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We use the coupled-cluster method in high orders of approximation to make a comprehensive study of the
ground-state (GS) phase diagram of the spin-1/2 J1-J2-J3 model on a two-dimensional honeycomb lattice
with antiferromagnetic (AFM) interactions up to third-nearest neighbors. Results are presented for the GS
energy and the average local onsite magnetization. With the nearest-neighbor coupling strength J1 ≡ 1, we
find four magnetically ordered phases in the parameter window J2,J3 ∈ [0,1], namely, the Néel, striped, and
Néel-II collinear AFM phases, plus a spiral phase. The Néel-II phase appears as a stable GS phase in the
classical version of the model only for values J3 < 0. Each of these four ordered phases shares a boundary
with a disordered quantum paramagnetic (QP) phase, and at several widely separated points on the phase
boundaries the QP phase has an infinite susceptibility to plaquette valence-bond crystalline order. We identify
all of the phase boundaries with good precision in the parameter window studied, and we find three tricritical
quantum critical points therein at (a) (J c1

2 ,J
c1
3 ) = (0.51 ± 0.01,0.69 ± 0.01) between the Néel, striped, and QP

phases; (b) (J c2
2 ,J

c2
3 ) = (0.65 ± 0.02,0.55 ± 0.01) between the striped, spiral, and QP phases; and (c) (J c3

2 ,J
c3
3 ) =

(0.69 ± 0.01,0.12 ± 0.01) between the spiral, Néel-II, and QP phases.
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I. INTRODUCTION

A combination of strong quantum fluctuations and strong
frustration in a spin system provides an ideal scenario for
the emergence of such novel quantum ground-state (GS)
phases as the quantum spin-liquid (QSL) and other quantum
paramagnetic (QP) phases, which do not possess the magnetic
long-range order (LRO) that typifies the classical GS phases of
the corresponding models taken in the limit s → ∞ of the spin
quantum number s of the lattice spins. Quantum fluctuations
tend to be largest for the smallest values of s, for lower
dimensionality D, and for the smallest coordination number z

of the lattice. Thus, for spin-1/2 models, the honeycomb lattice
plays a special role since its coordination number (z = 3) is the
lowest possible for D = 2. Frustration is easily incorporated
by the inclusion of competing next-nearest-neighbor (NNN)
and possibly also next-next-nearest-neighbor (NNNN) bonds.
For these reasons, such spin-1/2 frustrated Heisenberg models
on the honeycomb lattice have engendered huge theoretical
interest.1–15

Interest in the honeycomb lattice has been given further
impetus by the discovery of a QSL phase in the exactly
solvable Kitaev model,16 in which the spin-1/2 particles are
sited on a honeycomb lattice. Interest has also emanated from
the synthesis of graphene monolayers17 and other magnetic
materials with a honeycomb structure. For example, it is
likely that Hubbard-type models on the honeycomb lattice
describe many of the physical properties of graphene. It is
interesting to note too the clear evidence of Meng et al.18

that quantum fluctuations are strong enough to trigger an
insulating QSL phase between the nonmagnetic metallic

phase and the antiferromagnetic (AFM) Mott insulator for
the Hubbard model on the honeycomb lattice at moderate
values of the Coulomb repulsion U . This latter Mott insulator
phase corresponds in the limit U → ∞ to the pure Heisenberg
antiferromagnet (HAFM) on the bipartite honeycomb lattice,
the GS phase of which exhibits Néel LRO. However, higher-
order terms in the t/U expansion of the Hubbard model
(where t is the Hubbard hopping term strength parameter)
lead to frustrating exchange couplings in the corresponding
spin-lattice limiting model (and see, e.g., Ref. 19), in which
the HAFM with NN exchange couplings is the leading term in
the large-U expansion.

The unexpected result of Meng et al.,18 together with other
related work,19–21 has excited much interest in understanding
the physics of frustrated quantum magnets on the honeycomb
lattice. A growing consensus is emerging2,4,7,9,10,12 that frus-
trated spin-1/2 HAFMs on the honeycomb lattice exhibit a
frustration-induced QP phase. Recent experiments22 on the
layered compound Bi3Mn4O12(NO3) (BMNO) at temperatures
below its Curie-Weiss temperature reveal QSL-like behavior.
In BMNO, the Mn4+ ions are situated on the sites of
(weakly coupled) honeycomb lattices, although they have spin
quantum number s = 3

2 . The successful substitution of the
s = 3

2 Mn4+ ions in BMNO by V4+ ions could lead to a
corresponding experimental realization of a spin-1/2 HAFM
on the honeycomb lattice.

