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ABSTRACT 
 
This paper describes our concept of the proper (and improper) use of diagnostic variables in severe-storm 
forecasting.  A framework for classification of diagnostic variables is developed, indicating the limitations 
of such variables and their suitability for operational diagnosis and forecasting.  The utility of diagnostic 
variables as forecast parameters is discussed, in terms of what we consider to be the relevant issues in de-
signing new diagnostic variables used for making weather forecasts.  Finally, criteria required to determine 
whether a new diagnostic variable represents an effective forecast parameter are proposed.  We argue that 
many diagnostic variables in widespread use in forecasting severe convective storms have not met these 
criteria for demonstrated utility as forecast parameters. 

 
–––––––––––––––––––––––– 

 
1.  Introduction 
 
Operational and research meteorologists often 
refer to diagnostic variables, such as convective 
available potential energy (CAPE) or the super-
cell composite parameter (SCP; Thompson et al. 
2003), as forecast parameters.  We contend that 
they are not necessarily forecast parameters; 
rather, they constitute a set of diagnostic vari-
ables.  For most such variables, their forecast 
value generally has not been established via rig-
orous verification.  That operational forecasters 
have used many of them for decades is not suffi-
cient, in our opinion, to establish their capability 
as forecast parameters.   
 
Furthermore, diagnostic variables can lead to 
faulty perceptions of the state of the atmosphere, 
__________________________ 
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owing to various issues tied to their computation 
and representativeness.  Although there is noth-
ing inherently wrong with diagnostic variables, 
forecasters need to be aware of the limitations on 
their use.  For example, one of the most common 
and well established among these is CAPE in 
various forms. Monteverdi et al. (2003) showed 
that for at least one type of severe weather fore-
casting (tornadoes in California), CAPE proved 
to be of little value in discriminating tornado 
cases from nontornadic cases when tested as a 
forecast parameter.  The forecasts based on 
CAPE were verified against observed events, 
whereas another variable (0–1-km shear)  
appeared to be capable of making such dis-
criminations.  
 
Diagnostic variables have a long history in asso-
ciation with forecasting severe convection 
(Schaefer 1986; Johns and Doswell 1992).  It is 
evident that the value of such variables is 
strongly associated with their capacity to sum-
marize in a single number (or field variable) 
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some characteristic of the severe storm environ-
ment.  Rather than having to consider the full 
complexity of four-dimensional atmospheric 
data, it is often regarded as a benefit for forecast-
ers working with hard deadlines to be able to 
distill that complexity into a single variable. 
 
Forecasters and researchers generally acknowl-
edge that any single diagnostic variable consid-
ered in isolation has little forecast value. Never-
theless, in our experience, we have seen in-
stances where forecasters, often under forecast 
deadline pressure, will make forecast decisions 
based heavily, if not primarily, on a single diag-
nostic variable.  It has been our observation that 
forecasters are most prone to rely heavily on a 
single diagnostic variable in the context of de-
termining the general likelihood of severe 
weather.  For example, when CAPE or strong 
vertical wind shear is found to be absent at the 
diagnosis time, the likelihood of severe convec-
tive weather subsequently is sometimes dis-
missed as unlikely.  An important concern is that 
most of the widely used diagnostic variables 
have not been validated as proper forecast pa-
rameters. (This process for validation is defined 
in section 2).  As diagnostic variables, they can 
be useful in assessing quantitatively the state of 
the atmosphere at the time of their calculation, 
but their capability to inform forecasters about 
weather in the future can be quite limited, at 
best.  
 
One purpose of this paper is to propose a classi-
fication scheme for diagnostic variables in use 
for severe weather forecasting, in order to under-
stand their characteristics and limitations.  An-
other goal is to address the issue of what it takes 
to validate the value of a variable as a proper 
forecast parameter.  We are not seeking to dis-
courage the use of diagnostic variables, per se, in 
forecasting severe convective storms.  Rather, 
we seek to develop a perspective through which 
their value to forecasting can be maximized.  
 
2.  Diagnostic variables 
 
What specifically do we mean by a diagnostic 
variable?  A diagnostic variable is some quan-
tity, valid at a specific instant in time, which 
either is a basic observed variable (e.g., pressure, 
temperature, wind, humidity) or can be calcu-
lated from those variables.  The relationship be-
tween diagnosis and prognosis, as developed by 
Doswell (1986), can be expressed mathemati-

cally as follows.  Let Φ be an n-dimensional vec-
tor of atmospheric state variables 

 Φ = φ1,φ2 ,K,φn( )

t = t0

Φ = Φ X, t = t0

. 
In general, this vector is a function of its location 
in space, denoted by the position vector X, and is 
known at some particular time, , such that 

( )≡ Φ0

Φ X, t = t0 + δt( )= Φ X, t = t0( )+ δt
∂Φ

∂t

. 
A basic principle of numerical weather predic-
tion (NWP) is that the information about the 
state of the atmosphere at some initial time can 
be used to make a forecast of the state of the 
atmosphere at some future time in the following 
way: 

. 
t=t0

∂Φ

Thus, the state of the atmosphere at some future 
time is the sum of its state at the initial time (the 
diagnosis) and the product of the time step, δt, 
with the local time rate of change of Φ, where 

X, t( ) = f Φ X, t( )[ ]. 
∂t

That is, the time trend of the atmospheric state 
variables at any point in space at a particular 
time is a function of the current spatial distribu-
tion of those state variables.  In NWP, this time 
trend is expressed in the form of a set of govern-
ing equations used for a particular NWP model.  
Thus, although it is strictly true that a forecast 
can be calculated from the state variable vector 
Φ0  at the initial time, we exclude from consid-
eration as diagnostic variables the explicit calcu-
lation of local time tendencies for atmospheric 
state variables via this NWP-like process.  This 
does not, as we will show, exclude as diagnostic 
variables the estimation of time tendencies by 
other means. 
 
Establishing a quantitative understanding of the 
state of the atmosphere at a given time using 
diagnostic variables is possible.  Qualitative un-
derstanding, in turn, can be substantially en-
hanced by this quantitative analysis. For exam-
ple, a forecaster can simply look at the plotted 
winds on a surface chart and recognize zones of 
strong rotation (vorticity) and convergence, but 
without a quantitative evaluation of the vorticity 
and convergence values, a forecaster’s sense of 
the strength of those variables is obviously sub-
jective.  A quantitative assessment is generally 
preferred over subjective assessment in forecast-
ing; numerical  values of variables often matter 
to the forecast decision.. 

2 
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We define a diagnostic variable being used as a 
forecast parameter as one that allows a fore-
caster to make an accurate weather forecast 
based on the current values of that variable.  For 
a proper forecast parameter, there should be a 
time-lagged correlation between the parameter 
and the weather being forecast.  This is to be 
distinguished from using a diagnostic variable 
calculated from a forecast of the state variables 
(say, from NWP model gridded forecast fields) 
valid at some future time to make a forecast of 
the weather for that valid time.  How accurately 
an NWP model forecasts that diagnostic variable 
is a very different issue from how accurate a 
forecast can be using only the current distribu-
tion of that variable.  A diagnostic variable might 
be very good at discriminating between different 
weather events when known at the time of the 
event, but still be ineffective as a forecast pa-
rameter because its values before the events oc-
cur make no directly useful statement about the 
future weather.   
 
Obviously, diagnostic variables change with 
time, and indeed, a description of the time ten-
dency for some diagnostic variable can be an 
important diagnostic variable in its own right and 
may even be valuable as a proper forecast pa-
rameter.  The accuracy of forecasts made using a 
diagnostic variable as a forecast parameter will 
tend to decay with time.  Some forecast parame-
ters might permit reasonably accurate forecasts 
only for a short period very close to the time of 
their diagnosis, whereas others might show high 
lagged correlation with the weather for a rela-
tively long time. 
 
Therefore, what we are concerned with herein is 
a forecast by a human forecaster that makes a 
statement about the future weather (say, the oc-
currence of severe storms), rather than a state-
ment about the distribution of atmospheric state 
variables.  For a variable to be useful in making 
a weather forecast by a human, it must be shown 
rigorously that there is some measure of forecast 
skill when the current values of the variable are 
used to make that weather forecast.  This argu-
ment will be developed in detail in what follows. 
 
