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MODEL SELECTION FOR COGNITIVE SOCIAL STRUCTURES

JOHAN KOSKINEN

Abstract. Measurement accuracy is an inherent problem in social network
analysis. The issue of actor accuracy in the reporting of their interactions with
others, was raised by Bernard, Killworth and Sailer (e.g. Bernard et al., 1980)
and provoked extensive debate. Krackhardt (1987) later introduced the concept
of Cognitive Social Structures and several methods for aggregating different ac-
tor reports on the network into a single graph, with the aid of which for example
the congruence of reports could be gaged. Often when this data collecting para-
digm is used the interest is in correlating bias on the part of the perceivers with
exogenous attributes of the perceivers (e.g. Bondonio, 1998; Casciaro, 1998; Cas-
ciaro et al., 1999). A statistical model for aggregating separate reports into a
single consensus network, with the additional benefit of allowing estimates of
actor accuracy to be obtained in the process, was proposed by Batchelder et al.
(1997). Using an extension of this model and a Bayesian approach we are able
to incorporate effects of known covariates and network effects on perceptional
biases. In Koskinen (2002a) it was suggested that the conditional probability
of reporting a tie as present when a tie is really present (or absent) be modeled
using a probit link function. This is further elaborated here with a special focus
on finding standard reference priors that enables model selection. The main
obstacle is that the model is not fully identified, something which can not be
solved in any obvious way through restrictions or highly informative priors. The
proposed solution is to asses a posteriori which are the main determinants of
identifying conditions. We present a procedure for choosing prior distributions
and provide the necessary adjustments to the original sampling scheme.

1. Introduction

Since analysis of social interaction among actors often is based on information
provided by the actors themselves the mechanisms of perception of social inter-
action are crucial to understanding the results. The views on the nature of the
relationship between the reports given by actors and the actual network of social
interaction can roughly be divided in two, whom we may call a ”relativist” per-
spective and an ”essentialist” perspective. Naturally, we are not suggesting that
there are any studies conforming to either extreme, the distinction is purely con-
ceptual. In the sequel we assume that the study of perception of social interaction
is formalized according to the data collection paradigm first introduced by Moreno
(1934), further elaborated by Newcomb (1961), and subsequently given a formal
structure by Krackhardt (1987). The latter introduced the term Cognitive Social
Structures (CSS), referring to the collection of data obtained when each actor in

Key words and phrases. Bayesian statistical modeling; Consensus analysis; Cognitive social
structures (CSS); Measurement reliability; Social network analysis; Binary probit; Bayesian
model selection; Reference priors; Bayesian analysis of social networks.
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2 JOHAN KOSKINEN

a given network gave a report as to the network structure in its entirety. Hence,
for each pair of actors A and B in the network, all actors are assumed to have
reported on the relationship between A and B (for an extensive review on CSS see
Pattison, 1994).

The paper by Krackhardt (1987) can be seen as a direct reaction on the BKS
studies (e.g. Bernard et al. 1980, and Killworth and Bernard 1979; acronym due to
Krackhardt 1987). This identifies two main perspectives on the relation between
reports and what the reports relate to. One perspective focuses on the relation
between the reports and some external reality. The main objective is identifying
discrepancies between the reports and the true network structure represented by,
for example, actual behaviour. The premise is that these reports are laden with
bias that should be explained. A second perspective would be focusing entirely on
the cognitive reconstructions themselves. This represents a shift of interest from
comparing the reports to some external truth to comparing the various perceptions
of the network with each other. These differences are interesting in their own right
as measures of similarity of actors, but the actor reports can also be seen as the only
true representations of the network. The latter point rests upon the assumption
that actors act upon what they consider real (c.p. Krackhardt, 1987, p 112, on
W.I. Thomas).

The essentialist view would state that there is a set network of social interaction
which is true, every representation not concordant with this is bias. This leaves us
the problem of defining and finding the true representation of the network. Rea-
soning from relativist perspective this formulation of the problem would not make
sense. Should we want to go beyond mere descriptions of data, each perspective
poses different problems. For an essentialist point of view, defining a truth is
problematic since any rule based on the actual reports compromises the modeling
of reports. To see this consider using the Locally aggregated structure from the
union rule (Krackhardt, 1987) as a representation of the true network structure,
i.e. a tie between actors A and B is assumed to exist if either A or B reports it as
present. Now, this does not allow us to fully study biases such as over representing
own ties (prestige bias in some settings). If A and B are in agreement about the
existence of a tie between them, this could mean that ”there exists a tie between
them” as well as ”there does not exist a tie between them but they both would
like you to think so”. Studies have been conducted in which the true interaction
pattern is measured in advance and the actor reports are evaluated against the
previously measured interaction (e.g. Bernard et al., 1980; Killworth and Bernard,
1979). It can be argued however that measured frequencies of interaction and
actor reports does not relate to the same phenomenon. From the relativist per-
spective the main problem is to relate the reports to each other. Using for example
multi-dimensional scaling or correspondence analysis, the spatial structure of the
reports can be studied (Kumbasar et al., 1994) but the reports cannot then be
understood in terms of social interaction, i.e. the reports are not directly related
to the network structure.

Batchelder et al. (1997) specified a statistical model that incorporates elements
from both perspectives. The existence of a true structure is assumed and a model
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for informant reports is specified conditional on the true structure. The true
structure is not known however, wherefore it can be thought of as either true
and unknown or as merely a conceptual truth that serves as a reference point
for interpreting the conditional model, i.e. ”had this been the true network...”.
While their model in a way reconciles the above mentioned different perspectives
on perceptions of social interaction, inference is not at all straightforward with
standard frequentist tools. Firstly, their proposed inference scheme excludes cer-
tain configurations of candidate true graphs and data sets, and secondly, their
model is only identifiable if restrictions are imposed on the parameter space. A
fully Bayesian analysis of their model that solved these both problems as well as
provide a procedure for model selection was presented in Koskinen (2001) and
further elaborated in Koskinen (2002b). Some of these results have independently
been given by Butts (2003). As it were, this Bayesian adoption only incorporated
network effects (e.g. is ”accuracy” effected by whether the informant is involved
in the dyad that he or she is reporting on) in a slightly static manner, requiring
many parameters. A more flexible way of approaching the model of Batchelder
et al. (1997), is to specify the conditional model given the true structure as a
probit model (Koskinen, 2002a). Network effects as well as observable attributes
are easily incorporated into the study of informant accuracy and, subsequently,
model inference that involves only little additional programming (as compared to
parameter inference conditional on a model specification) made possible (Koskinen
et al., 2002).

