endogenous and exogenous centrality
scores for adjusted reverse-closeness for the graph in Fig. 2 together
with the betweenness scores. It should be noted that if we rank
the nodes in decreasing order of endogenous scores for reverse-
closeness then the order is exactly the same as the ranking derived
from the standard Freeman closeness. One of the problems with
most closeness type measures is that they do not differentiate well
between vertices. Clearly, adjacent vertices will have very similar
scores and that is precisely what we see in this instance with nodes
3 and 4 having the same score as well as nodes 1 and 2. However
the total centrality score and the exogenous score give a different
value for each node. Note these are consistent with the endoge-
nous scores and provides a way of separating the tied pairs. What
is interesting is the high exogenous score (and hence total score)
for vertex 3. This is because 3 is a cutpoint and hence gives a lot of
centrality to the other nodes in the network.

The relationship between exogenous closeness and standard
betweenness is striking. Clearly cutpoints give a lot of centrality
to the rest of the network. Vertices with high betweenness scores
are on many geodesics and the removal of such a vertex must gen-
erally move actors further apart and hence give high exogenous
scores. We can therefore think of exogenous reverse-closeness as
a betweenness type measure.

We now examine the total and exogenous reverse-closeness
scores for Padgett data we looked at in the betweenness example in
Table 1, these results are shown in Table 5. In the final column we
have included the standard Freeman betweenness scores for this
data.

Again we see that exogenous and standard betweenness result
in a similar ranking pattern. The top four families in the total and
the exogenous scores are all cutpoints in the graph. We also note

that, as in the previous example, actors with a betweenness score
of zero have equal endogenous and exogenous reverse-closeness
scores. This makes intuitive sense as nodes with zero betweenness
do not affect the distance between any other pairs of nodes. We
state this result as a theorem below.
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Table 3
Calculating exogenous adjusted reverse-closeness centrality for node c in Fig. 3.

Node Graph G Graph G-c

Farness Reverse-closeness Farness Simple reverse-closeness Adjusted reverse-closeness

a 4 2 1
b 4 2 1
c 6 0 –
Graph invariant 4 Graph inva

Table 4
Reverse-closeness scores for Fig. 2.

Vertex Total centrality Endogenous
reverse-closeness

Exogenous Betweenness

1 44 22 22 1
2 46 22 24 1.5
3 74 23 51 4.5

3

r
s

3

b
t
n
a
n

C

t
c
n
i

T

C

T
C

4 50 23 27 3
5 42 21 21 0
6 38 19 19 0

.4. Theorem

A vertex x with a betweenness score of zero has an endogenous
everse-closeness score equal to the exogenous reverse-closeness
core.

.5. Proof

Let G be a graph on n vertices with a vertex x which has a
etweenness score of zero. Let f(x) be the farness score of x, Tf be
he sum of all the farness scores in G and Tx

f the sum of all the far-
ess scores in G with x deleted. It can easily be seen that the total
djusted reverse-closeness centrality CT(x) of a directed graph with
vertices is

T (x) = 2n(n − 1) + Tx
f − Tf (4)

Since x has a betweenness score of zero, deleting x will decrease
he total farness score by 2f(x). This is because there will be no
hange in the distances between vertices not involving x, the far-
ess score for x will be deleted and the value of f(x) will be removed

n total from all the other vertices. We therefore have
x
f = Tf − 2f (x) (5)

So that

T (x) = 2n(n − 1) − 2f (x) (6)

able 5
loseness centrality scores for the Padgett Marriage Data.

Total
centrality

Endogenous
centrality

Exogenous
centrality

Freeman
betweenness

Medici 1248 199 1049 47.5
Guadagni 702 194 508 23.2
Albizzi 692 195 497 19.3
Salviati 664 188 476 13.0
Ridolfi 402 196 206 10.3
Bischeri 398 189 209 9.5
Strozzi 392 192 200 9.3
Barbadori 396 192 204 8.5
Tornabuoni 394 195 199 8.3
Castellani 384 188 196 5.0
Peruzzi 372 186 186 2.0
Pazzi 350 175 175 0.0
Ginori 364 182 182 0.0
Acciaiuoli 372 186 186 0.0
Lamberteschi 362 181 181 0.0
Pucci 0 0 0 0.0
1 2
1 2

riant 2 4

The endogenous centrality e(x) is simply adjusted reverse-
closeness which by definition is given by

e(x) = n(n − 1) − f (x) (7)

Since exogenous plus endogenous equals total centrality the
result follows.