Other realizations of quantum HAFMs which exhibit the
honeycomb structure include magnetic compounds such as
InNa3Cu2SbO6 (Ref. 23) and InCu2/3V1/3O3 (Ref. 24). In
both of these materials, the Cu2+ ions in the copper oxide
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layers form a spin-1/2 HAFM on a (distorted) honeycomb
lattice. Other similar honeycomb materials include the family
of compounds BaM2(XO4)2 (M = Co, Ni; X = P, As),25 in
which the magnetic ions M are disposed in weakly coupled
layers where they are situated on the sites of a honeycomb
lattice. The Co ions have spins s = 1

2 and the Ni ions have spins
s = 1. Recent calculations26 of the material β-Cu2V2O7 have
demonstrated that its properties can also be described in terms
of a spin-1/2 model on an (anisotropic) honeycomb lattice.

The aim of this work is to investigate the phase diagram
of the full spin-1/2 J1-J2-J3 model on the honeycomb lattice
in the case where all of the NN, NNN, and NNNN bonds
are AFM, and we limit the parameter space window to
J2/J1,J3/J1 ∈ [0,1].

II. HONEYCOMB MODEL

The spin-1/2 J1-J2-J3 model on the honeycomb lattice, or
special cases of it (e.g., when J3 = J2 or J3 = 0), have been
intensively studied by many authors (see, e.g., Refs. 1–15 and
references cited therein). The Hamiltonian of the model is

H = J1

∑

〈i,j〉
si · sj + J2

∑

〈〈i,k〉〉
si · sk + J3

∑

〈〈〈i,l〉〉〉
si · sl , (1)

where i runs over all lattice sites, and where j , k, and l run
over all NN sites, all NNN sites, and all NNNN sites to i,
respectively, counting each bond once and once only. Each
site i of the lattice carries a spin-s particle represented by
an SU(2) spin operator si = (sx

i ,s
y

i ,sz
i ). We restrict ourselves

here to the case s = 1
2 . The lattice and the exchange bonds are

illustrated in Fig. 1.
Before discussing the s = 1

2 version of the model, it is useful
to consider first the classical limit (i.e., s → ∞). The classical
version of the model has six GS phases in the case where J1 >

0 and where J2 and J3 are arbitrary (i.e., can take either sign).1,2

Generically, they represent spiral configurations which may be
characterized by an ordering wave vector Q, in terms of which
the classical spin located at cell R of the triangular Bravais
lattice on either of the two triangular sublattices α (=1,2) of
the honeycomb lattice is given by

sR,α = s[cos(Q · R + θα)u + sin(Q · R + θα)v] , (2)

where u and v are two orthogonal unit vectors that define the
plane of the spins. Clearly, we may choose θα to be zero on
one of the two sublattices and θ on the other.

The six phases comprise three collinear AFM phases with
different ordering wave vectors Q, the FM phase (in which
Q = 0 and θ = 0), plus two different helical phases (and see,
e.g., Fig. 2 of Ref. 2). The three AFM phases are the Néel phase
(in which Q = 0 and θ = π ), the striped phase, and the Néel-II
phase, as shown in Figs. 1(a), 1(b), and 1(d), respectively. (Note
that what we refer to as the Néel-II phase here was previously
denoted as the anti-Néel phase in earlier papers.14,15)

Although at zero temperature (T = 0) there exists an
infinite family of noncoplanar states degenerate in energy with
respect to each of the striped and Néel-II states, both thermal
and quantum fluctuations2 favor the collinear configurations.
When J3 > 0, the spiral state shown in Fig. 1(c) is the stable
classical GS phase in some region of the parameter space. The
classical GS energy for this spiral state is minimized when the
pitch angle takes the value φ = cos−1[ 1

4 (J1 − 2J2)/(J2 − J3)].
When φ → 0, this spiral state simply becomes the collinear

Néel state. The phase transition between this spiral state and
the Néel state is a continuous one and the corresponding phase
boundary is given by the equation y = 3

2x − 1
4 , for 1

6 < x < 1
2 ,

where y ≡ J3/J1 and x ≡ J2/J1. Similarly, when φ → π , this
spiral state becomes the collinear striped state. These two states
undergo a continuous phase transition along their common
phase boundary y = 1

2x + 1
4 , for x > 1

2 . Furthermore, there is
a first-order phase transition between the collinear Néel and
striped states along the boundary line x = 1

2 , for y > 1
2 . These

three phases (Néel, striped, and spiral) meet at the tricritical
point (x,y) = ( 1