Although one can assume that prior information in some form is always available
and hence that the formulation of prior distributions of the parameters is possible,
the influence of the prior distributions on model selection is an issue that needs to
be dealt with on a case to case basis. More specifically, the precision of the prior
distributions and their relation to the precision of the posterior distribution over
candidate models is an area for further investigation and most certainly something
for which a universal rule does not apply. The model of Batchelder et al. (1997)
is not fully identified and we argue in this paper that it is in general difficult to
determine a priori what restrictions lead to identifiability. The proposed solution
is to explore the posterior distribution of the parameters to locate modal regions.
In this paper we propose an inference scheme where reference priors are used
allowing some degree of automation in the model selection. Further, we introduce
the necessary modifications to the original algorithm needed to carry out the
inference scheme with reference priors. The concept of ”reference” prior carries
some of the notions of ”non-informative” priors, i.e. priors that do not favor any
particular regions of the parameter space. For model inference or model selection
to be possible all prior distributions have to be proper which rules out using
constant priors (c.f. O’Hagan, 1995).

2. Preliminaries

Let the actors be represented by the fixed set of nodes V = {1, . . . , n}, in a
(di-) graph G = (V, E). The set of arcs E ⊆ V (2) = {(u, v) ∈ V × V : u 6= v},
represents the relation among the actors. In the sequel we will treat this arc set as
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if it were the true structure of the network and let Z = (zjk : (j, k) ∈ V (2)) be the
corresponding adjacency matrix, i.e. the indicator function such that zjk = 1 if
(j, k) ∈ E and nought otherwise (this is not strictly speaking an adjacency matrix
since the diagonal is excluded). Z takes values in

�
= {0, 1}n(n−1), i.e. the space

of adjacency matrices for G.
In many applications the set E of arcs is taken to be the self-reports of the

actors in the network but in accordance with the above mentioned data collecting
paradigm, for m informants, we assume that we have for i ∈ � = {1, . . . , m}
reports Xi = (xijk) on Z, where xijk = 1 if informant i states that zjk = 1, and
0 otherwise. In the regular Cognitive Social Structure the set of informants and
the set of actors is one and the same but we retain the notational distinction.
We collect these reports in X = (Xi : i ∈ � ) giving an array of n × (n − 1) × m
elements in three dimensions. Assume that conditional on Z, X1, . . . ,Xm are
independent and their elements are independent and satisfy

(2.1) Pr (Xijk = xijk|Z = z) = Pr (Xijk = xijk|Zjk = zjk) .

The model of Batchelder et al. (1997) is obtained by dividing the conditional prob-
abilities in Eq (2.1) into two types, hit and false alarm probabilities respectively

(2.2) Pr {Xijk = 1|Zjk = zjk} =

{
Hijk if zjk = 1
Fijk if zjk = 0

.

Now, for obvious reasons (compared to the dimensions of X) the n (n − 1) (2m + 1)
number of parameters of (2.2) need to be reduced if we wish to make inference
about hit and false alarm probabilities as well as the true structure. Ways for
doing this are presented in Batchelder et al. (1997) and Koskinen (2002b). In
the latter � × V (2) was partitioned into classes C = {0, 1, . . . , c − 1}, and it was
assumed that Hijk = H`, and Fijk = F` for (i, j, k) belonging to class ` in C. An
alternative (Koskinen, 2002a) is to assume that these conditional probabilities can
be modeled using a normal link function. Let us assume that we have observed,
for each combination of informant and pair of actors in the network, (i, j, k) ∈
� × V (2), a covariate p × 1 vector wijk and that we have two p × 1 vectors of
unknown coefficients β1 ∈ Θ1 and β0 ∈ Θ0, Θ1, Θ0 ⊆ R

p. We could then let
Hijk = Φ(w′

ijkβ1), and Fijk = Φ(w′

ijkβ0), where Φ (·) is the standard normal

cumulative distribution function (cdf)1. Thus the likelihood given data and an
observed set of covariates can be written

L(β1, β0, z;x) =
∏

(i,j,k)∈� ×V (2)

{
Φ(w′

ijkβ1)
xijk +(1 − Φ(w′

ijkβ1))
(1−xijk)

}zjk

(2.3)

×
{

Φ(w′

ijkβ0)
xijk +(1 − Φ(w′

ijkβ0))
(1−xijk)

}1−zjk

Recall that the choice of a standard normal link function rather than a normal
link function with another scale is arbitrary because of the scale invariance of the
probit model (see McCulloch and Rossi, 1994, for a fully Bayesian approach to the

1In order to interpret these probabilities in the theory of signal detection paradigm, Batchelder
et al. (1997) used standard normal cdf’s to infer signal perceptability and response bias.
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identification problem in the multinomial probit model). The choice of a probit
link function rather than a logit link function is motivated by the convenient form
of the MCMC sampling scheme (see further Section 4).

Note that if we do not hypothesize or stipulate the direction of influence that
covariates have on the reporting we cannot infer the structure Z. Put more plainly,
if, say all actors reports a certain tie to be present, they could all either lie or speak
the truth.