Note that the converse – i.e., that identical endogenous and
exogenous reverse-centrality implies zero betweenness – is false,
as can be seen by vertex 1 in Table 4.

3.6. Eigenvector centralities

We discussed the fact that standard closeness posed some
problems and therefore used a different (but related) closeness
implementation. This made sure the results had certain desir-
able properties (such as isolates having zero centrality across all
the measures) and the measures were well defined. One class
of measures for which is this technique is not appropriate is
eigenvector type measures. For this class of measures we do not
have unique raw score since in any eigen type problem multi-
plying the answer by a constant is also a solution. Eigenvector
type centralities are relative and allow us to compare actor scores
within the network but we do not have absolute values. Typi-
cally in implementations the eigenvector is made to be of unit
length for convenience but any normalization would serve the
same purpose. When we look at the deleted network we cannot
measure the contribution as this requires an absolute measure
but this is really the only class for which this restriction is
true.

3.7. Normalization of induced centralities and their constituents

We have not normalized our total centrality measure and this is
of course possible. We do wish to preserve the idea that total cen-
trality is the sum of the endogenous and exogenous and so each of
these measures would need to be normalized using the same value.
It is a simple matter to show that the reverse-closeness needs to be
normalized by dividing through by (n − 1)(3n − 2). For betweenness
the situation is much simpler as the highest possible total central-
ity score occurs with the star and the total score is the same as
the endogenous score and the exogenous score is zero. We can
therefore use the standard betweenness normalization through-
out.

3.8. Dyadic dependencies

As we have defined it, the total centrality of a node is given by
the difference in the sum of centralities of all nodes when a given
node is present or absent, as shown in Eq. (3). Equivalently, we can

see total centrality as the sum of differences for each node. Each of
these differences can be seen a dyadic effect that each node has on
every other. More specifically, we can define a node by node matrix
P in which pij gives the difference between j’s centrality when i is
present and j’s centrality when i is absent. Let CG(j) be the centrality
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Table 6
Betweenness dependency for Fig. 2.

1 2 3 4 5 6 Sum Diagonal Off-diagonal sum

1 1.0 1.5 1.5 −1.0 0.0 0.0 3.0 1.0 2.0
2 1.0 1.5 −0.5 0.0 0.0 0.0 2.0 1.5 0.5
3 1.0 −0.5 4.5 3.0 0.0 0.0 8.0 4.5 3.5

0.0
0.0
0.0
0.0

o

p

w
o
t
c
t
a
w

m
o
b
p
t
−
n
n
(

4

s
T
d
b
n
r
t
i
w
b
T
f
s
t
a
a
i
t
w

4 −3.0 −1.5 1.5 3.0
5 0.0 1.0 1.0 2.0
6 0.5 0.0 4.0 1.5
Sum 0.5 2.0 12.0 8.5

f vertex j in graph G then

ij = CG(j) − CG−i(j) (8)

here CG−i(i) is defined as zero. Each pij indicates the contribution
f node i to node j’s centrality. The row sums of P give the total cen-
rality of node i, while the diagonal value, pii, gives the endogenous
entrality of node i. The sum of all off-diagonal values in a row gives
he row node’s exogenous centrality. The matrix can be interpreted
s a dependency matrix where each cell pij indicates the degree to
hich j is dependent on i for centrality.

As an example, consider the graph in Fig. 2. Table 6 gives the
atrix of contributions P using betweenness as our base measure

f endogenous centrality. We can see that the pendant node 6 is a
ig source (4 points) of betweenness centrality for node 3, since all
aths from node 6 to all other nodes pass through 3. It is interesting
o note that node 4’s contribution to node 1’s centrality is a negative
3, indicating 4’s presence takes strongly away from 1’s between-
ess. Without node 4, nodes 3 and 6 need 4 to reach 2 and 5. With
ode 4, there is a shorter path to node 5 as well as an alternative
equally short) path to node 2.