When calculating diagnostic variables, forecast-
ers unaware of the caveats associated with the 
particular variable being analyzed can be misled. 
What are the unique sensitivities in those calcu-
lations?  How much confidence can one put in 
the numbers and how they might change over 
time?  If diagnostic variables are to be used 

properly, forecasters need to be aware of the 
story behind each of them. In order to discuss 
diagnostic variables and their limitations, we 
propose a classification scheme as follows. 

 
a. Simple observed variables 
 
Simple observed variables are those measured by 
meteorological instruments. Strictly speaking, 
most modern meteorological instruments make 
electronic measurements (e.g., resistance or ca-
pacitance) that are calibrated to provide readouts 
of the meteorological variables (e.g., pressure, 
temperature, dewpoint, wind direction and 
speed).   

 
b.  Simple calculated variables 
 
Calculated variables are not observed directly 
but are computed from the raw measurements 
using relatively simple conversion formulae. 
Calculated variables typically involve combina-
tions of two or more observed variables, but they 
are not combined in an arbitrary fashion.  Rather, 
they are combined in ways having a physical 
basis.  Such calculated variables are usually 
sought because they have some valuable physical 
property, such as being conserved under certain 
reasonable assumptions.  For example, at the 
surface, the temperature and dewpoint tempera-
ture are the common observed variables.  How-
ever, for reasons discussed in Sanders and Dos-
well (1995), mixing ratio and potential tempera-
ture are conserved variables that incorporate the 
pressure observations, as well as the temperature 
and dewpoint.  The formulae for calculating the 
mixing ratio and potential temperature are de-
termined by the laws governing the physical 
properties of air parcels under the assumption of 
adiabatic flow. 

 
c. Derivatives or integrals (spatial or temporal) 
of simple observed or calculated variables 
 
Time and space derivatives and integrals of the 
observed or calculated variables form the next 
class of diagnostic variables.  In effect, these 
diagnostic quantities allow estimates of the terms 
in formulae that might arise in mathematical 
descriptions of atmospheric structure.  An impor-
tant caveat in the calculation of such diagnostic 
variables is the inevitable truncation error that 
arises from the limited temporal and spatial reso-
lution of our meteorological information, 
whether it be observed or modeled.  If we were 
to calculate, say, the Eulerian time rate of change 

3 
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of the 500-hPa height at some location where 
soundings are taken, the true instantaneous value 
is not known, simply because soundings gener-
ally are taken at 12-h intervals.  Of course, esti-
mating that same variable at some point other 
than where a sounding is launched1 is problem-
atic because of the small number of locations 
where soundings are made.  The usual approach 
is to make estimates using available information; 
this typically involves making assumptions about 
the behavior of the fields where we have no in-
formation.  Realizing the limitations of those 
calculations is critical.  Just because the calcula-
tions were performed by computer is no guaran-
tee that they are even remotely accurate. 
 
d. Combined variables 
 
Next is the class of combined diagnostic vari-
ables.  Many ways exist to take two or more di-
agnostic variables and combine them in some 
way that might be more useful for some specific 
purpose than the raw observations or simple de-
rivatives and integrals of those variables.  Mois-
ture flux convergence (MFC), discussed in detail 
by Banacos and Schultz (2005), is an example of 
a combined variable. The formulation of MFC 
can vary from one application to another, but it is 
often formulated as the finite difference calcula-
tion of the quantity: 

  

MFC = −∇h • rVh( )= r ∇h • Vh
1

1 2 4 3 4 
+ Vh • ∇hr

2
1 2 4 3 4 

                                                

 

where r is the mixing ratio, ∇h  is the horizontal 
gradient operator, and Vh is the horizontal wind 
vector.  This calculation involves a calculated 
variable (the mixing ratio) and a spatial deriva-
tive of an observed variable (the horizontal wind 
vector).  MFC is often calculated using the rela-
tively dense surface observations, and, as used in 
forecasting severe storms, MFC is purported to 
show where ascent is occurring in the presence 
of surface moisture.  Banacos and Schultz (2005) 
emphasize four points about MFC relevant to 
this discussion.  
 
1. The scientific justification for using MFC as 

a forecast tool for convective initiation is in-
adequate.   

2. The putative value of MFC as a forecast 
variable has never been firmly established 

 
1

In certain situations, the displacement of the sounding in-
strument from its original launch location has to be accounted 
for in the calculations. 

by a careful statistical verification study.  Its 
popularity is based almost entirely on anec-
dotal evidence and heuristic arguments. 

3. Term 1 on the rhs of the MFC equation 
associated with horizontal divergence is 
characteristically much larger than term 2, 
associated with moisture advection.  The 
MFC field tends to look very much like that 
of the horizontal divergence field alone on 
mesoscale and smaller scales. 

4. MFC is an inadequate tool as a forecast pa-
rameter because it combines two of the three 
ingredients required for deep, moist convec-
tion (e.g., Johns and Doswell 1992).  The 
two components of the major term in this 
combination, the mixing ratio and the diver-
gence field, can evolve quasi-independently. 
What this variable shows is where those two 
main components overlap at the time of the 
analysis. Thus, MFC is first and foremost a 
diagnostic variable. 

 
CAPE is another example of a combined vari-
able; its calculation involves a vertical integral of 
multiple state variables and incorporates a num-
ber of assumptions (e.g., Doswell and Rasmus-
sen 1994; Doswell and Markowski 2004).  Nev-
ertheless, that calculation can be represented by 
its most basic components:  large CAPE is gen-
erally observed where low-level moisture is 
found in the presence of conditionally unstable 
lapse rates in the lower mid-troposphere.  As 
with MFC, these constituent fields can evolve 
quasi-independently and can be superimposed by 
differential advection processes.  Prior to that 
superposition, the air streams carrying condition-
ally unstable lapse rates and low-level moisture 
(typically at different levels in the atmosphere 
advecting variables in different directions and at 
different speeds) have not yet interacted and so 
little or no CAPE is found.  
 
The presence of CAPE indicates when its con-
stituents overlap, but an absence of CAPE prior 
to that superpositioning cannot be used to infer 
large CAPE will not be present in the future. 
CAPE depicts where moisture and conditional 
instability are already superimposed, not where 
they will (or will not) be superimposed in the 
future.  A comparable statement can be made 
about MFC.  This aspect of combined variables 
is an important element for understanding the 
difference between a diagnostic variable and a 
proper forecast parameter.   

4 
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e.  Indices 
 

Indices, the final class of diagnostic variables, 
can be broken down into two distinct subclasses:  
indices based on physically based formulae and 
indices representing more or less arbitrary com-
binations of diagnostic variables.  This is a com-
plex topic and is the subject of a wholly separate 
section (section 4, below).  Before we discuss 
indices, however, we consider several issues 
associated with diagnostic variables that affect 
their utility in diagnosing the current state of the 
atmosphere.   
 
3. Issues affecting the suitability of diagnostic 
variables 
 

All diagnostic variables are subject to error, but 
not all are equally error-prone.  Errors can be de-
composed into measurement errors, which have a 
number of sources that are generally instrument-
dependent (Brock and Richardson 2001, their 
section 1.1.3), and sampling errors (associated 
with the finite number of observations).  Meas-
urement and sampling errors are associated with 
much of the volatility of diagnostic variables.  
Here we use volatility to mean that the variable 
can vary considerably over both time and space as 
a result of sensitivity to both measurement and 
sampling errors.  Some diagnostic variables are 
inherently more volatile than others.   
 

Consider CAPE as an example of a combined 
variable, and compare it to the Showalter (1947) 
index.  Both of these purport to be variables per-
tinent to forecasting severe convective weather, 
and both are based on simple parcel theory.  The 
Showalter index is determined by the tempera-
ture difference between a hypothetical parcel 
lifted from 850 hPa to 500 hPa (a calculated di-
agnostic variable) and that at 500 hPa (an ob-
served diagnostic variable).  The Showalter in-
dex was originally proposed because it uses only 
three observed variables:  500-hPa and 850-hPa 
temperatures, and 850-hPa dewpoint tempera-
ture.  At the time, manual processing of sound-
ings meant that the mandatory pressure-level 
data were available more quickly than the rest of 
the sounding.  Calculating an index requiring 
only mandatory-level data was advantageous 
because it gave forecasters a quick look at the 
convective instability before the whole sounding 
came in later. 
 
The temperature of a parcel lifted from 850 to 500 
hPa depends strongly on the 850-hPa dewpoint 
depression.  When that value is large, unless the 

850–500-hPa lapse rate is very nearly dry adia-
batic, the parcel is likely to arrive at 500 hPa 
colder than the observed 500-hPa temperature 
because it will have followed a dry adiabat for 
most of its ascent.  Conversely, when the 850-hPa 
temperature–dewpoint spread is small, the parcel 
will ascend mostly along a moist adiabat and is 
likely to be warmer than the observed 500-hPa 
temperature, unless the lapse rate is less than 
moist adiabatic.   So far, so good, but consider the 
example shown in Fig. 1a.  If, as in this case, the 
low-level moisture decreases rapidly just below 
850 hPa, the Showalter index may be calculated 
correctly, but its implications about the convective 
 

 
 
Figure 1.  Rawinsonde plots on a Skew-T–log p 
diagram for (a) Rapid City, SD on 09 June 1972, 
and (b) Amarillo, TX on 04 March 2004.  See 
text for discussion. 

5 
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instability of the atmosphere can be misleading.  
This example was taken on the morning of a 
devastating flash flood in the vicinity that eve-
ning—the calculated Showalter index nominally 
would indicate little or no chance for thunder-
storms simply because of the low dewpoint tem-
perature at 850 hPa. 
 

 
 

Figure 2.  Soundings with very nearly equal 
CAPE values, but showing distinctly different 
vertical distributions of CAPE—(a) for Bis-
marck, ND at 00 UTC on 24 May 2000, and (b) 
for Slidell, LA at 00 UTC on 31 October 2004. 
 

Indices can be affected dramatically when 
soundings rise through precipitation (as in Fig. 
1b), or from errors that just happen to fall at 
mandatory pressure levels, thereby rendering 
calculation of parameters such as the Showalter 
index unrepresentative or even meaningless.  
This sensitivity to a small number of observa-

tions occurs in part because the Showalter index 
involves a differential quantity, and derivatives 
generally are much more sensitive to errors than 
are the basic quantities being differenced.  
 
