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Abstract 

The non-linear behaviour of quasi-brittle media emerges from distributed micro-cracking.  This is analysed conveniently by 
discrete lattice models.  A 3D site-bond model is specialised here for materials with three-phase microstructures:  stiff inclusions 
in a compliant matrix containing pores.  The deformation behaviour is based on analytically derived relations between bond 
properties, length scale and macroscopic elastic constants.  The microstructure-model mapping is based on size distributions and 
volume densities of inclusions and pores, typically obtained through analyses of 3D images.  Inclusions data is used to calculate 
the required length scale.  Pores data is used to define the failure behaviour of individual bonds.  Applications of the 
methodology to cement-based materials and nuclear graphite are presented separately in this volume. 
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1. Introduction 

Quasi-brittle materials, such as cements, rocks and graphite, are characterised by elastic-brittle behaviour at the 
length-scale of their microstructure features and non-linear behaviour preceding failure at the engineering length-
scale.  The cause for this “gracefulness” is the generation of micro-cracks which, in contrast to ideally brittle media, 
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dissipates strain energy and reduces the apparent elastic modulus progressively.  The modelling of spatially 
distributed micro-cracking and the analysis of its effect on the longer-scale behaviour can provide insights into the 
microstructure-failure relations.  For a given material with fixed microstructure, this would improve our 
understanding of the damage evolution ahead of a macroscopic crack, with a potential to derive mechanistic 
constitutive laws for continuum damage modelling of fracture.  In the first instance, the modelling can provide an 
estimate for the size of the fracture process zone for given microstructure, which in quasi-brittle media could be 
defined as the energy dissipating 3D region.  This is important since the parameters controlling this size are still not 
clearly understood.  For example, according to Awaji et al (2010) and Aliha and Ayatollahi (2012) the size of the 
fracture process zone scales with the squared ratio of the fracture toughness and tensile strength.  However, 
Ayatollahi and Aliha (2011) have pointed out that the size could be related to the average grain size alone.  Further, 
such modelling could be used for predicting changes in longer- or engineering scale behaviour with service-related 
changes in the microstructure geometry, topology and properties, as pointed out by Jivkov et al (2013a).  For 
example, geometry and connectivity changes of the pore space due to corrosion/erosion and changes of local 
mechanical properties of the solid phases due to chemical reactions. 

Discrete lattice models provide a convenient framework for analysis of distributed micro-cracking, with 
interactions and coalescences controlled solely by applied loads and locally evolving microstructure.  Lattices have 
generating cellular architecture, where sites located in cells are linked by bonds resisting relative deformations 
between cells.  The relation between bond properties and continuum response can be established either by relating 
bond forces to cell stresses, as shown e.g. by Carol et al. (2001) and Cusatis et al. (2011), or by equating the strain 
energy in the bonds and the cell, as shown e.g. by Griffiths and Mustoe (2001) and Karihaloo et al. (2003).  The 
latter can be used for deriving explicit bond-continuum relations for regular cellular architectures.  This is useful, 
because regular lattices can be considered to represent topologically homogenised microstructures and offer high 
computational efficiency compared to irregular, i.e. image-based, lattices. Rigorous derivation of bond properties, 
represented as bundles of one normal and two shear springs, performed by Wang and Mora (2008), showed that for 
the most widely used 2D lattice with hexagonal generating cell a requirement for positive spring stiffness limits the 
applicability of the lattice to isotropic materials with Poisson’s ratio of up to 1/4 in plane strain and up to 1/3 in plane 
stress. Further for 3D lattices based on HCP and FCC arrangements it was shown that only isotropic materials with 
zero Poisson’s ratio could be represented.  This holds also for simple cubic lattice.  As a result, mechanically 
realistic simulations of micro-cracking have been mainly performed on 2D hexagonal structures, e.g. Schlangen and 
van Mier (1992) and Liu et al. (2009). Real crack morphologies, however, are intrinsically non-planar and an 
appropriate lattice is required to capture crack spatial evolution. 

A novel lattice, based on a compact tessellation of space into truncated octahedral cells, was proposed recently by 
Jivkov and Yates (2012).  With bonds represented by beams, this lattice was shown numerically to reproduce any 
isotropic material of practical interest, in contrast to previously used lattices.  The beam-based lattice with elastic-
brittle local behaviour has been used to simulate the response of concrete under complex triaxial loading, as reported 
by Jivkov et al. (2013b).  The beams, however, introduce local micropolar effect, which does not allow for closed 
form calibration of beam properties without assuming generalised elasticity in cells and the knowledge of the 
curvature-couple-stress constitutive relations; details on required additional material parameters can be found in 
Hadjesfandiari and Dargush (2011).   