Observation 1. The model as defined by the likelihood 2.3 is not identified, i.e.
given data x for every β1 ∈ Θ1, β0 ∈ Θ0, and z ∈

�

L(β1, β0, z;x) = L(β0, β1, z̃;x),

where z̃jk = 1 − zjk for the elements of z̃.

To counter this, one can for example impart restrictions on the parameters (see
Batchelder et al., 1997, in the context of CSS; and Salabasis and Villani, 2000,
in a related model). It is not straightforward to decide what restrictions to use.
Firstly, it is very hard a priori to evaluate what effects these restrictions might
have on the analysis. What seemed sensible a priori might turn out to be un-
realistic (cp the low correspondence between reported communication and ”actual”
communication in the BKS studies Bernard et al., 1980; Killworth and Bernard,
1979). Secondly, note that it is not necessarily sufficient to put restrictions on
one coordinate, since the model might still be conditionally un-identified in some
sub-space of Θ1 × Θ0 ×

�
. We favour and consider it a more sensible idea to

quantify prior information and ideas into proper prior distributions, which do not
exclude, unlike restrictions, regions in the parameter space (Koskinen, 2002b,a).

The use of proper prior distributions paves the way for a rich analysis of data
ranging from the analysis of residuals to model selection. It is however a definite
advantage if there exists a family of reference priors. These provide reference for
testing the sensitivity of parameter estimation and model selection to different
prior specifications. When selecting one model from a large class of models it
is also convenient to have a procedure for setting priors ”automatically”. In the
present context there is the additional problem of identification. Observation 1
suggests that the posterior distribution is multimodal if the prior density is vague.
The regions with high posterior density are separated by regions with low posterior
density. One might add prior information that remedies this to a certain extent but
the effectiveness of this in alleviating the problem is unclear. Our suggestion is that
symmetric priors should be used that allows us to fully explore the multimodality
of the posterior distribution since the location of the high density regions in relation
to each other is essential information. By symmetry, we refer to the indeterminacy
following Observation 1.

3. Prior distributions

In this section we derive a class of reference prior distributions for the probit
coefficients β1, β0, and Z. For the probit coefficient βs denote the prior mean
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µs = (µs,v : v = 1, . . . , p), and the corresponding (marginal) variance covariance
matrices Σs, for s = 0, 1. Below we will set µs = 0 and Σs = Σ for s = 0, 1.

The problem of determining proper subjective prior distributions can be viewed
from two perspectives. On the one hand, the dilemma is not so much about
determining the direction of the effects of the covariates (mean level) as much as
determining the joint influence (covariance) and our prior uncertainty about these
directions (variances). On the other hand, we do not know which covariates have
an effect at all and hence if tight priors for these coefficients are enough to assure
that the posteriors are unimodal. For example, by setting a tight prior on the
intercept coefficients β1,0 and β0,0, so that we a priori believe actors to be accurate
”on average” when reporting ties (i.e. strong positive and strong negative means
respectively) would seem a reasonable measure for achieving uni-modality through
the implicit ”exclusion” of certain structures in

�
. Should these mean levels of

accuracy turn out to be marginal (with posteriors centered over 0) in comparison
with the rest of the effects, we could still end up with multimodal posteriors. A
second point relating to the former is just how much precision is needed to counter
multimodality?

We consider only multivariate normal reference priors since the normal distri-
bution is conjugate with respect to the latent variable to be defined in Section
4.

Definition 1. For the model with likelihood (2.3) the joint prior on β0, β1, and
Z that satisfies

(1) β0, β1, and Z are independent
(2) Z is uniformly distributed on

�

(3) β0, β1∼Np(0,Σ) where Σ is a diagonal matrix

Σ =
ξ2

p
diag(w−2

1 , . . . , w−2
p ),

for ξ > 0, is a reference prior with respect to the typical covariate vector
w =(w1, . . . , wp)

′, wv 6= 0, for all v.

Although it is not strictly necessary for a reference prior to be either sensible
or interpretable, the idea of the prior in Definition 1 is to provide a measure of
(little) information with can be understood in terms of data. Here follows some
characterizations of the reference prior and its interpretations.

When using the probit model in general one has to take the scale of the covari-
ates into consideration when constructing prior distributions. In analogy to the
Imaginary Minimal Experiment of Spiegelhalter and Smith (1982) the reference
prior is constructed working from the notion of a typical observation, a kind of
thought experiment. For each model we assume that there is a typical report
xijk, corresponding to a triple (i, j, k) and covariate vector w = (wv), to be con-
structed later. The use of one typical observation captures the ”minimal” part of
the thought-experiment, since we construct our priors in relation to the influence
of a single observation.
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Figure 1. Densities for the cdf transform for ξ = .2, .7, 1, 1.1, 1.5

The prior independence of parameters is motivated by the fact that there is no
immediately apparent way of defining dependencies. In addition, prior dependen-
cies would possibly disturb the symmetry of posteriors following from Observation
1. Similarly, with Σ a diagonal matrix the prior does not favor any types of in-
terdependencies between the effects of covariates. Although this neglects the fact
that the scale of a covariate coordinate needs to be understood in relation to the
other covariate values, i.e. the covariation among covariates. The impact of these
covariances on the posteriors of the coefficients is however dependent on what ob-
servations are grouped together (for example the case when, say for two reports,
if one is considered a false alarm, the other is likely to be as well).