On the other hand, the CAPE calculation is a 
vertical integral that uses measurements at more 
than two levels.  By virtue of being an integral 
quantity, rather than a derivative, calculation of 
CAPE is inherently less sensitive to small differ-
ences that might arise from measurement errors.  
Unfortunately, that apparently useful property of 
integration renders its values non-unique; that is, 
you can get the same CAPE value from distinctly 
different vertical distributions of a parcel’s ther-
mal buoyancy (Fig. 2 - see also Blanchard 1998).  
It is likely that one would interpret these sound-
ings differently in terms of the weather forecasts, 
but considering only the CAPE values without 
seeing the soundings would permit no such dis-
crimination.  
 
Moreover, as discussed in Brooks et al. (1994), 
finding a representative sounding can be some-
thing of a challenge, owing to undersampled vari-
ability in space and time.  This undersampled 
variability also affects any interpretation of the 
Showalter index, of course.  At least in the short 
term, little can be done about measurement errors 
and undersampling.  However, when considering 
how to interpret diagnostic variables, it seems 
quite unlikely to be able to define a diagnostic 
variable that distills the relatively rich complexity 
of a complete sounding into a single number that 
isn’t vulnerable to being unrepresentative under 
some circumstances.  In fact, we assert that no 
single number can replace the value of a fore-
caster simply looking at the soundings, as well as 
looking at diverse diagnostic variable computa-
tions based on those soundings.  Any obvious 
errors in the sounding, or any characteristics that 
would render diagnostic variable computations 
misleading, will be apparent to someone experi-
enced in sounding interpretation.   
 
Further, we suggest that this principle applies to 
any diagnostic variable, not just those based on 
soundings.  The diagnostic variable calculations 
still add value beyond what our hypothetical 
forecaster can see simply by viewing the data on 
a display, but using only the diagnostic variables 
as a substitute for considering all the information 
in the data is inherently risky in making weather 
forecasts. 
 
Volatility is associated with the specific way in 
which the observations are used to construct the 

6 
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fields of a diagnostic variable. Consider the hori-
zontal divergence, expressed in conventional 
meteorological notation as: 

divh = ∇h • Vh =
∂u

∂x
+

∂v

∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

where (u,v) is the Cartesian coordinate (x,y) form 
of the horizontal velocity vector.  When ex-
pressed in terms of natural coordinates—along 
and normal to the horizontal wind vector—
Panofsky (1964, p. 33 ff.) has shown that under 
“normal circumstances” (i.e., quasi-hydrostatic 
flow) the horizontal divergence calculation in-
volves the difference between two relatively 
large numbers, so it can be quite sensitive to 
small changes in the winds.  Note that this sensi-
tivity is not present when calculating the vertical 
component of the vorticity, ζ, where 

ς = k • ∇ × V =
∂v
∂x

−
∂u
∂y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , 

and where k is the unit vector in the vertical—
the two terms in this calculation have no charac-
teristic tendency to cancel one another. 
 

Further, a divergence (or vertical vorticity) cal-
culation is dependent on the resolution of the 
data.  To show this, assume a characteristic mag-
nitude for the difference in wind velocity be-
tween two points (δV, which is the same order of 
magnitude as the wind velocity itself, V), sepa-
rated by a characteristic distance scale L, so that 

divh ~
δV

L
 ,  

which is a simple scaling law for the divergence 
(or vorticity) magnitude.  The order of δV turns 
out to be not very scale dependent, typically of 
order 1–10 m s–1.  This characteristic difference 
rarely reaches 100 m s–1 or becomes as small 0.1 
m s–1.  Thus, over a fairly wide range of scales, 
the calculated divergence tends to depend most 
strongly on the distance between sample points.2

                                                 
2 Note that at synoptic scales (where L ~ 1000 km), because 
the wind is nearly geostrophic, the characteristic divergence 
magnitude is an order of magnitude less than this simple 
scaling law predicts because the geostrophic wind calculated 
on an f-plane in many meteorological coordinate systems is 
nondivergent (see Doswell 1988).  This can be accounted for 
by changing the scaling law to 

divh ~ Ro V
L

 

as shown by Haltiner and Williams (1980, p. 57), where Ro is 
the Rossby number and is of order 10–1 on synoptic scales, 
but dynamics-based scale analysis is beyond the scope of this 
paper.  Again, synoptic-scale vertical vorticity scaling is not 
subject to this consideration. 

If divergence is calculated from a sparse network 
of points, such as rawinsonde sites (L~400 km), 
a rough order of magnitude for the divergence, 
according to the above scaling rule, is about (1–
10 m s–1) ÷ 400 km = 2.5 x (10–6–10–5) s–1. In 
contrast, for the network of surface observations 
(L~100 km), the simple scaling rule gives a value 
of 1 x (10–5–10–4) s–1, which is four times larger.  

 

 
 
Figure 3. Objective analyses of surface diver-
gence at (a) 1100 UTC and (b) 1200 UTC 14 
February 2000, illustrating the volatility of the 
details.  Solid contours are nonnegative diver-
gence, starting at zero, and dashed contours are 
negative values.  Conventional wind barbs show 
the observations used in the calculations. 
 
According to this simple scaling law, horizontal 
divergence is inversely proportional to the scale 
of the data resolution over a wide range of 
scales. 
 
Like the Showalter index, divergence calcula-
tions can be volatile.  This volatility also follows 
from the simple scaling law above:  if winds are 
only known to within 2 m s–1, then a divergence 

7 
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estimate based on a station separation of 100 km 
is known only to within 2 x 10–5 s–1.  The fields 
tend to be noisy and behave somewhat erratic-
ally over time as a result of undersampled vari-
ability in the wind field and measurement er-
rors, although the basic shape of the fields 
might be fairly consistent from one time to the 
next (Fig. 3).  
 
To some extent, this volatility can be reduced by 
heavy smoothing that limits the spatial and/or 
temporal scales of the features retained to those 
that can be depicted reliably in the analysis 
(Doswell 1977).  The consistency of the basic 
shape of the fields, combined with the volatility 
of the details, is a direct indication of the sensi-
tivity of the details in the field to small changes 
in the wind. 

 
4.  Indices 
 
Having considered several of the issues that con-
front users of diagnostic variables, we are now 
prepared to consider the topic of indices. Indices 
have a long history in severe storms forecasting 
that perhaps began with the Showalter index 
(SI).  Their use has continued through a growing 
plethora of constructs, including, among many 
others, the lifted index (LI), SWEAT index, bulk 
Richardson number (BRN), energy–helicity in-
dex (EHI), Cross Totals (CT), SCP, significant 
tornado parameter (STP), and enhanced stretch-
ing potential (ESP; J. Davies 2005, personal 
communication).  These and selected other indi-
ces are listed in Table 1.  Indices also have been 
applied to forecasts other than severe convective 
weather.  One example is the Garcia (1994) 
method for forecasting snowfall. Wetzel and 
Martin (2001) and Schultz et al. (2002) discuss 
the scientific integrity of the Garcia (1994) 
method and other approaches.   
 
Some indices are associated with a physical ar-
gument. The early stability indices (e.g., SI, LI) 
were based on simple parcel theory, although we 
have suggested some issues with their use as 
diagnostic variables previously, to say nothing of 
their use as forecast variables.  The dimen-
sionless BRN is at least related to the true 
Richardson number, but the actual physical sig-
nificance of any Richardson number to the phys-
ics of deep moist convection is unclear, as the 
original intent of the Richardson number was to 

address topics in turbulence theory (Tennekes 
and Lumley 1972, p. 98 ff.). 
 
Many of these indices, including the SWEAT 
index, CT, EHI, SCP, and STP, have combined 
variables in ways that have no physical rationale.  
In other words, the process of forming sums, 
products, and ratios has not been done in accor-
dance with a formula originating in the mathe-
matics describing a physical process.  Rather, the 
mathematical expression for the index is more or 
less arbitrary.  Why a sum of two variables di-
vided by a third?  Why not one variable raised to 
a power defined by a second variable multiplied 
by a third?   
 
As we have mentioned for the case of simple 
diagnostic variables calculated from observations 
(cf. section 2b), combining two or more vari-
ables in a way that has a physical basis affects 
the interpretation and use of the resulting vari-
able.  If a variable is conserved during certain 
physical processes, for example, that is quite 
relevant to its application in diagnosis or fore-
casting. 
 
At issue is whether or not the variable can be 
related to physical principles. Examples of diag-
nostic variables based on physical principles 
might be something like the static stability time 
tendency, potential vorticity, or energy dissipa-
tion rate.  Combining two or more variables in an 
arbitrary way leaves open many questions and 
makes it difficult to relate the variable to any 
physical understanding of the process.  The indi-
vidual diagnostic variables used to form an index 
may have physical relevance to the problem at 
hand, but when a specific formula combining 
them is unphysical, this can be problematic.  
 
Furthermore, the physical dimensions of these 
indices may or may not make any physical sense.  
For example, the ratio of CAPE to shear  (a ratio 
used in one form or another for several indices 
within Table 1) has dimensions of J kg–1 s, the 
product of energy per unit mass and time, 
whereas the product of CAPE and shear has di-
mensions of J kg–1 s–1.  The former has no obvi-
ous physical interpretation, whereas the latter has 
dimensions of energy per unit mass per unit 
time, which at least can be related to terms in an 
energy budget.  Thus, the product of CAPE and 
shear might yield a more physically meaningful 
parameter than the quotient of CAPE and shear.    