Following Wang and Mora (2008), assuming classical continuum in cell and bonds represented by one normal 
and two shear springs, Zhang et al. (2014a) derived a closed form relation between spring constants and macroscopic 
elastic constants for the new lattice.  This derivation will be presented here briefly to facilitate discussion on the 
meaning of different parameters and their link to microstructure features.  The emphasis will then be on the mapping 
of the microstructure characteristics to the spring-lattice.  We call a lattice made correspondent to a microstructure, 
the site-bond model of the material.  This work specialises the site-bond model to three-phase quasi-brittle media: 
stiff inclusions in a compliant matrix containing pores.  In such case inclusions occupy cells, i.e. coincide with lattice 
sites, and bonds represent matrix deformation with potential for failure dependent on distributed porosity.  The 
microstructure information required for such correspondence are the size distribution and volume densities of 
inclusions and pores.  Successful applications of the methodology are presented separately for cement-based 
materials by Zhang et al (2014b), and for nuclear graphite by Morrison et al. (2014a, b). 
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2. Lattice elasticity  

Material volume is represented by a complex of compactly packed identical cells – truncated octahedrons; one 
cell is shown in Fig. 1.  This is an a priory topological homogenisation since the proposed cell is closest to the 
average cell in a random Voronoi tessellation of space, see Jivkov and Yates (2012) for details, hence most suitable 
for describing neighbourhoods of material features in average.  In the material volume complex, cells are allowed to 
undergo topological transformations only, i.e. to deform without cutting.  Discontinuities are allowed on the faces 
between cells, i.e. micro-cracks may emerge and propagate between cells.  One important advantage of the proposed 
complex is that it allows for richer and more realistic crack morphology than previously studied 3D lattices.   

Lattice-based models reduce cell complexes to site-bond structures following partially the construction of a dual 
complex, where nodes, edges, faces and cells correspond to cells, faces, edges and nodes, respectively, of the primal 
complex.  The reduction terminates the construction after sites (nodes) and bonds (edges) of the dual complex are 
assigned.  Notably, the sites and bonds inherit geometric characteristics from the primal complex, namely volume 
and area, with added mechanical functions to displace and resist relative displacements, respectively.  The proposed 
cell has six neighbours along three orthogonal directions (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) and eight neighbours along 
the body diagonals (±1, ±1, ±1), where all sign combinations are taken.  The cell size, S, is selected to be the 
distance between two opposite square faces, thus the cell volume is V = S3/2, the hexagonal face area is A1 = 
S23√3/16, and the square face area is A2 = S2/8.  The reduction leads to 14 bonds of two types, one normal to 
hexagonal faces (nearer neighbours) denoted by B1 with length L1 = S√3/2 and one normal to square faces (further 
neighbours) denoted by B2 with length L2 = S; one of each type is shown in Fig. 2.  

The bond resistance to relative displacements between adjacent sites is represented by one axial (normal to cell 
face) and two transverse (tangent to cell face) springs, forming a proper orthogonal system.  The two transverse 
springs in a bond have identical stiffness.  Thus the lattice interactions are characterised by four constants, K1, T1, 
K2, T2, the stiffness coefficients of axial and transverse springs in bonds B1 and B2, respectively.  These constants are 
determined by equating the energy in a continuum cell and half the energy in the 14 bonds, assuming a locally linear 
displacement field, ui = ij xi, i.e. a homogeneous strain field ij, as in Wang and Mora (2008).  Under this 
assumption the strain energy in the cell is calculated by Eq. (1) where Cijkl are the components of the elasticity 
tensor. The strain energy in the springs within the cell is given by Eq. (2) where i,b stands for the relative 
displacement of the bond ends in its local coordinate system as given above. 
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Fig. 1. Unit cell of cellular complex.    Fig. 2. Elements of discrete lattice. 
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By expressing relative displacements via strains and accounting for bond lengths, the following relations are 
found (for detailed derivation see Zhang et al., 2014a) 
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These show that the lattice represents a cubic elasticity, which is not surprising as the complex is also a Voronoi 
diagram of body-centred cubic crystals.  Notably the system is over-determined and allows for infinitely many 
choices for the inverse relations.  One possibility, used in our applications, is to select T2 = 0.  With Voigt notations 
C11, C12 and C44 for Eqns. (3), (4) and (5) respectively, this leads to Eq. (6) for springs in cubically elastic material.  
For isotropic material with Young’s modulus E and Poisson’s ratio , spring constants are given by Eq. (7). 
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It can be seen that if spring stiffness coefficients were required to be positive, the lattice could represent all 
isotropic elastic materials with Poisson’s ratio in the range -0.5 ≤  ≤ 0.25, which is a substantial improvement from 
previous 3D lattices which allowed for isotropic elasticity with  = 0 only.  It should be noted, however, that there is 
no conceptual problem with the extension for materials outside this interval.  For -1 <  < -0.5 K1 would become 
negative, and for 0.25 <  < 0.5 T1 would become negative.  The use of negative stiffness may seem a violation of 
basic mechanics principles.  However, it should be realized that the bond energy represents area energy on 
corresponding faces and the energy equivalence approach practically distributes the cell energy to 14 face energies 
in accordance with given kinematics.  The area energies are not necessarily positive definite quadratic forms of 
strains as shown e.g. by Shenoy (2005) and Javili and Steinmann (2010).  The spring constants correspond to 
coefficients of the surface stiffness tensor and hence need not be positive, as long as the total energy in the 14 bonds 
is positive.  This proposition is a subject of ongoing work and will be reported in the future.  Our current 
applications, Morrison et al. (2014b) and Zhang et al. (2014b), are to materials within the range -0.5 ≤  ≤ 0.25. 