2 , 1
2 ). We note too that as x → ∞ (for a fixed

finite value of y), the spiral pitch angle φ → 2
3π . Thus, in this

limiting case the classical model simply becomes two HAFMs
on weakly connected interpenetrating triangular lattices, with
the classical triangular-lattice ordering of NN spins oriented
at an angle 2

3π to each other on each sublattice.
When y > 0 (and J1 > 0), the above three states are the

only classical GS phases. When y < 0, the Néel state persists
in a region bounded by the same boundary line y = 3

2x − 1
4 , for

− 1
2 < x < 1

6 , on which it continuously meets a second spiral
state, and by the boundary line y = −1, for x < − 1

2 , at which
it undergoes a first-order transition to the FM state, which is the
stable GS phase in the region x < − 1

2 and y < −1. Another
collinear AFM state, the Néel-II state shown in Fig. 1(d),
becomes the stable GS phase in the region x > 1

2 , for y <
1
2 {x − [x2 + 2(x − 1

2 )2]1/2}. On the boundary, it undergoes a
first-order transition to the spiral state in Fig. 1(c).

Finally, for 1
6 < x < 1

2 , the spiral state in Fig. 1(c) meets a
second spiral GS phase, which is characterized by two pitch

2

J3

J
J1

(a) (b) (c) (d)

FIG. 1. (Color online) The J1-J2-J3 honeycomb model with J1 ≡ 1; J2 > 0; J3 > 0, showing the (a) Néel, (b) striped, (c) spiral, and
(d) Néel-II states. The spins on lattice sites (solid dots) are represented by the (red) arrows.
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angles, on the boundary line y = 0, along which there is a
first-order transition between the two spiral states. Both pitch
angles of this second spiral phase smoothly approach the value
zero along the above boundary with the Néel state, and the
value π along a second boundary curve that joins the points
(x,y) = (− 1

2 ,−1) and ( 1
2 ,0), on which it meets the Néel-II

state. Both transitions are continuous. This second spiral phase
meets the three collinear states Néel, Néel-II, and FM at the
tetracritical point (x,y) = (− 1

2 ,−1).
In this paper we study the spin-1/2 model of Eq. (1) on

the honeycomb lattice in the case where all of the bonds are
antiferromagnetic in nature. Henceforth, we set J1 ≡ 1 to set
the overall energy scale, and we work here within the parameter
space window J2,J3 ∈ [0,1].

III. CCM FORMALISM

The coupled-cluster method (CCM) is a widely used
microscopic many-body technique. It efficiently and accu-
rately handles a wide variety of highly frustrated quantum
magnets.8,13–15,27–35 Such frustrated systems are notoriously
challenging at the theoretical level. Of the other well-
established and widely used techniques, exact diagonalization
(ED) methods, which involve the finite-size extrapolation of
numerical exact data for finite-lattice systems, are much more
challenging for the present honeycomb-lattice model than for
comparable square-lattice models, to which they have been
very efficiently and accurately applied (see, e.g., Refs. 34, 36,
and 37). The reasons include the facts that for the honeycomb
lattice the unit cell now contains two sites, and that there exist
relatively fewer finite-sized lattices (than in the square-lattice
case) that are small enough for ED methods to be used but
which also contain the full point-group symmetry.2

The CCM is a size-extensive method, in which the limit
N → ∞, where N is the number of lattice spins, may
automatically be imposed from the outset. The many-body
system under study is assumed to have exact ket and bra GS
energy eigenvectors |�〉 and 〈�̃|, respectively, which satisfy
the corresponding Schrödinger equations

H |�〉 = E|�〉 , 〈�̃|H = E〈�̃| , (3)

and which are chosen to have the normalization 〈�̃|�〉 = 1,
i.e., 〈�̃| = 〈�|/√〈�|�〉. The quantum correlations present in
the exact ground state are expressed systematically in the CCM
with respect to some suitable normalized model (or reference)
state |�〉.27 In this study, we choose various classical model
states as our CCM model states, namely, (a) the Néel, (b) the
striped, (c) the spiral, and (d) the Néel-II states shown in Fig. 1.

The CCM parametrizations of the exact ket and bra GS
wave functions are

|�〉 = eS |�〉 , 〈�̃| = 〈�|S̃e−S , (4)

where the CCM correlation operators S and S̃ are themselves
expressed as generalized multiconfigurational creation and
destruction operators, respectively,

S =
∑

i

SIC
+
I , S̃I = 1 +

∑

i

S̃iC
−
I , ∀I 
= 0. (5)

They satisfy the normalization relations 〈�̃|�〉 = 〈�|�〉 =
〈�|�〉 ≡ 1. The operators C+

I ≡ (C−
I )†, with C

†
0 ≡ 1, have

TABLE I. Number of fundamental configurations Nf for the spin-
1/2 J1-J2-J3 model (J1 = 1) on the honeycomb lattice, using the
Néel, striped, Néel-II, and spiral states.