 

8 



DOSWELL AND SCHULTZ  10/31/06 

 
Table 1.  A selection of indices commonly used in the United States for severe storm forecasting.  In the 
formulae, T denotes a temperature and D denotes a dewpoint temperature in ºC, with a subscript indicating 
at what mandatory pressure level (in hPa) this value is to be taken from; α denotes the specific volume and 
a subscript lp denotes a value associated with a lifted parcel;  LFC stands for a lifted parcel’s level of free 
convection and EL stands for its equilibrium level.  For the Lifted index, the lifted parcel is for a surface 
parcel with forecast properties at a representative time of day.  For the SWEAT index, V denotes a wind 
speed (in knots), and ΔV denotes a wind direction difference (in degrees).  For the Bulk Richardson num-
ber, U 0denotes the density-weighted speed of the mean vector wind in the layer 0–6 km, and U  denotes 
the speed of the mean vector wind in the layer from the surface to 500 m—the quantity U −U0( ) is some-
times referred to as the “BRN shear”.  For the storm-relative helicity, C denotes the storm motion vector. 
See Thompson et al. (2003) for an explanation of symbols used for the SCP and STP calculations. 
 

 
Index Name Formula Reference 

Showalter index SI  =  T500 – Tlp(850 hPa) Showalter 
(1947) 

Lifted index LI  = Tlp(fcst surface) - T500 Galway (1956) 

K = T − T( )+ D850850 500
K-index − T700( − D700)

= α lp − α( )LFC

EL∫ dp

BRN =
CAPE

1
2

 George (1960, 
pp. 407–415) 

Convective 
available poten-
tial energy 

CAPE  
Glickman 
(2000, p. 176) 

Vertical totals VT  = T850 – T500 Miller (1972) 

Cross totals CT  = D850 – T500 Miller (1972) 

Total totals TT  = VT +CT Miller (1972) 

SWEAT index SWEAT = 20(TT–49ºC) + 12D850 + 2V850 + V500 + 125[sin(ΔV500-

850) + 0.2] 
Miller (1972) 

Bulk Richard-
son number 

 Weisman and 
Klemp (1982) U −U0( )2

Storm-relative 
helicity SRH = − k • Vh − C( )×

⎡ 
⎣ ⎢ 

⎤∂Vh

∂z
 

⎦ ⎥ 
z

dz

EHI =
CAPE

zo
∫  Davies-Jones 

et al. (1990) 

( )Energy-helicity 
index 

SRH( ) Hart and 
Korotky 
(1991) 160,000

 

Supercell com-
posite parameter SCP =

MUCAPE
1000 Jkg−1

⎛ 

⎝ 
⎜ 

⎞ SRH0−3 km

100 m2 s−2⎠ 
⎟ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
⎛ U −U0

40 ms−1

 

⎝ 
⎜ 

⎞ 

⎠ 
   

Thompson et 
al. (2003) ⎟

Significant tor-
nado parameter STP =

MLCAPE
1000 Jkg−1

⎛ 

⎝ 
⎜ 

⎞ SHR

⎠ 
⎟ 

0−6 km

20 ms−1

⎛ 

⎝ 
⎜ 

⎞ SRH

⎠ 
⎟ 

0−1km

100 m2 s−2

⎛ 

⎝ 
⎜ 

⎞ 2000m − MLLCL
⎠ 
⎟ 

( )
1500 m

⎛ ⎞ 

⎝ 
⎜ 

Thompson et 
al. (2003) 

⎠ 
⎟  

Enhanced 
stretching po-
tential 

ESP =
∂T
∂z 0−2 km

− 7oCkm−1
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

MLCAPE3 km

50 Jkg−1

⎛ 

⎝ 
⎜ 

⎞ Davies (2005 – 
personal com-
munication)  ⎠ 

⎟  
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a. Example of representative problems with 
indices:  EHI 
 
In order to demonstrate these issues using one of 
these indices, we use the EHI as a representative 
example, although any of the above-listed indi-
ces would reveal similar problems. As described 
in Rasmussen and Blanchard (1998, p. 1154), 
“This index [using the 0–1-km layer] is used 
operationally for supercell and tornado forecast-
ing, with values larger than 1.0 indicating a po-
tential for supercells, and EHI > 2.0 indicating a 
large probability of supercells.” Our problems 
with EHI center around five issues:  combination 
of ingredients, arbitrary construction, choice of 
scaling constant, ambiguous physical meaning, 
and lack of proper validation. 
  
First, EHI is a combination of two separate vari-
ables that may not even be collocated during the 
event and can evolve separately, as discussed in 
section 3.  For instance, although large CAPE 
and large SRH are both pertinent to supercell 
forecasting, they need not be precisely collocated 
in space—many severe storm forecasters believe 
CAPE and SRH need simply be in proximity to 
each other, perhaps with some overlap.  There-
fore, a variable based on the combination of 
these two variables may not adequately reflect 
the true potential for storms.   
 
Further, EHI is the combination of two ingredi-
ents in an unphysical, arbitrary fashion. Can it be 
shown that the formation of a supercell depends 
in some well-defined physical way on the prod-
uct of CAPE and SRH?  Although we cannot 
exclude such a possibility in the future, as of this 
writing, this product has not been shown to be 
physically pertinent, in the sense of appearing in 
some physically-relevant mathematical formula.  
Schultz et al. (2002) made a similar argument 
about the lack of scientific justification in refer-
ence to the PVQ parameter (the product of PVes 
and the divergence of Q when both are negative) 
defined and proposed by Wetzel and Martin 
(2001).  
 
Consider the following argument.  Imagine a 
hypothetical world where the EHI’s two con-
stituent parameters were all that is needed to 
forecast supercell tornadoes perfectly.  Then 
picture a two-dimensional (2D) phase space of 
SRH and CAPE in which some irregular region 
within this phase space was associated with the 
occurrence of supercell tornadoes.  By assump-
tion, such a scenario would represent a perfect 

forecasting tool:  if the values of SRH and 
CAPE, fall within this presumably complex re-
gion of 2D phase space, supercell tornadoes al-
ways occur.  Anywhere outside of this region, 
supercell tornadoes never occur.  Use of the EHI 
compresses the information within this hypo-
thetical 2D space into a single number, eliminat-
ing our ability to apply the information in this 
phase space.   
 
Furthermore, EHI is scaled by 160,000 some-
what arbitrarily, so that whether the value of the 
EHI is 1 or 100 is similarly arbitrary.  EHI’s 
scaling constants are associated with a “stan-
dard” value for CAPE of 1000 J kg–1 and for 
SRH of 160 m2 s–2—note that these units are 
actually equivalent and so EHI has dimensions 
of (J kg–1 = m2 s–2)2, which has little obvious 
physical interpretation.  For indices of this sort, 
the scaling constants are determined by what the 
developer felt to be typical values for the input 
variable.  What is typical for some variable asso-
ciated with severe weather in one part of the 
world may not be typical elsewhere.  Hence, this 
can lead to incorrect interpretations of the index 
when used outside of the region in which it was 
developed (Tudurí and Ramis 1997).  It is rea-
sonable, we believe, to ask that a forecast pa-
rameter’s utility and interpretation should not 
vary from one location to another. 
 
Moreover, consider our hypothetical world 
again, in which the constituent parameters for 
EHI can be used to construct a 2D phase space 
that includes some complex region wherein su-
percell tornadoes always occur.  It is conceivable 
that some transformation of the EHI’s constituent 
variables (CAPE and SRH) would convert the 
complex region into a simple one—say, a circle.  
However, it seems highly unlikely that the exist-
ing scaling and unphysical construction of EHI 
could correspond to such a transformation. 
 
This leads to the next point:  how does a fore-
caster interpret EHI values?  Put another way, 
does a situation where EHI=2 mean that super-
cells are twice as likely as a situation where 
EHI=1?  If the CAPE doubles, doubling the EHI 
(assume SRH remains unchanged), does this 
imply twice the chance of supercells?  There 
might be some empirical way to determine the 
significance of these values, but there is no 
physical rationale for interpreting them.  Is the 
relationship between EHI and severe weather 
linear or nonlinear?  How does the lagged corre-
lation between EHI and the observed weather 
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vary as a function of the lag time?  Such ques-
tions ought to be of concern to any severe 
weather forecaster, but are certainly not readily 
answerable by the method EHI was constructed. 
 
Finally, how has the forecast value of EHI been 
validated?  Rasmussen (2003) described his 
evaluation of EHI for three classes of observed 
proximity soundings: supercells with significant 
tornadoes (those rated F2 and greater), supercells 
without significant tornadoes (no tornadoes re-
ported, or only F0 or F1 tornadoes), and nonsu-
percell convection, defined in Rasmussen and 
Blanchard (1998).  The weather events occurred 
anywhere from three hours before to six hours 
after the nominal 00 UTC sounding time.  Ras-
mussen (2003) found, “only 25% of [proximity 
soundings from supercells without significant 
tornadoes] had EHI > 0.5, whereas nearly 2/3 of 
the [proximity soundings from supercells with 
significant tornadoes] had values this large.”  
Given the number of soundings in each dataset 
from Rasmussen and Blanchard (1998), this 
means about 30 events occurred in each cate-
gory—a relatively small sample size. Taken to-
gether, these results indicate that when a supercell 
occurs with an EHI > 0.5 there is about a 50% 
chance of it producing a significant tornado.  This 
figure amounts to a conditional probability, where 
the condition is the presence of a supercell.   
 