3. Microstructure mapping 

The correspondence between observable microstructure features and lattice properties is performed in statistical 
sense, since the cell complex represents topologically homogenised microstructure.  We consider the solid as a 
continuum with internal free surfaces, e.g. voids or crack-like defects.  The continuum is mapped to the interiors of 
the cell complex and may contain different solid phases.  The internal free surfaces are mapped notionally to cell 
faces.  In our current applications we consider two solid phases – a matrix of uniformly distributed matter and 
particles with different properties, e.g. density or structure, from the matrix.  In such a case, the particles are placed 
at cell centres of the complex and the cell elasticity represents the averaged matrix-particle response.  The 
construction of the corresponding site-bond model requires experimental data for the size distribution, F(c), and 
volume density, c, of particles.  By distributing particles with sizes from the experimental distribution to a given 
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number of cells, Nc, and assuming spherical shapes, one can calculate the lattice length scale S for the prescribed 
particle volume fraction using Eq. (8).  It should be noted that this process can be used to determine a representative 
volume element (RVE) for given F(c) with respect to the lattice elastic response.  By increasing Nc, the scatter in S 
for different random assignments of particles to cells for given c is decreasing and the RVE can be assumed when 
the scatter is within prescribed limits, see Morrison et al. 2014a.   
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Further, the model requires experimental data for the size distribution, F(d), and volume density, d, of defects.  
Presently, defects are assumed to be spherical pores, which are allocated with their great circle at faces of the 
complex to create the worst case scenario for initial face area reduction.  The allocation is random spatially with 
sizes from F(d) and terminates when the cumulative volume of the allocated pores reaches V d, where the total 
volume of the complex is V = Nc S3/2 for selected Nc and calculated S.  This is illustrated in Fig. 3.  It should be 
noted that the mapping of crack-like defects could proceed in a similar way, but the required experimental data 
would be their number density in addition to size distribution.  It is also worth mentioning that a model for a single 
solid phase can be constructed if volume and number density of pores were available, as these in combination could 
be used to calculate the length scale.  In any case the defect mapping affects a set of faces, so that their initial areas, 
Ai, are reduced to effective areas ai = Ai – di

2.  In the current applications, the effective areas dictate only bond 
failure properties as shown below, while the spring constants are calculated by Eq. (7) using macroscopic elastic 
properties measured on real material including porosity.  Work is ongoing to include pore effects on spring 
constants, e.g. by a stiffness-effective area relation, and thus predict porosity effects on emergent elastic behaviour. 

The bond failure mechanism is related to the matrix energy of separation, , a material parameter which can be 
determined either from lower (atomic) scale simulations, nano-indentation experiments or left for calibration against 
measured longer scale (continuum) response.  Specific examples can be found in Morrison et al. (2014b) and Zhang 
et al. (2014b).  The energy of separation defines bond failure energy as Gi =  ai, with 0 ≤ Gi ≤  Ai depending on the 
allocated pore area.  Bond mechanical behaviour is shown schematically on Fig. 4, where F and u can be positive or 
negative, but specific to axial springs is that failure under compressive force is prohibited.  The response to damage 
initiation point (Fc, uc) is dictated by the initial spring constant Ki, followed by linear damage evolution to full 
separation at (0,  uc).  From the failure energy of a bond, Gi, the point (Fc, uc) can be calculated for selected , or  
calculated for selected uc (or Fc).  Presently,  = 2 is assumed to define full separation, until the softening behaviour 
is established more rigorously with lower scale simulations.  It should be noted, however, that the described bond 
mechanical response will change once pore effects on spring constants are introduced. 

The statistics of the microstructure features, required for the proposed modeling approach, is increasingly 
affordable with the wider availability of computed X-ray tomography; see Zhang et al. (2014b) for example. 

 

   

Fig. 3. Illustration of distributed pores on faces.    Fig. 4. Schematic spring mechanical behavior. 
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4. Discussion and conclusions 

In this work we have introduced the basis for reduction of 3D continuum cell representation of materials to a 3D 
discrete lattice using a particular cell complex and applied this to justify mapping of material features to the discrete 
model.  We have demonstrated that the proposed lattice can represent a large class of isotropic materials when 
springs with positive stiffness coefficients are used.   In addition to this useful property, the cell complex allows for 
development of more realistic crack morphologies compared to previous lattices.  This is very important since the 
main advantage of lattice models to continuum FEM formulations is the ability to generate and develop micro-
cracks in a natural manner.  We have further described how data from experimental characterisation can be used to 
obtain model parameters and discussed the need for further development.  The model capabilities are demonstrated 
with specific examples in two contributions to this volume.  
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