We now take a look at the induced prior on Hijk for the typical observation (the
derivation is given in the appendix). Since by assumption µ1 = 0 it is clear that
the expected value of Hijk with respect to the reference prior is 1/2. For ξ = 1,
we have that

Hijk ∼ Rectangular(0, 1),

which is a common way of modeling ”ignorance” in Bernoulli trials. It is straight-
forward to show (using a little algebra; see the appendix) that the probability
density function for general ξ of Hijk corresponding to a typical covariate vector
is given by

ξ−1 exp

{
−

1

2

(
ξ−2 − 1

) {
Φ−1(Hijk)

}2
}

,



8 JOHAN KOSKINEN

which is well approximated by a Beta(α(ξ), α(ξ)) density, α(ξ) = (π/4) (ξ−2 − 1)+
1. How the scaling factor ξ affects the distribution of Hijk is illustrated in Fig-
ure 1. Using the Beta approximation, Jeffreys prior is for example obtained as the
induced prior for ξ =

√
π/ (π − 2) ≈ 1.66. Since one typical observation serves

as the reference point, we now turn to the induced priors on H for observations
whose covariate vectors differ from the typical covariate vector (the index of H
is dropped since its function here is replaced by the covariate vector). Assume
that the ”atypical” observation has covariate vector w∗ and the typical covari-
ate vector is w. Now for given ξ if |w∗

v| < |wv| for all v = 1, . . . , p, the induced
prior on H for the covariate vector w∗ will, using the beta approximation, be
Beta(a∗, a∗) with a∗ > a(ξ) (follows from the fact that v = w∗′β is a linear combi-
nation of independent normal variates, and the relation between the variance of v
and the beta approximation is given in the appendix). Conversely, if |w∗

v| > |wv|
for all v = 1, . . . , p, the induced prior on H for the covariate vector w∗ will be
Beta(a∗, a∗) with a∗ < a(ξ).The interpretation being that , loosely speaking, the
less ”informative” a covariate vector is in relation to the typical covariate vector,
the more concentrated around zero the induced prior will become. The same ar-
gument as for less ”informative” can be stated for more ”informative”. The more
”informative”, the more u-shaped the induce prior on H and F will become. The
reason for putting informative in quotes is that there is no simple relation between
how much information an observation contribute and the absolute values of the
individual elements of the covariates. Recall also that the posterior distributions
are not in general uni-modal. Hence, a certain amount of u-shapedness in the
induced priors lends support to a model for which the posteriors of the coefficients
are not centered over the origin.

Dellaportas and Forster (1999) consider the induced prior on the logarithm of
the mean in log-linear models, for different choices of prior distribution for the
parameters. They do not however consider the explicit form of the induced prior
on the mean, but use the first and second moments for matching the prior mean
and covariance structure to that of a gamma conjugate prior distribution. The
relationship between the Dirichlet and gamma distribution then allows them to
study the prior expected cell counts. In the context of generalised linear models,
Raftery (1996a) developed a methodology for setting reference priors that for nor-
mal regression corresponds to giving all model parameters, except the intercept,
independent normal prior distributions with a zero mean and common variance.
The intercept is given a special status, and is modeled with a separate indepen-
dent normal distribution. For generalised linear models, these priors are however
transformed using observed data. It is important to keep in mind that we want
to retain some notion of the ”minimal” in our priors, and in contrast with setting
priors in generalised linear models, the information provided by data about the
coefficients is mediated through the latent structure, z.

Further properties of the reference prior is that, in analogy with the Imaginary
Minimal Experiment, when comparing two models, both of which using the same
typical observation as their point of reference for setting the prior distributions,
the Bayes factor is unity for given ξ. This follows from the fact that the induced
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priors on H and F are identically distributed for the (thought) experiment of
obtaining a realization on the typical observation. Hence every realization of the
typical observation has the same probability in both models.

It remains only to construct the typical actor. One way is to arbitrarily, say at
random, select an actual covariate vector and using it if all elements are non-zero.
Another way is setting the covariate vector equal to the standard deviations of
the covariates. In the concluding empirical section, we tentatively investigate the
effects of different specifications of the typical observation.

4. Posterior distributions

To facilitate estimation procedures, following Albert and Chib (1993), we in-
troduce the n × (n − 1) vector of latent variables Yi = (Yijk), that for each triple
(i, j, k), are independently distributed

Yijk ∼ N
(
w′

ijkβ1, 1
)

if Zjk = 1,

and

Yijk ∼ N
(
w′

ijkβ0, 1
)

if Zjk = 0,

and let Xijk = 1 if Yijk > 0 and Xijk = 0 if Yijk 6 0. Consequently we have the
standard regression form

Yijk =

p∑

v=1

wijk,vβs,v + εijk

for s = 0, 1. One important implication of this formulation is that the underlying
structures behind the observable graphs X1, . . . ,Xm can be seen as a collection
of valued graphs Y1, . . . ,Ym, and if in Yi, (j, k) has a value or intensity greater
than zero we get an edge (j, k) in Xi. Additionally, if we have a valued graph with
continuous strengths of the relationships it is natural to model it with ordinary
regression techniques.

It is straightforward to check that the introduction of the latent variables ,Yi,
retains the structure of the likelihood function in (2.3). For example, for given
triple (i, j, k), Hijk = Pr(Yijk > 1|Zjk = 1), which in terms of a standard normal
variate is Φ(w′

ijkβ1). Also, with conjugate priors, sampling from the exact pos-
teriors of the parameters is fairly straightforward. Full details about the Gibbs
sampling algorithm can for example be found in Gelfand and Smith (1990).

4.1. Gibbs sampler. To implement the Gibbs sampler we need the full condi-
tional posteriors of each of the parameters. When the parameters are a priori
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independent the joint conditional distribution of the parameters and latent vari-
ables given data is

π (β1, β0, z,y|x) ∝ π (β1) π (β0)π (z)

×
∏

(i,j,k)∈� ×V 2

{1 (Yijk > 0) 1 (xijk = 1)

+1 (Yijk 6 0) 1 (xijk = 0)}ϕ
(
Yijk − w′

ijkβ1

)zjk

×{1 (Yijk > 0)1 (xijk = 1)

+1 (Yijk 6 0) 1 (xijk = 0)}ϕ
(
Yijk − w′

ijkβ0

)1−zjk ,

where ϕ ( ) is the N (0, 1) probability density function (pdf). Here we have used
π to denote a generic prior or, alternatively, posterior distribution, which is meant
to be interpreted according to its argument. With reference priors of the kind
we have proposed earlier, the prior densities of the coefficients are multivariate
normal whereas the prior probability mass function π (z) is incorporated into the
normalizing constant.