Rasmussen and Blanchard (1998) used a contin-
gency table and scatter diagrams (see section 5) 
to evaluate the diagnostic potential for EHI and 
several other candidate variables.  But their study 
evaluated indices from proximity soundings on 
the basis of observed events occurring in a time 
period around the sounding’s nominal time.  
Therefore, it is not truly an analysis of the fore-
cast potential for the variables considered—it is 
instead directed at a related problem:  How well 
do diagnosed values of the indices discriminate 
among the observed events?  This sort of analy-
sis does not consider the topic of the lagged cor-
relation between the proposed forecast parameter 
and the forecast severe weather events. 
 
b. Pros and cons regarding the use of indices 
 
We have shown, using the example of EHI, 
what types of problems can arise with the use of 
indices constructed in an arbitrary, unphysical 
way.  We recognize that there are advantages as 
well as drawbacks to their use in severe weather 
forecasting.    
 

As already noted, many severe weather forecast-
ers already recognize the risks in relying on a 
single forecast parameter. Certainly most would 
never consider using a single variable to deter-
mine their forecast, but our experience suggests 
that some forecasters might be tempted to do so, 
perhaps because the use of some diagnostic vari-
able (such as CAPE) is so widespread (e.g., the 
“disengaged” forecasters studied by Pliske et al. 
2004).  The pervasive use and ready availability 
of diagnostic variables is a trap for the unwary.  
In situations where the time pressure becomes 
intense, some might be inclined to do so in the 
interest of making a quick decision.  Such a prac-
tice is antithetical to good forecasting, in general. 
 
In a related line of reasoning, the press of time 
can encourage severe weather forecasters’ use of 
indices and other diagnostic variables to obtain a 
quick look at the data for the purpose of identify-
ing the hot spots upon to focus more attention on 
in a diagnosis.  By itself, this is a reasonable 
strategy.  However, a serious forecaster is not 
likely to get much forecasting help from such a 
cursory consideration of atmospheric structure.  
There is nothing inherently wrong with a quick 
look, unless the forecaster limits the diagnosis to 
that.  For all the reasons we have described, a 
conscientious weather forecaster always should 
try to find the time to do a comprehensive analy-
sis of the data.  We believe that using ingredi-
ents-based forecasting methods (e.g., Doswell et 
al. 1996) is a scientifically sound way to keep the 
diagnosis within practical time limitations in an 
operational forecasting environment. 
 
It also can be argued from a purely utilitarian per-
spective that if a forecast parameter works suc-
cessfully in forecasting, no matter how it was de-
rived, it seems unreasonable to ask forecasters to 
cease using it.  We don’t disagree with this at all, 
especially when proven forecast parameters based 
on physical arguments are either unavailable or 
demonstrably inferior to a nonphysically con-
structed variable.  If it can be shown rigorously 
that an arbitrarily constructed index does indeed 
have forecast utility (see the following section), 
we do not advocate ignoring its proven value to 
the challenge of weather forecasting—unless a 
physically-based forecast parameter is known to 
be superior for forecasting.  Generally, physical 
reasoning is always preferable for the construction 
of diagnostic variables and indices, owing to the 
relative ease with which such forecast parameters 
can be interpreted and applied globally.   
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5. Evaluation of forecast utility for a candi-
date prognostic variable 
 
Because many diagnostic variables with poten-
tial forecast utility never have been tested rigor-
ously as forecast parameters in their own right, 
we develop herein a general description of what 
we believe are the requirements that a proper 
forecast parameter would have to meet.  As al-
ready discussed, diagnostic variables have their 
own specific purposes, but a diagnostic variable 
might also have the capability to make a rea-
sonably accurate and perhaps even skillful pre-
diction of the weather at some future time.  See 
Murphy (1993) for a discussion of the difference 
between accuracy and skill. 
 
One way to conduct a rigorous assessment of a 
variable as a forecast parameter is to use a devel-
opmental data set to form a classic 2 x 2 contin-
gency table, the standard verification table when 
considering a dichotomous (yes/no) forecast for 
some dichotomous event (Wilks 2006, p. 260 ff).  
One example is given by Monteverdi et al. 
(2003) for tornadoes in California (see their Ta-
ble 3 and Fig. 8).  To create such a table for a 
potential forecast parameter, begin with choosing 
a threshold value for the candidate variable—
forecast "yes" if the variable is at or above the 
threshold, and "no" if the variable is below the 
threshold.  An assessment of the accuracy of the 
forecasts using the developmental dataset would 
be done by filling in the contingency table using 
that threshold.  Optimizing the choice for the 
threshold value of the variable using the so-
called Relative (or Receiver) Operating Charac-
teristic curves associated with signal detection 
theory is possible; see Wilks (2006, p. 294 ff.) 
for more information.  
 
The accuracy of the forecasts using that thresh-
old can be assessed using standard methods 
based on the contingency table.  The skill of the 
forecasts is determined by comparing the accu-
racy of the proposed forecasts based on use of 
that variable against the accuracy of some stan-
dard forecasting method (e.g., climatology or 
persistence, or some other forecast scheme, such 
as Model Output Statistics).  If the forecast 
scheme using the proposed diagnostic variable 
shows statistically significant skill in comparison 
with some standard method, then it can be con-
sidered a useful forecast parameter.  
 
To do a thorough assessment, however, another 
dataset is needed that is completely independent 

of the developmental dataset—in other words, a 
wholly different set of cases than those used for 
development and testing of the threshold values 
for the variable. If the results using the verifica-
tion dataset are comparable to those found from 
the developmental data, confidence in the use of 
the variable as a forecast variable is correspond-
ingly high.  If there is a statistically significant 
difference between the results from the two data-
sets, then perhaps a larger sample is needed, but 
in any case, confidence in the forecast value of 
the variable (and its associated threshold value) 
is correspondingly low. 
 
Two concerns often arise when a forecast pa-
rameter is proposed.  First, many assessments of 
potential forecast parameter are done with a 
small number of cases, perhaps as few as one.  
Knowledge of how to determine an appropriate 
sample size is outside the scope of this paper; see 
the discussion of hypothesis testing by Wilks 
(2006, chapter 5).  It is incumbent on the devel-
oper of a forecast parameter to provide a rea-
sonably thorough test using a robust sample of 
enough cases.  Second, many attempts to vali-
date the utility of some variable as a forecast 
parameter make the logical mistake of consider-
ing only values of the parameter when forecast 
events are known to have occurred.  Diagnostic 
variables are of little use in forecasting until they 
can be shown to discriminate successfully be-
tween events and nonevents.  Correct predictions 
of nonevents are not inevitably easy (e.g., Dos-
well et al. 2002) although in forecasting severe 
storms (relatively rare events), many nonevents 
are obvious. 
 
Further, some diagnostic variables may have 
value as forecast parameters, but it needs to be 
shown just how far in advance of the event they 
exhibit forecast accuracy and/or skill. That is, the 
accuracy of any diagnostic variable used as a 
forecast parameter is likely to increase as the 
time lag between the diagnosis and the event 
decreases, but this may not necessarily be a sim-
ple relationship.  Contingency tables and full 
assessments as described above would have to be 
developed for a variety of diagnosis times rela-
tive to the beginning of the forecast events—say, 
12, 6, 3, and 1 h before the actual events begin.  
Alternatively, an analysis of the time-lagged 
correlation between the forecast parameter and 
the observed weather could be carried out at a 
variety of lag times.  However it is done, the 
accuracy of a candidate variable as a forecast 
parameter should be known as a function of time 
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before the event.  Quantitative knowledge of 
forecast accuracy as a function of lead time is 
obviously important when using a diagnostic 
variable as a forecast parameter.  
 

Another way to verify the potential of a forecast 
variable would be to construct a multidimen-
sional scatter diagram (say, for the case of two 
dimensions, CAPE and shear) in which both 
events and nonevents are plotted with respect to 
observed values for the diagnostic variables.  
Using this plot, a probability of occurrence of the 
weather event as a function of its location in the 
scatter diagram could developed, perhaps facili-
tated by the use of kernel density estimation 
methods (e.g., Ramsay and Doswell 2005).  Ex-
amples of such verification are found in Rasmus-
sen (2003) and Brooks et al. (2003), although 
this method would require diagnostic variable 
values prior to the event, rather than proximity 
data.  
 

Of course, the preceding does not present the 
only ways to assess the effectiveness of a pro-
posed forecast variable.  Many other methods 
could be used, but it does represent the level of 
rigor we believe is necessary before asserting 
that a diagnostic variable has real value as a true 
forecast parameter.  
 
6. Conclusions 
 
In our experience, many severe weather forecast-
ers and researchers are seeking a “magic bullet” 
when they offer yet another combined variable or 
index for consideration, whether or not they real-
ize it. If some single variable or combination of 
variables made forecasting so simple, then the 
need for human forecasters effectively vanishes.  
There may be other reasons for the demise of 
human forecasters, but distilling the complex 
atmosphere with its nonlinear, possibly chaotic, 
interactions into an all-encompassing variable 
seems improbable.  Any forecaster seeking to 
find such a variable is not only unlikely to be 
successful, but, if success were achieved, the 
need for a human forecasting that event van-
ishes!  Should advances in the science of severe 
convective storms ever produce such a forecast 
parameter, or should NWP models become near-
perfect in terms of forecasting severe convection, 
then the need for human forecasters will indeed 
disappear (e.g., Doswell 2004), whatever our 
wishes might be.  But it is our belief that this is 
not very likely to happen soon.  Even if such an 
unlikely development ever occurs, in the interim, 
it remains incumbent on forecasters to use the 

information at their disposal as effectively as 
possible.  
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REVIEWER COMMENTS 
 
[Authors’ responses in blue italics.] 
 