. Conclusion

In this paper we have presented a general method of con-
tructing centrality measures using almost any graph invariant.
he essential idea is to calculate a graph invariant on a graph,
elete a given node and recompute the invariant. The difference
etween the two quantities gives the induced centrality for that
ode. Three key benefits are provided by this approach. First, the
esulting centrality measure has a natural interpretation which is
he contribution of a node to the network’s overall score on the
nvariant. For example, if an invariant is chosen that represents net-

ork cohesion, the induced centrality based on that invariant can
e interpreted as a node’s contribution to the network’s cohesion.
he second key benefit is that we can construct a centrality measure
rom virtually any invariant, allowing us to tailor a measure to the
pecific research need at hand. For example, in the context of trying
o disrupt a network by removing key nodes, Borgatti (2006) takes

s his invariant a measure of network fragmentation. A measure of
ttractiveness for deletion is constructed by measuring the increase
n fragmentation obtained by removing each node. The third advan-
age of induced centrality measures is that they provide a natural
ay to generalize node centrality to group centrality (Everett and
0.0 0.0 3.0 −3.0
0.0 4.0 0.0 4.0
0.0 6.0 0.0 6.0
0.0 23.0 10.0 13.0

Borgatti, 1999), simply by calculating changes in invariants when
removing sets of nodes instead of individuals.

In the second part of the paper we demonstrate that we can
construct an induced centrality measure from virtually any other
centrality measure by taking the sum of all centrality scores as the
invariant for the induced centrality. We call this induced centrality,
which measures the contribution of a node to the sum of centralities
in the network, the total centrality of a node. We then decompose
total centrality into an endogenous part, which is the base mea-
sure of centrality used to construct the invariant, and an exogenous
part, which is the difference between the total centrality and the
endogenous part. The exogenous centrality can be interpreted as
the indirect contribution a node makes to the centrality of all the
other nodes. We then show that we can construct a node by node
contribution matrix that gives the amount of centrality contributed
by each node to each other node’s centrality, thereby indicating the
latter node’s dependency on the former node. Our examples have
focused on centrality measures which are derived from shortest
path type considerations, but as we have noted this technique is
applicable to other variants such as maximum flow.

References

Borgatti, S.P., 2005. Centrality and network flow. Social Networks 27, 55–71.
Borgatti, S.P., 2006. Identifying sets of key players in a social network. Computational

& Mathematical Organization Theory 12, 21–34.
Borgatti, S.P., Everett, M.G., Freeman, L.C., 2002. Ucinet for Windows: Software for

Social Network Analysis. Analytic Technologies, Harvard, MA.
Borgatti, S.P., Everett, M.G., 2006. A graph-theoretic framework for classifying cen-

trality measures. Social Networks 28, 466–484.
Brandes, U., 2008. On variants of shortest-path betweenness centrality and their

generic computation. Social Networks 30, 136–145.
Everett, M.G., Borgatti, S.P., 1999. The centrality of groups and classes. Journal of

Mathematical Sociology 23, 181–201.
Everett, M., Borgatti, S.P., 2005. Ego network betweenness. Social Networks 27,

31–38.
Freeman, L.C., 1979. Centrality in social networks: 1. Conceptual clarification. Social

Networks 1, 215–239.
Freeman, L.C., Borgatti, S.P., White, D.R., 1991. Centrality in valued graphs: a measure

of betweenness based on network flow. Social Networks 13, 141–154.
Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-

towski, O., 2005. Cenrality indices. In: Brandes, U., Erlebach, T. (Eds.), Network
Analysis: Methodological Foundations. Springer-Verlag, Heidelberg, Berlin, pp.

16–61.

Padgett, J.F., Ansell, C.K., 1993. Robust action in the rise of the Medici, 1400–1434.
American Journal of Sociology 98, 1259–1319.

Valente, T.W., Foreman, R.K., 1998. Integration and radiality: measuring the extent
of an individual’s connectedness and reachability in a network. Social Networks
20, 89–109.


	Induced, endogenous and exogenous centrality
	Introduction
	Induced centrality
	Definition
	Graph invariants

	Endogenous, exogenous and total centrality
	Degree
	Betweenness
	Reverse-closeness
	Theorem
	Proof
	Eigenvector centralities
	Normalization of induced centralities and their constituents
	Dyadic dependencies

	Conclusion
	References