The forms of the full conditional posteriors deviates from how they are described
in Albert and Chib (1993) only in the dependence on z. With independent con-
jugate priors of the form βs ∼ Np (0,Σs), we have independently for s = 0, 1

(βs| z,y) ∼ Np (β∗

s ,B
∗

s)

where β∗

s = B∗

1Ss, B∗

s = (Σ−1
s + Cs)

−1
, and

Ss =
∑

(j,k)∈V (2)

1 {zjk = s}
∑

i∈�
yijkwijk, Cs =

∑

(j,k)∈V (2)

1 {zjk = s}
∑

i∈�
wijkw

′

ijk.

The full conditional posterior of the coefficients does not depend on data given
the latent variable y. For the latent variables Y we have that for each element if
Zjk = s

(Yijk|x,β1, β0, z) ∼ N
(
w′

ijkβs, 1
)
,

truncated to the left at 0 if xijk = 1 and truncated to the right at 0 if xijk = 0,
for s = 0, 1. We can write the full conditional posterior of Zjk independently for
each j, k

(Zjk|x,β1, β0,y) ∼ (Zjk| x1jk, . . . , xmjk,β1, β0) ∼ Bernoulli

(
1

1 + qjk

)

where

qjk =
∏

i

(
Φ
(
w′

ijkβ0

)

Φ
(
w′

ijkβ1

)
)xijk

(
1 − Φ

(
w′

ijkβ0

)

1 − Φ
(
w′

ijkβ1

)
)1−xijk

.

Conditioning on both data and the latent variable is superfluous since the only
relevant information for Zjk is whether the informants have reported the arc (i, j)
as present or not, given everything else.

By cycling through these conditional posteriors for a certain number of steps,
after a certain burn-in period the joint output is a sample from the exact joint
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posterior of the parameters given data (”exact” here means arbitrarily close to the
desired distribution in total variation distance).

4.2. A switching device. As a consequence of Observation 1, the posterior mass
will be concentrated on two disjoint regions of the parameter space. To charac-
terize these regions, let � be the class of all partitions P :

�
→ {0, 1}, such

that P (z) = a implies that P (z̃) = 1 − a. For P ∈ � define the ”inverse”
P−1 (a) = {z ∈

�
: P (z) = a}. Now, from observation 1, when we have symmet-

ric prior distributions, there exist a P ∈ � , such that

(4.1) π (β1, β0|x) =
1

2
π1 (β1, β0|x) +

1

2
π0 (β1, β0|x)

where
πa (β1, β0|x) =

∑

z∈P−1(a)

π (β1, β0, z|x) .

Furthermore πa (β1, β0|x) = π1−a (β0, β1|x), for all β0 ∈ Θ0, β1 ∈ Θ1. Typi-
cally, when the modal regions are far apart, the ordinary Gibbs algorithm will get
stuck in one of the regions and produce a sample from πa (β1, β0|x) rather than
π (β1, β0|x), for some P ∈ � . Even if there is the occasional jump from one
modal region to another, the proportions in the mixture 4.1 are likely to be bad.

There are various possibilities for handling these problems. One solution would
be to force the Markov chain to stay in one of the modal regions and adjust the
weight afterwards. Another solution would be using a stepping stone (as described
in e.g. Gilks and Roberts, 1996). Both of these approaches would require a pre-
sampling scheme, to identify the modal regions and a quite elaborate analysis for
adjusting the Gibbs algorithm.

Consider instead the following coupling scheme. The Gibbs sampler can be put
in a form similar to the Metropolis-Hastings algorithm. Let {Uij}, j = 1, . . . , p,
i = 1, . . . , N be an array of independent draws from the uniform distribution, and
let θji be the jth component of the parameter vector in the ith iteration. Denote
by F (·|·) a generic conditional distribution function derived from the posterior
density π(·), and F−1(·|·) the corresponding quantile function.

The algorithm is initiated by drawing θj0 from some, possibly degenerate, dis-
tribution. In every iteration i = 1, . . . , N , the following up-dating step is used:
for j = 1, . . . , p, equate

θji = F−1(uij|θ1,i, . . . , θj−1,i, θj+1,i−1, . . . , θp,i−1),

for continuous components, and for discrete components set θji to the minimum
value satisfying

uij ≤ F (θji|θ1,i, . . . , θj−1,i, θj+1,i−1, . . . , θp,i−1).

Now consider the case when we have several copies of the Markov chain θ1
ji, . . . , θ

K
ji ,

each obeying the updating rules described above, starting with different initial con-
figurations θ1

j0, . . . , θ
K
j0, but using the same sequence of random numbers {Uij}.

This technique is called coupling and can be used to study convergence of MCMC
samples to the stationary distribution (in particular, see Johnson, 1996, on cou-
pling schemes for the Gibbs sampler). Let N denote the first iteration such that
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θk
ji = θh

ji, for 1 ≤ k < h ≤ K, for all discrete components and |θk
ji − θh

ji| < ε,
ε > 0, for 1 ≤ k < h ≤ K, and for all continuous components. N is said to be
the time at which all the copies have ”coupled”, or coalesced, and once all copies
have coupled they stay together. In particular, if θk

jt = θh
jt, for 1 ≤ k < h ≤ K,

for all components at iteration t = N , θk
ji = θh

ji,, for 1 ≤ k < h ≤ K for i ≥ t.
For our purposes, assume that we run two parallel chains θ1

ji and θ2
ji, in the way

prescribed above with a common sequence of random numbers {Uij}, but with
an alteration to the up-dating order of the components. For θ1

ji we successively
up-date

(1) θ1
1i ∼ z|·

(2) θ1
2i ∼ y|·

(3) θ1
3i ∼ β0|·

(4) θ1
4i ∼ β1|·

whereas for θ2
ji we use the up-dating order

(1) θ2
1i ∼ z|·

(2) θ2
2i ∼ y|·

(3) θ2
3i ∼ β1|·

(4) θ2
4i ∼ β0|·

Now if θ1
0 is set to an arbitrarily chosen point θ1

0 = (z,y,β0, β1), and θ2
0 =

(z̃,y,β1, β0), note that θ1
0 and θ2

0 will belong to different modal regions for all
partitions P ∈ � . Furthermore, the coupling mechanism will make sure that