REVIEWER A (Richard L. Thompson): 
 
Initial Review: 
 
Recommendation:  Accept with major revision 
 
The paper provides an overview of several common parameters/indices used in severe storm forecasting, 
and outlines a process for developing proper forecast parameters.  On the surface, this topic appears worthy 
of consideration, but I have several concerns regarding the tone of the paper and the apparent motivation of 
the authors.  Without providing supporting evidence, the authors infer that a substantial number of forecast-
ers have no clue how to interpret the convective parameters/indices they discuss.  Can the authors site any-
thing more specific than a few vague references?  It is important to establish reasonable motivation for this 
work because that motivation identifies the target audience.  At this point, it could be anyone in severe 
storm meteorology, but this work seems most appropriate for undergraduate meteorology students.  I can 
only speak for myself, but I found this paper to be mildly degrading to professional forecasters.   
 
We regret that you had this reaction to the manuscript, as that surely was not our intention.  Our intention 
was to educate forecasters, not degrade them.  Our intended audience was anyone in severe storms mete-
orology, as we believe that even experts would benefit from revisiting the ideas in this manuscript.  In the 
revised manuscript, we have softened the tone and rewritten the introduction so that our intentions and 
intended audience are more clear.   
 
As far as whether we have any documentation on this, we have no formal references.  We have clarified our 
perceptions as our own, rather than from some formal refereed literature, which almost certainly does not 
exist.  We believe it is reasonable to allow us the privilege of making a nonspecific observation of things 
we’ve seen personally.  We would prefer not to point a finger at specific individuals, even if we could.  
Nevertheless, even if this interpretation of our perception is incorrect across the board for all forecasters, 
as it surely is, we still feel our message is relevant, as noted by one of the other reviewers of this manu-
script. 
 
The authors must provide a more balanced account of parameter and index use by forecasters.   
 
We have put more emphasis on the value of parameters up front in the paper, hoping to provide a more 
balanced account.  However, this article is intended as a position piece, so we should be allowed some 
license to present a different side of the argument than is currently seen in most papers.  A balanced per-
spective can be derived by consulting our references, many of which have managed to present a very rosy 
picture of their proposed variables, which is also far from a balanced perspective.   
 
They paint a very limited and unrepresentative picture of the problem, and almost completely overlook the 
spatial composite aspects of many parameters.   
 
We disagree with this statement.   For example, we have discussed the spatial patterns associated with di-
vergence and the issue with overlap of parameters in the construction of composite parameters.  In fact, 
many diagnostic parameters are presented and evaluated in the literature in the context of proximity 
soundings to storms.  Therefore, although we have some discussion of the spatial aspects, we are neverthe-
less discussing these parameters the way many people use them and the way the discussion is framed in 
these papers. 
 
They focus on EHI as a specific example, stating that similar problems plague a majority of the parameters.  
I am quite familiar with the significant tornado parameter (STP, Thompson et al. 2003), so I will use that as 
a counter example to their EHI discussion.  The STP is a product of four normalized ingredients that have 
shown some ability to discriminate between tornadic and nontornadic supercells:  0-1 km AGL storm-

15 



DOSWELL AND SCHULTZ  10/31/06 

relative helicity (SRH), 0-6 km bulk wind difference, 100 mb mean parcel CAPE, and 100 mb mean parcel 
LCL height.  Independent studies, utilizing independent data sets, each confirmed the ability of these ingre-
dients to discriminate between supercells and nonsupercells, as well as tornadic and nontornadic supercells, 
in a diagnostic sense.   
 
Each one of these variables alone cannot adequately discriminate among tornadic and nontornadic super-
cells (e.g., Rasmussen and Blanchard 1998).  If a single variable were an adequate discriminator, then 
presumably the STP wouldn’t be needed.  CAPE, on its own, has not shown much ability to discriminate 
between tornadic and nontornadic supercells (e.g., Rasmussen and Blanchard 1998; Monteverdi et al. 
2003).  There are questions about the pertinence of LCL height on its own – it appears to be more useful in 
the USA than in other countries.  Hence, we’re not so easily convinced about the individual discriminatory 
power of these constituent variables as the reviewer seems to be.  We cited a specific study (Monteverdi et 
al. 2003) to support our contention.  Have similar studies of these terms individually shown discriminatory 
power capable of being operationally useful?  If so, we’re unaware of them. 
 
In any case, the reviewer is missing our point about why the construction of composite parameters is inap-
propriate.  We will take that to be our fault for not being more clear.  Consider the following.  Imagine a 
world where the STP’s four constituent parameters were all that were needed to forecast supercell torna-
does perfectly.  Imagine a 4D phase space of SRH, shear, CAPE, and LCL in which some convoluted 4D 
volume within this phase space was associated with the occurrence of supercell tornadoes.  Presumably, 
such a scenario would represent a perfect forecasting tool:  find the values of SRH, shear, CAPE, and LCL, 
and, if they fit inside this convoluted volume of phase space, supercell tornadoes always occur.  Anywhere 
outside of this volume, supercell tornadoes never occur.  The construction of the STP takes all the rich in-
formation contained within the 4D space and compresses it into a single number, eliminating our ability to 
use the complex 4D volume occupied by tornadic supercells in this phase space.  This is analogous to al-
lowing a single value of CAPE to represent the detailed information in a vertical sounding.  Thus, we feel 
composite parameters are necessarily more inferior to a better understanding of the 4D phase space.   
 
The STP provides a simple means of compositing the ingredients, without all of the mess of a “spaghetti” 
chart.   
 
We disagree.  See above.  Also, we have addressed this issue in the rewritten manuscript. 
 
Also, the STP purports to diagnose the supercell tornado threat based on current conditions, or expected 
conditions at some point in the future.  
 
There’s a big difference between those two.  If STP has some value as a diagnosis of current conditions, it 
might also have some value as a forecast variable.  Which use are you describing here? 
 
 I am aware of no attempts to forecast tornadoes in the afternoon based on the morning values of STP.   
 
That doesn’t mean that such efforts don’t exist.  We stand by our statement. 
 
A more common (and reasonable) approach is to examine the ingredients independently (and in combina-
tion) early in the day, and then account for any observed or expected changes in the ingredients as the day 
progresses.  Composite indices can be very useful in identifying the degree of “overlap” in the ingredients, 
and how the spatial distribution of ingredients is changing with time. 
 
We don’t have any problem with this, subject to some caveats, which we’ve provided in the revised manu-
script. 
 
To make a weather forecast, one must diagnose the current state of the atmosphere, and then anticipate fu-
ture changes to the current state.  Numerical model guidance can provide an expected state of the atmos-
phere when focusing on longer time ranges, while extrapolation of observed trends may be preferred for 
short-term forecasts.  Parameters and indices are useful in the initial diagnoses, later prognoses, and in 
comparing one event to another.  Until the science of meteorology arrives at a complete mathematical ex-
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pression describing tornadogenesis (and many other processes), severe storm forecasters will necessarily 
rely on incomplete approximations, including various indices.  I applaud the efforts of the authors to en-
courage forecasters to understand the strengths and weaknesses of indices and parameters used in the fore-
cast process.  However, they run the risk of alienating much of their intended audience by placing too much 
emphasis on improper use of indices, while largely ignoring many positive benefits. 
 
Hopefully, our revised manuscript provides a more balanced argument.  Nevertheless, we reserve the right 
in this manuscript to favor one side more than the other. 
 
Specific Substantive Comments: 

 
1. Introduction, end of 1st paragraph:  The authors are quick to discount 30 years of forecaster ex-

perience, all because “rigorous verification” has not established these variables as prognostic?  
Why is actual forecast experience worth so little in evaluating the forecast utility of a variable?  In 
the absence of scientific evidence supporting either the forecasters or your claim, this amounts to 
little more than a difference of opinion! 

 
Forecaster experience has been shown to be an unreliable substitute for actual verification (see Doswell’s 
paper on heuristics).  Forecaster confidence grows with experience, but forecast accuracy typically grows 
fast early in a forecaster’s career and then levels off. 
 

2. End of P. 1:  Words like “at times, “some”, and “occasionally” do not make a convincing argu-
ment.  Can you cite more specific examples and/or circumstances? 

 
See above argument. 
 

3. Top of P. 2, last sentence:  I see no evidence to support your assertion that these diagnostic vari-
ables’ “capability to inform forecasters about the weather in the future can be quite limited, at 
best.”  Why such a narrow view of forecasting?  The authors are taking an unrealistic stance by 
isolating the indices/parameters, and assuming that forecasters simply look at the current value and 
make a forecast?  I have not actually seen any professional meteorologist do this, and I have 
worked in the NWS for 13 years.   

 
We think this statement is almost certainly untrue, but, of course, we have no way to prove that.  Neither 
does the reviewer have a way to prove that our perspective is incorrect. 
 

4. 2nd to last full paragraph, P. 2:  Who actually makes a severe storm forecast based solely on cur-
rent index values, without considering potential changes in the input variables?  The authors seem 
to misunderstand the practical use of the indices in question, because even the most simplistic 
forecasters usually consider trends in the index, as well.  Severe storm forecasting is quite com-
plex, as the authors are well aware, yet they rely on a ridiculously simple (and flawed) forecast 
process as the motivation for this paper?  Instead of degrading the forecasters, the authors should 
outline a process for developing both proper diagnostic and prognostic variables, and leave it at 
that.  