Nf

Method Néel Striped Néel-II Spiral

LSUB4 5 9 9 66
LSUB6 40 113 85 1080
LSUB8 427 1750 1101 18986
LSUB10 6237 28805 17207 347287

the property that 〈�|C+
I = 0 = C−

I |�〉 = 0 ; ∀I 
= 0. The
correlation coefficients (SI , S̃I ) are determined by requiring
the energy expectation value H̄ ≡ 〈�̃|H |�〉 to be a minimum
with respect to each of them. This results in the coupled
sets of equations 〈�|C−

I e−SHeS |�〉 = 0 and 〈�|S̃(e−SHeS −
E)C+

I |�〉 = 0; ∀I 
= 0, which we solve for the correlation
coefficients (SI , S̃I ) once the specific truncation scheme is
specified.

In order to treat each lattice site in the spin system on an
equal basis, it is extremely convenient to rotate the local spin
axes on each site in such a way that all the spins of each CCM
reference state used point along the negative z direction. The
multispin creation operators may then be written as linear sums
of products of the individual spin-raising operators s+

k ≡ sx
k +

is
y

k , i.e., C+
I ≡ s+

k1
s+
k2

. . . s+
kn

. After calculation of the correlation
coefficients (SI , S̃I ), we can then calculate the GS energy
using E = 〈�|e−SHeS |�〉, and the magnetic order parameter,
which is defined to be the average local onsite magnetization
M ≡ − 1

N
〈�̃| ∑N

i=1 sz
i |�〉, with respect to the local rotated-

spin coordinates described above.
For spin-1/2 systems, we use the well-established localized

lattice-animal-based subsystem (LSUBm) truncation scheme
where we keep at a given truncation level specified by the
index m only all of those multispin configurations which may
be defined over all possible lattice animals (or polyominoes)
of size m on the lattice. A lattice animal (or polyomino) of size
m is defined as a set of m contiguous sites in the usual graph-
theoretic sense where every site is adjacent (in the nearest-
neighbor sense) to at least one other site.

Table I shows the number Nf of fundamental configura-
tions that are inequivalent after all space- and point-group
symmetries of both the Hamiltonian and the model state
have been taken into account, for each of the Néel, striped,
spiral, and Néel-II model states. The parameter Nf increases
rapidly with the truncation index m. We use massively parallel
computing to derive and solve the corresponding coupled sets
of CCM bra and ket state equations for high-order LSUBm

approximations.38

As a last step, we need to extrapolate the LSUBm data to
reach results in the exact m → ∞ limit. For the GS energy per
spin E/N , a well-established and very accurate extrapolation
ansatz (see, e.g., Refs. 28–35) is

E(m)/N = a0 + a1m
−2 + a2m

−4, (6)

whereas for the magnetic order parameter M for systems with
a considerable degree of frustration, such as is the case for the
present model, we use (see, e.g., Refs. 8, 13–15, 30–32, 34,
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and 35)

M(m) = c0 + c1m
−1/2 + c2m

−3/2. (7)

When we have only three data points to fit to an extrap-
olation formula, a two-term extrapolation fit can easily be
preferable in practice to a three-term fit. In such cases we
sometimes use the alternative simpler forms

E(m)/N = b0 + b1m
−2 (8)

and

M(m) = d0 + d1m
−1/2 , (9)

instead of their counterparts in Eqs. (6) and (7).

IV. PREVIEW OF THE PHASE DIAGRAM

Before discussing our results in detail, we first summarize
our main findings by showing in Fig. 2 the phase diagram in the
case where all the bonds are antiferromagnetic in nature (i.e.,
Jn > 0, n = 1,2,3). Furthermore, we set J1 ≡ 1 and restrict
ourselves to the window 0 � Jm � 1, m = 2,3. Henceforth,
we denote x ≡ J2/J1, y ≡ J3/J2. The actual phase boundaries
are determined from a variety of information that emerges
from our CCM calculations, as we now describe briefly and
with further details given in Sec. V.