θ2
i = (z̃(i),y(i),β

(i)
1 , β

(i)
0 ) when θ1

i = (z(i),y(i),β
(i)
0 , β

(i)
1 ), for every iteration i = 1, . . .,

and hence θ1
0 and θ2

0 will belong to different modal regions for all partitions P ∈ �
in every iteration. The combined sample consisting of {θ1

i } and {θ2
i } will clearly

be sampled with the right proportions from each modal region but since there is
a functional dependence between θ1

i and θ2
i for each i, there will also be unwanted

dependencies in the sample. The solution we employ is to taking a sub sample
form the combined sample. More specifically, we construct a sample {θ∗i }, where
for each i, we perform a Bernoulli experiment with probability 1/2. If this is a
success, we set θ∗i = θ1

i , and otherwise θ∗i = θ2
i .

Of course, there is no need to actually run two copies and to take the sub-
sample afterwards. The sample {θ∗i }, can be obtained by running a single chain

and after each iteration we swap places for θ∗3i and θ∗4i, and set θ∗1i equal to θ̃∗1i,
with probability 1/2. This is what we mean by switching devise. To keep track
of the instances in which a jump from one region to another has taken place we
introduce an sequence of indicator functions {Ii}, where Ii = 1 if a jump was made
in iteration i and 0 otherwise. If the regions are distinct, an indicator of modal
region can be constructed. Set A(0) = 0, and let A(i) = A(i−1) + Ii modulo 2, and
if the modal regions are sufficiently distinct there will exist a partition P ∈ � ,
such that P (θ∗1i) = A(i), for all i.

We might point out that when implementing the Gibbs sampler, there is no
need to put it explicitly into the form described in this section, i.e. we do not
need to use the form with inverted cdf and the uniform random variates.
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5. Model selection

Let � be a collection of models reflecting different hypothesis regarding the
data generation process. Each model M ∈ � is characterised by a sampling prob-
ability mass function p(x|θ,M), and a model specific set of parameters θ ∈ ΘM . In
our case we limit the class of models to a subset of the models whose sampling prob-
ability mass function can be put in the form (2.3). We are however allowed to make
comparisons with other models for the same data structure with other sampling
distributions, a subject that we return to in the next section. The parameter space
of the models here considered is R

pM×R
pM ×{0, 1}n(n−1), where pM may varies over

models. When making model selection we have from standard statistical theory
that the marginal likelihood, m (x|M) =

∑
z∈�

∫
Θ

p(x|β, z,M)π(β, z, |M)dβ, of a
model M is proportional to the posterior probability of model M given data when
all models considered are given equal probability a priori. Typically the model
with highest marginal likelihood is chosen as the best model (c.f. e.g. Raftery,
1996b). To obtain the marginal likelihood is not always straightforward but Chib
(1995) showed how an estimate of the posterior ordinate can be calculated from
the Gibbs output and inserted in the basic marginal likelihood identity to obtain
an estimate of the marginal likelihood.

The basic marginal likelihood identity (BMI) is given by

m (x|M) =
L(β∗

1 , β
∗

0 , z
∗;x)π(β∗

1 , β
∗

0 , z
∗)

π(β∗

1 , β
∗

0 , z
∗|x)

,

which follows from solving Bayes Theorem for the marginal likelihood. Following
Chib (1995), we first note that for any arbitrary point β∗

1 , β
∗

0 , z
∗ in the parameter

space

(5.1) π(β∗

1 , β
∗

0 , z
∗|x) =π(z∗|β∗

1 , β
∗

0 ,x)π(β∗

1 , β
∗

0 |x).

The first factor on the right hand side is immediately available as noted above.
The MCMC estimate of the second factor is

(5.2) π̂(β∗

1 , β
∗

0 |x) =G−1
G∑

g=1

π(β∗

1 , β
∗

0 |x, z(g),y(g)),

where z(g),y(g) are sample points from the Gibbs sample.
Note that this procedure requires little extra programming in addition to what

is needed for implementing the Gibbs sampler.

6. Analysis

To illustrate the model selection procedure, we fit a number of models to Krack-
hardt’s (1987) high-tech managers. The 21 manages each gave their version of who
went to whom for advice. For each individual the age (AGE), position in the hi-
erarchy (HIE), length of tenure (TEN), and department were recorded (DEP ).
There were four different departments and hierarchal position was coded as one if
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the individual was a vice president or CEO, and zero otherwise. Out of the indi-
vidual attributes we construct covariates corresponding to different combinations
of attributes of perceiver (i), sender (j) and receiver (k).

Two possibly important factors in the perception of advice-giving, could be
structural proximity and similarity. By the former is meant, what role does the
perceiver have in relation to the dyad in terms of structure, e.g. perceiving own ties
as opposed to ties of others. When perceiving own ties there could be some form
of prestige bias - you either inflate your own position in the network and/or over
report/under report your activity. Similarity could be influential on two levels.
Firstly you could be biased towards over-reporting ties between people that are
similar with respect to certain characteristics and secondly, and more important,
you know more about people that are similar to you. We consider similarity with
respect to the categories: age, tenure, position in the corporation hierarchy and
department.

We list a few potentially interesting covariates that can be include in the models,
and give commonsensical motivations meant to capture the ambiguities of their
”effects”. All are various combinations of informant, sender and receiver attributes
and indices are only used when we need to distinguish between informant-sender
and informant-receiver. Additionally, all listed effects, bar the intercept, depend
on the informant.