 
Clearly, we have failed to convince the reviewer that the intention of our paper is not to degrade the fore-
caster, but to educate the forecaster to do a better job.  From our collective experience educating forecast-
ers, rules of thumb and incorrect use of diagnostic parameters are being employed by some forecasters.  
Schultz has seen it in the context of winter storm forecasting, and Doswell has seen it in the context of se-
vere-storms forecasting.  Unfortunately, some faculty still teach their students these parameters and rules 
of thumb.  Hopefully, the revised manuscript helps clarify our intentions. 
 

5. End of P. 7:  I dispute the authors’ claim that “these indices…have combined variables in ways 
that have no physical rationale.”  In the absence of a “supercell tornado equation”, we must deal 
with incomplete information and understanding.  Since you mentioned the STP, I would like to 
elaborate.  The STP is a product of four variables normalized to “typical” values.  The primary 
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function of the STP is to highlight areas where “favorable” ingredients co-exist.  Does an STP of 4 
mean that associated tornadoes will be twice as “strong” as those associated with an STP of 2?  
No!  The authors seem to be taking the stance that the only value in the index is a strict mathe-
matical interpretation of the numerical value.  Larger values of STP do imply a greater probability 
of significant tornadoes, yet the more important function of the parameter is to highlight areas 
where multiple, independent ingredients “overlap”.  

 
Obviously, we have failed to convince the reviewer about the problems associated with this manner of con-
structing composite parameters.  We agree that STP does indeed show where the constituent variables 
overlap, and it might indeed be possible to show that larger values of STP are more favorable for supercell 
tornadoes.  If the probability of some event can indeed be shown to increase as some diagnostic variable 
changes, it seems logical to ask about the nature of that relationship.  For example, is it linear or nonlin-
ear?  Is it a conserved variable?  And so on.   
 
Going back to that 4D volume in phase space for a world in which the STP constituent parameters would 
be capable of producing perfect forecasts of supercell tornadoes, why should the normalized product of the 
four variables provide the ideal forecast parameter?  This would be true only if the 4D volume had a very 
simple shape.  Surely, the 4D volume in our hypothetical world would be rather complex – it might be pos-
sible to transform the constituent variables in some way that would transform the convoluted volume into a 
simple shape but it seems unlikely that the existing transformation of the constituent variables embodied in 
the STP can be shown to accomplish such a feat.  Therefore, the STP formulation as a product of the axes 
in the phase space, normalized by arbitrary constants, seems to be, at best, only a marginal attempt to un-
derstand the real complexity associated with the shape of that 4D volume.  And in reality, of course, it is 
quite unlikely that such a perfect forecast scheme actually exists.   
 
We believe better approaches, hopefully based on physical arguments, are required.  At the very least, STP 
interpretation and use of it in forecasting hangs on such issues, which is why we’re concerned about com-
binations of variables in which the manner in which they are constructed (i.e., arbitrarily multiplying four 
variables together) has no physical rationale.   
 

6. Beginning of P. 8:  Again, the majority of the indices are not designed to make precise estimates 
of tornado intensity, longevity, etc.  Their primary function is to highlight areas with a favorable 
combination of known ingredients at the time of the analysis. You could just draw independent 
contour analyses of SRH, CAPE, LCL, bulk “shear”, and then simply overlay all of the individual 
analyses to form a composite.  Essentially, that is what the SCP and STP do for the forecaster.  
The forecaster must then put forth some effort to explain the combination of parameters, or run the 
risk of forecast failure when other factors are of greater importance.   

 
See previous responses to similar comments.  This is logically equivalent to reducing a sounding to a single 
variable, say the CAPE.  I think a key element of our concern for the use of diagnostic variables in fore-
casting is precisely what the reviewer is describing.  We simply can’t endorse this simplification, which is 
why this paper was written in the first place. 
 

7. Table 1:  SCP – the third term should be the complete BRN denominator, normalized to 40 m2 s-2.  
STP – the SHR 0-6 km term should denominator is 20 m s-1. 

 
The one in the table is identical to the Eqn (4) in the original reference (Thompson et al. 2003), not as sub-
sequently modified in the current operational incarnation. 
 

8. 2nd paragraph of subsection a, P. 9:  In consecutive sentences the authors write that CAPE and 
SRH “need not be collocated in space to a significant extent”, and that “many forecasters believe 
CAPE and SRH need simply to be in proximity to each other, with some overlap.”  These two 
sentences contradict one another.  In the case of EHI, the index will highlight the areas where the 
“overlap” in CAPE and SRH occurs.  If there is no overlap, then the index value is zero.  I have 
witnessed severe storm events with relatively small overlap in these parameters, but that is hardly 
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representative of many important severe weather episodes.  I suggest the authors either delete this 
discussion, or substantially rewrite the entire paragraph.   

 
There’s no contradiction.  Overlap does not mean collocation.  To be collocated, maxima/minima would lie 
on top of one another, as well as gradients in the field variables. 
 

9. 2nd full paragraph, 2nd column of P. 9:  Has anyone ever claimed that tornadoes are twice as likely 
when EHI=2 versus when EHI=1?  It is worth noting that the numerical values of these “arbitrary” 
indices are not to be taken literally, but that does not mean the numbers are meaningless.  An 
EHI=2 suggests greater overlap in CAPE/SRH than an EHI=1.   

 
See previous comments re this topic. 
 

10. P. 10, first rebuttal, 2nd paragraph:  My problem goes back to the authors’ motivation for this work 
– that “some forecasters might indeed be so inclined, perhaps because the use of some diagnostic 
variable (such as CAPE) is so widespread.”  This statement is hand waving at best.  The authors, 
again, provide no documentation of an actual problem, they simply speculate that an over-reliance 
on indices is possible with an (apparently) limited number of forecasters.  Even if this “problem” 
proved to be true, will this paper solve anything?  The folks who place excess emphasis on indices 
are the same ones with little physical understanding of the atmosphere.  If you take away their in-
dices, what will they do next?  I seriously doubt that most forecasters will experience an epiphany 
and seek physical truth – they will likely turn to another crutch!  Perhaps operational meteorology 
would have a stronger basis in science if more forecasters were held accountable as meteorolo-
gists, but that concern extends well beyond this work. 

 
We don’t think we have ever advocated taking away anything. It is incumbent on the developers of such 
indices to produce a proper verification.  On that point, we should all agree. Rather, we are arguing that 
practitioners are vulnerable to misuse of the vast array of indices and parameters.  If we concede that fore-
casters misusing diagnostic variables is acceptable, we are simply conceding that forecasting might best be 
done totally objectively and eliminate humans altogether.  We hope our revised manuscript clarifies our 
intent. 
 

11. P. 10, second rebuttal:  Just how does the authors’ response vary from the claims of the “critic”? 
The authors state “there is nothing wrong with a quick look, unless the forecaster limits his or her 
diagnosis to that.”  If the authors believe that a comprehensive analysis of the data is always pos-
sible in an operational environment, then it is clear that the authors have not spent much time 
working under standard operational time constraints.  Various indices and parameters can help 
augment analyses of the raw observations, and they do often focus attention on areas where greater 
focus is necessary.  For some reason, the authors seem to believe that too many forecasters look at 
parameter “bullseyes” and little else. 

 
Both authors have spent time in their careers training forecasters from throughout the NWS.  As the re-
viewer knows very well, the first author has indeed worked for the NWS under standard operational time 
constraints, and it was those very experiences that have led him to the conclusions we are advocating in 
our paper.  Indeed, we think we have some basis for believing precisely that “too many forecasters look at 
parameter ‘bullseyes’ and little else.”  If the reviewer disagrees, that’s a personal choice but does not pre-
clude that we have experiences that lead us to our position. 
 

12. P. 10, third rebuttal:  While I agree that physical reasoning is a preferable basis for any parameter, 
the authors continue to focus too narrowly on their perception of index/parameter use in forecast-
ing, and on the use of diagnostic parameters in a forecast mode.  Many of the parameters such as 
EHI, STP, etc., serve to identify areas where important ingredients are co-located.  It should be 
relatively obvious that a threat does not exist until the ingredients co-exist, thus many parameters 
do not highlight threat areas prior to a short-term threat.  These are diagnostic variables, and as 
such, I do not expect a “signal” 12 h prior to an event!  As mentioned several times in this review, 
the authors fail to document any cases where forecasters utilize current diagnostic parameter val-
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ues to erroneously forecast an event in the future.  The composite parameters serve as short-term 
aids in identifying threat areas, while actual forecasts rely more on the evolution of important in-
gredients.  Like it or not, the operational forecast environment is littered with distractions.  These 
distractions, combined with the enormous complexity of severe storm environments, leads to a 
“marriage of convenience” with various indices.  It is not a perfect situation, but the authors have a 
relatively unrealistic view of forecaster routines/capabilities, as well as forecaster time constraints. 

 
And, as mentioned several times in this response, the reviewer seems determined to force us to provide 
documentation for personal observations and to play “Monday Morning Quarterback”.  We feel there is no 
way to validate these statements of personal observations to the satisfaction of the reviewer.  In contrast, 
the reviewer has no evidence that such techniques are not being employed, other than his personal experi-
ence, yet he similarly cannot provide documentation of this.  This is not a valid basis for disallowing us to 
express our interpretation of our personal observations. 