INT : Intercept, representing the average level hits and false alarms
AGEi: There is no specific motivation behind including age except perhaps

seniority
DAj = AGEi − AGEj: (Dis-) Similarity between perceiver and advice seeker

with respect to age
DAk = AGEi − AGEk: The effect of (dis-) similarity in age on the perception

of receiving advice
TENi: The longer you have been in the corporation the better your knowl-

edge of it or, alternatively the more likely you are to be stuck in old hier-
archies

DTj = TENi − TENj: The effect of similarity with respect to length of tenure
on perception of advice seeking

DTk = TENi − TENk: The effect of similarity with respect to length of
tenure on perception of advice giving

HIEi: Actors in high positions know their corporation or they are too far
removed

DEj = HIEi ∗ HIEj: Do people know who seeks advice on the same level
of the hierarchy (upper)

DEk = (1 − HIEi)(1 − HIEk): Do people know who is sought for advice on
the same level of the hierarchy (lower)

DPj = 1(DEPi = DEPj): You know who people in your own department
consult, or you exaggerate the networking

DPk = 1(DEPi = DEPk): You know what people in your department are
consulted
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DAT = (DA2
j + DT 2

j )/c: The combined effect of age and tenure dissimilarity
(with a suitably chosen constant c)

EGOj = 1(i = j): You are more accurate/biased when perceiving own advice
structure

EGOk = 1(i = k): You are more accurate/biased when perceiving who re-
ceives advice from you

To test the sensitivity of the results to misspecification of typical observation,
typical covariate vectors wmax, wmean, and wmin, are used. The first type, wmax,
models ignorance from the point of view of an (imaginary) informant-dyad com-
bination whose corresponding covariates are maximally informative (the amount
and nature of information contributed by an observation is naturally a more com-
plicated matter, strictly speaking; ”informative” is only meant to be interpreted
in the sense of the induced priors as described in Section 3). Setting ξ = 1, the
induced priors of Hmax and Fmax are uniform. Observations with less informative
covariate vectors will have their induced priors on H and F more concentrated
around 1/2 (c.p. going form ξ = 1 to ξ = .2 in Figure 1). The minimally in-
formative typical observation is set such that Hmin and Fmin are uniform for the
corresponding covariate vector, wmin. The more informative the covariates are
for other observations relative to the minimal covariate vector, the more u-shaped
they will be (since higher absolute covariate values lead to higher variance, again
c.p. Figure 1). For the ”mean” prior, an average covariate vector wmean was used
for reference, with uniform induced priors on the hit and false alarm probabilities.
The covariate vectors used were

wmax = (1, max
ijk

{|w2,ijk|} , . . . , max
ijk

{|wp,ijk|})
′,

wmin = (1, min
ijk

{|w2,ijk| : |w2,ijk| > 0} , . . . , min
ijk

{|wp,ijk| : |wp,ijk| > 0})′,

and

wmean =

(
1,

∑
ijk |w2,ijk|

n(n − 1)m
, . . . ,

∑
ijk |wp,ijk|

n(n − 1)m

)′

.

One might criticize these choices of typical observations covariates seeing as many
covariates are dichotomous, and hence the priors on the coefficients based on
wmax and wmin, will be equal for some coordinates. To test the sensitivity of prior
variance, three scaled up priors were also used, where the mean vector was the
reference covariate vector but with ξ = pλ, for λ = 1, 10, 20.

An arbitrary subset M1, . . . , M27 ⊂ � of models were fitted. The resulting
marginal log-likelihoods are given in Table 1. For comparisons across models
Kass and Raftery (1995) review a few rules of thumb for Bayes factors on the
logarithmic scale. The marginal likelihoods are surprisingly stable over different
prior specifications (as can be seen in Figure 2 there are quite drastic differences in
scale between them). In Table 1, the highest values are in bold face and the choice
seems to be between model 24 and 25. The former includes the effect of working
in the same department for perceiver and sender. It is interesting to compare the
evaluated marginal likelihoods from the models fitted here to those of the models
fitted in Koskinen (2002b) to the same material. The marginal log-likelihoods of
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Figure 2. Comparison of marginal prior (· · · ) and posterior (−)
densities of β1,v for model specification 25

the six models fitted there ranged from −4506 to −3928. The model with highest
posterior probability had parameters corresponding to those of model 5 in Table 1.
Although model 5 is the second best among the models with 6 parameters (models
1 through 10; not counting the additional n(n−1) parameters corresponding to z),
the marginal log-likelihood of between −4672 and −4658 is small in comparison
to that of the model selected in Koskinen (Ibid), which was −3928. The latter
however, had 3×2×m = 126 parameters, one parameter for each perceiver i ∈ �
and case EGOj = 1, EGOk = 1, EGOj ×EGOk = 0, conditionally upon whether
Zjk = 1 or not. With this in mind, the model (-s) selected here, 25 (24), with
8 × 2 parameters does remarkably well in comparison. That the model with 126
parameters is better supported by data would indicate that there are extreme
observations if only the ego-effects are considered (which indeed seems to be the
case judging by the analysis in Koskinen, Ibid). Also, the list of models fitted here
is in no way exhaustive and the combination of effects were chosen arbitrarily for
the sole purpose of illustration. Thus, it is quite possible that some combination
of effects might explain away the extreme observations that were not explained by
model 5.