 
13.  End of conclusions, P. 12:  Have the developers of these parameters/indices ever explicitly 

claimed to be seeking a “magic bullet”?  It should be obvious to any meteorologist that the atmos-
phere cannot be described by a single value of anything, but that does not mean that a parameter 
values cannot add to a meteorologist’s interpretation of the atmosphere!  Many of the problems 
facing indices are the result of a limited understanding of physical processes.  An ingredients 
based approach is the best we can do at the current time, but our list of ingredients is necessarily 
incomplete.  In other words, there is no unique and fool-proof way to forecast the weather, regard-
less of personal preferences. 

 
Is it necessary for us to get parameter developers to admit openly to such a goal?  The evidence is there for 
the reader of such articles, whether or not the developers even realize what they are doing.  In the same 
way that developers of MOS are ultimately seeking an objective system capable of replacing human fore-
casters, whether they admit to, or even realize, that is their goal – many of the developers of unphysical 
variables and parameters are seeking a magic bullet.  Just ask yourself:  what would they consider the best 
they could do?  A variable that made perfect forecasts of the phenomenon of interest!   The demise of hu-
man forecasters focused on that phenomenon would inevitably follow as a result.  Why would anyone have 
to do more than calculate the “magic bullet” parameter? 
 
 
 
REVIEWER B (Erik N. Rasmussen): 
 
Initial Review: 
 
Recommendation:  Accept with minor revision 
 
I thank the authors for the time and effort they have put into this paper, and hope my comments are useful 
to some small degree. 
 
In the broadest sense, the authors have written a much-needed criticism of the “magic numbers” approach 
to forecasting. I think this article will be an appropriate contribution to EJSSM after a little more effort to 
clarify the arguments and discussion. My comments below will be short on specifics and fairly broad rang-
ing. My hope is that the authors will see something in my comments that triggers some insight into appro-
priate revisions. 
 
First, except for minor comments later in this review, I am generally pleased with section 3 (Issues affect-
ing the suitability…) and section 4 (Indices). These tend to be a bit pedantic, but I view EJSSM as a journal 
for the broadest possible audience of severe storms forecasters and researchers. So I feel it is seldom inap-
propriate to explain basic concepts. Even aging researchers like myself need a refresher now and then, and 
the brilliant among us can skip the more pedantic discussions. 
 
The fundamental issue seems to be this: what gives a variable value in the severe storms forecast process? 
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There is no doubt in my mind that some variables have operational value because they distill the complexi-
ties of the atmosphere and allow forecasters to focus on the important problems. That must be the reason 
that many were invented. The authors have provided important advice throughout the paper regarding the 
potential pitfalls of the distillation process. But even a variable like EHI has some distillation value: when 
large, it tells us that either/both CAPE and SRH are large. And there are physical reasons why both CAPE 
and SRH are pertinent in severe storms forecasting. 
 

With time, the complexities of the atmosphere have become more apparent, to the point that one can le-
gitimately ask whether the problem is too complex for human comprehension, and therefore best left to 
numerical observation and integration leading to explicit forecasts of severe weather. To the extent that we 
want humans to remain responsible for forecasts, we must continue to employ and improve methods to 
objectively cull the trivial information, distill the state, and bring focus to our mental processing of infor-
mation. 
 

The authors have posited that a forecast parameter should have a lagged correlation with the occurrence of 
severe weather phenomena, and utility at forecasting non-occurrence as well. In one sense, this must be 
correct: if the correlation were zero, one might as well diagnose a variable that is completely unrelated to 
severe weather (perhaps the density of meadowlarks in song). And indeed the “lagged” part is important, 
for there are other tools more suitable for the actual detection of severe weather. And I must agree with the 
authors that there are tools available for determining the forecast utility with a sufficient amount of rigor, 
and these should be implemented before the variable is proposed for operational use. 
 

We have incorporated the notion of lagged correlation between forecast parameters and the observed 
weather in the revised manuscript. 
 

My main discomfort with this paper has to do with the discussion of prognostic variables, integration, etc. 
Formally in meteorology, a prognostic variable is a variable that can be expressed in a form suitable for 
numerical integration. I.e., a local tendency can be expressed as contributions from advection and from 
forcing. The latter is often thought of as sources, sinks, etc. Aside from the fact that I do not think we 
should be redefining “prognostic variable” as “one that has forecast value”, the foregoing possibly has fur-
ther relevance to this whole discussion. A much improved forecast parameter would be one that was con-
served following the motion, except for sources and sinks for which there would be legitimate expressions 
available. This, at least, would give us a local tendency upon which we could base extrapolation (i.e., is the 
field increasing or decreasing?). Of course, we can always do temporal differences of adequately observed 
fields to accomplish this goal. 
 

So the new definition of “prognostic variable” supplied by the authors is bound to be confusing. In fact, the 
confusion began for me in the first paragraph when it was stated that forecast parameters were not necessar-
ily prognostic variables. This seemed very obvious, because I was not aware of predictive equations for any 
of the forecast parameters. And I was further under the impression that forecast parameters were exactly 
that: parameters that are used in the process of making a forecast. 
 

The word choice was something of a struggle, as sensed by the reviewer.  We have changed “prognostic 
variable” to “forecast parameter” – although it’s not obvious that this is more than using a thesaurus to 
avoid a particularly bothersome term.  We hope this clears up the concern of the reviewer. 
 

My confusion deepened in Section 2 where it appeared that the authors were trying to establish that there 
ought to be a basis for numerical integration and prediction of forecast parameters. And I must admit that 
after reading the summary sentences at the top of the second column of page 2 that I cannot understand 
what the foregoing material was meant to convey. In the middle of the same column, the authors state that a 
prognostic variable is one that allows a forecaster to make an accurate weather forecast based on the current 
value of that variable. That definition is fraught with problems, and my opinion is that it is inadequate for 
this journal. First, there are forecasters who cannot make accurate forecasts no matter the variable being 
used.  I.e., the definition is dependent on forecaster skill. Second, “accurate” begs definition. 
 

But now that I give this some more thought (and erase the diatribe I just wrote), I think the authors are on to 
a fairly novel and useful approach. It seems that a forecast parameter could be defined as one that has de-
monstrable statistical/climatological correlation with the weather that occurs during the relevant time win-
dow being forecast. I suppose that is rather obvious, but it is helpful that the authors said it and to proposed 
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the tests that they did. So my suggestion here is to perhaps find a different term than “prognostic variable” 
and to skip the discussion at the beginning of Section 2 about NWP. It is not especially relevant, and has 
some unnecessary confusion potential. In fact, the authors are not talking about integration, but about corre-
lation. These two things put my mind into a completely wrong frame for interpreting the paper. (The au-
thors might want to emphasize the fact that the correlation could possibly be very mysterious, and that 
given a choice between equally useful variables that have a basis in physical understanding and those with 
a basis in magic, we might prefer those based in physics.) 
 

In summary, my recommendation would be as follows. All the variables the authors discuss are diagnostic 
variables… they are quantities that can be diagnosed, via observation or calculation, for current data. These 
variables become “forecast parameters” if they have demonstrable utility in predictions of future events. 
Otherwise, they are only “diagnostic parameters”. 
 

See the preceding response. 
 
 
 
Reviewer C (James H. Henderson): 
 

Initial Review: 
 

Recommendation:  Accept with minor revision 
 

After reviewing the paper, I recommend that the paper is acceptable with minor revisions and no further 
review is requested unless major changes are made in accordance with other reviews (at the discretion of 
the editor). 
 

Reasons for recommendation: 
 

1. I found the scientific content to be acceptable and had only a couple of comments relating to that content. 
 

a. I am not sure paragraph 2 on page 1 makes the point for the authors. In a well written paper by one of the 
authors of this reviewed paper entitled On Convective Indices and Sounding Classifications, the refers to a 
paper written by Tudurí and Ramis (1999) where they discuss the use of indices.....in geographical loca-
tions outside their original development. Since CAPE was developed as central U.S. convective tool, it's 
relevance for use as a forecasting tool in California can be called into question. I would like to have seen 
some brief discussion in either this paragraph or elsewhere of the geographical misuse of indices. I realize 
that this was not the main theme of the paper, but I believe it has relevance. 
 

This is a good suggestion and has been incorporated in the revised manuscript. 
 

b. I would like to have seen the section on issue affecting the suitability of diagnostic variable to be broken 
down into separate parts relating to soundings and the volatility argument. Soundings as have been pointed 
out by one of the authors should be the backbone of severe weather forecasting and I felt that discussion 
should stand alone with the section on volatility enhancing the argument. However, having stated the 
above, the paper does make an excellent case for sounding diagnosis as it stands. 
 

We’re reluctant to go off on sounding-based parameters too specifically.  We don’t disagree with the sen-
timent that soundings are an important part of severe weather forecasting, but not convinced we want to 
have a separate section on sounding volatility issues. 
 

[Minor comments omitted…] 
 

Finally, I think this is a very relevant paper, to bring some scientific underpinning to the forecast of deep 
moist convection and associated severe weather. Having said that, I believe that the history of the develop-
ment of diagnostic indices has followed the usual rules of the nature of scientific inquiry. The developers 
collected observations (severe weather event) and developed a hypothesis that stated when this index 
reached a certain value, some type of severe weather event could occur. I think the authors of this paper 
have very succinctly shown that the hypothesis lacked a rigorous testing and therefore should be discarded 
in favor of a more scientific approach to the problem. 
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