In Figure 2 the posteriors for model 25 are plotted along with the priors. What
is interesting is the distributions for DAj and DTj. The priors that are tightly
concentrated around 0, the spike-like curves, are the ones set with wmax and wmean
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s = 0 s = 1
predictor par. mean std mean std
average level βs1 −.896 .109 .495 .129
informant-sender age dissimilarity βs2 −.010 .008 −.011 .005
informant-sender tenure dissimilarity βs3 −.009 .009 −.015 .008
informant-sender hierarchy similarity βs4 .049 .020 .131 .025
informant-receiver dep. similarity βs5 .288 .082 .144 .078
informant-receiver hie. similarity βs6 −.273 .068 −.488 .039
informant is sender βs7 .732 .165 .330 .112
informant is receiver βs8 .691 .163 .756 .147

Table 2. Posterior means and standard deviations for parameters
in model 25 (λ = 20) for Krackhardt’s high-tech managers condi-
tional on partition induced by the switching mechanism

as reference covariates. For all eight parameters, the marginal posterior distribu-
tions are not very different across models. It is further instructive to study the
marginal posterior of β1,1. The marked bimodal shape suggests that the modal
regions are distinct. Indeed, if we consider the partition that is induced by the
switching mechanism, the sign of β0,1 is always the opposite of the sign of β1,1, con-
ditional on the partition. A good indication of whether the switching mechanism
induces a true partition of

�
is given by the marginal posterior edge probabilities

in Figure 3. The posterior of the parameter corresponding to EGOk, illustrates
to some extent the dangers of relying on restrictions or highly informative priors
for achieving uni-modality, since the marginal posterior does not distinguish be-
tween the case when there is an edge present and when there is not, conditional
on all other parameters. Hence it is unclear whether a restriction on or a highly
informative prior for this parameter would have been enough for achieving joint
uni-modality.

The marginal posterior distribution of the parameters in model 25 conditional
on the partition induced by the switching mechanism are given in Figure 4. The
corresponding posterior means and standard deviations are given in Table 2. Look-
ing at Figure 4 it seems as if the model could be improved upon by removing the
effects DAj and DTj. However, when we inspect the bivariate posterior of these
parameters in Figure 5, it turns out the origin is just included in a 99% highest
posterior density region (for β1,2 and β1,3 the bivariate is even further removed
from the origin).

Assuming the perspective of accuracy versus in-accuracy when interpreting Ta-
ble 2 and Figure 4, the partition of the parameter space corresponds to a scenario
when the actors are in general accurate. It seems as if actors are not likely to
report other actors who are junior to them as givers of advice, regardless of of the
”true state of affairs”. The interpretation for the effect of seniority with respect to
length of tenure is similar. In terms of the model, the effect of spatial proximity is
reflected in that actors recognizes who in their department seeks advice. There is
however a tendency towards false positives, i.e. reporting co-workers in the same
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Figure 3. Marginal posterior probability of and edge (i, j), for
(i, j) ∈ V (2), conditional on partition induced by the switching
mechanism for model 25(λ = 20)

department as seekers of advice when they in fact are not. Considering that there
are correlations such as those between DAj and DTj , interpretations are perhaps
best done through analysing the predictive probabilities of false positives and hits
for different configurations.

Appendix A. The induced prior on H and F

For a fixed covariate vector w, make the transformation V = w′β1. With refer-
ence priors with respect to w, we have from the properties of the normal distribu-
tion that the induced prior on V is N(0, ξ2). Denote by ϕ (·) and Φ (·) the prob-
ability distribution function and cumulative distribution function, respectively, of
a standard normal variate. The pdf of H = Φ (V ) has the form

(A.1) fH (h) = ϕ
(
Φ−1 (h) /ξ

) ∣∣∣∣
d

dh
Φ−1 (h)

∣∣∣∣ ,

where the derivative equals ϕ(Φ−1 (h)), and insertion in (A.1) yields

(A.2) fH (h) = ξ−1 exp

{
−

1

2

(
ξ−2 − 1

) [
Φ−1 (h)

]2
}

.

For general V ∼ N(µ, ξ2), with H = Φ (V ), the expected value of H is straight-
forward to calculate. Firstly write V = µ + ξW , where W is a standard normal
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Figure 4. Marginal posterior densities for model 25 (λ = 20) con-
ditional on a region in

�
induced by the switching mechanism,

with 95% Credibility intervals for β1v (β0v), dark (pale) shades, and
posterior means ◦ (�)

variate. Secondly, note that

H = Φ (µ + ξW ) = Pr(U ≤ µ + ξW |W ),

in which U is a standard normal variate which is independent of W . From this
follows that the expected value of H is given by

E(H) = Pr(U − ξW ≤ µ) = Φ

(
µ√

1 + ξ2

)
.

Note that E(H) = 0 if and only if µ = 0.
A simple (and not very sophisticaded) way for finding an approximation to the

density (A.2) by a beta density is by approximating the inverse standard normal
cdf. An upper bound for the standard normal c.d.f. is given by Zelen and Severo
(1984)

Φ (x) 6
1

2
+

1

2

√
1 − e2x2/π, (x > 0)

and solving for x

x2
> −

π

4
ln
(
−4Φ (x)2 + 4Φ (x)

)
.
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Figure 5. Level curves of bivariate posterior for parameters cor-
responding to DAj and DTj in model 25 (λ = 20), conditional on
partition induced by switching mechanism with 95% (thick line) and
99% (dotted) HPD regions

We now have an upper bound for the p.d.f.

fH(h) = ξ−1 exp

{
−

1

2

(
ξ−2 − 1

) {
Φ−1(h)

}2
}

6 ξ−1 exp

{
1

2

(
ξ−2 − 1

) π

4
ln
(
−4h2 + 4h

)}

= ξ−1 exp
{
a ln

(
−4h2 + 4h

)}

= ξ−14a−1ha−1 (1 − h)a−1 , a =
π

4

(
ξ−2 − 1

)
+ 1,

with equality for ξ = 1, and h = 1/2 for all ξ. We recognize ha−1 (1 − h)a−1 as
proportional to a Beta(a, a) density.

Tentative simulation results show that the first 9 moments are almost perfectly
matched for the beta approximation and ξ ≤ 1.5. To calculate the moments
exactly, one may apply the same technique as was used for calculating the expected
value.
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