We have previously studied this model for the two special
cases with J3 = J2 in Ref. 8, and with J3 = 0 in Ref. 14, and
the corresponding CCM results from those papers are included
in Fig. 2. First, along the line J3 = J2 (i.e., when y = x ≡
κ), we found8 that the system has quasiclassical AFM Néel
order for κ < κc1 ≈ 0.47, quasiclassical AFM striped order for
κ > κc2 ≈ 0.60, and a quantum paramagnetic phase separating
the Néel and striped phases for κc1 < κ < κc2 . By studying
the susceptibility of the Néel and striped states to hexagonal
plaquette valence-bond crystalline (PVBC) ordering, we found
that the most likely scenario was that the intervening state had
PVBC order over the entire range κc1 < κ < κc2 . The transition
at κ = κc2 between the PVBC and striped GS phases was seen
to be of first-order type, while that at κ = κc1 between the Néel
and PVBC GS phases appeared to be a continuous one. Since
the Néel and PVBC phases break different symmetries, our
results favored the transition point between them at κ = κc1

to be a deconfined quantum critical point (QCP). The QCPs
at y = x = κc1 and at y = x = κc2 are clearly shown in Fig. 2
with the larger (red) times (×) and the larger (green) plus (+)
symbols, respectively.

Second, in a separate study along the line y = 0, we found14

that the system has the quasiclassical Néel state as its GS phase
for x < xc1 ≈ 0.21, the quasiclassical Néel-II state as its GS
phase for x > xc2 ≈ 0.39, and again a QP phase separating
the Néel and Néel-II phases for xc1 < x < xc2 . Similar CCM
calculations of the susceptibility of the Néel and Néel-II phases
to PVBC order led again to the conclusion that the transition
between the PVBC and Néel-II phases was of first-order type,
while the likely scenario for the transition between the Néel and
PVBC phases is again that it is of the continuous deconfined
type. Nevertheless, due to the difficulty in determining the
lower critical value of x at which PVBC order is established as
accurately as we determined the value x = xc1 at which Néel
order is destabilized, we could not exclude a second scenario

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

J 3

J2

Néel

striped AFM

spiral

Néel−II

paramagnet
(PVBC?)

FIG. 2. (Color online) Phase diagram of the spin-1/2 J1-J2-J3

model on the honeycomb lattice (with J1 ≡ 1) in the parameter
window J2,J3 ∈ [0,1]. The five regions correspond to four quasi-
classical phases with (a) AFM Néel order as in Fig. 1(a), (b) collinear
AFM striped order as in Fig. 1(b), (c) spiral order as in Fig. 1(c),
(d) AFM Néel-II order as in Fig. 1(d), plus (e) a magnetically
disordered, or quantum paramagnetic (QP), phase that exhibits
plaquette valence-bond crystalline (PVBC) order on at least part of
the boundary region (and see the following). The first-order phase
transition boundary between the Néel and striped phases, marked by
the (gray) convolution (eight-pointed star +×) symbols is found from
points at which the curves for the magnetic order parameter M of the
two phases cross; the first-order phase transition boundary between
the striped and QP phases, marked by (green) plus (+) symbols,
is found from points at which M → 0 for the striped phase; the
first-order phase-transition boundary between the striped and spiral
phases, marked by (cyan) open triangle (�) symbols, is found from
points at which the curves for the magnetic order parameter M of the
two phases cross; the phase-transition boundary between the spiral
and QP phases, marked by (orange) open circle (©) symbols (of
two sizes, see main text in Sec. V B), is found from points at which
M → 0 for the spiral phase; the first-order phase-transition boundary
between the spiral and Néel-II states, marked by (magenta) times (×)
symbols, is found from points at which the curves for the magnetic
order parameter M of the two phases cross; the phase-transition
boundary between the Néel-II and QP phases, marked by (blue)
plus (+) symbols, is found from points at which M → 0 for the
Néel-II phase; and the phase-transition boundary between the Néel
and QP states, marked by (red) times (×) symbols, which is probably
of continuous (second-order, and possibly of a deconfined) nature, is
found from points at which M → 0 for the Néel phase. Points marked
by the larger (red) times (×) and (green and blue) plus (+) symbols
are found to be infinitely susceptible to PVBC order, and hence the
QP state at these points is PVBC in nature.

in which the transition between the Néel and PVBC phases
proceeds via an intervening phase (possibly even of an exotic
QSL variety) in the very narrow window 0.21 � x � 0.24.
Again, the QCPs at (x,y) = (xc1 ,0) and (xc2 ,0) are clearly
shown in Fig. 2.

We also showed previously,14 by a comparison of the GS
energies of the spiral and Néel-II phases, that the spiral phases
that are present classically (i.e., for the case where the spin
quantum number s → ∞) in the case y = 0 for all values
x > 1

6 are absent for all values x � 1. The actual phase
boundary between the spiral and Néel-II phases shown in
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Fig. 2 is now calculated in this paper, as described in the
following.

Based on our previous findings for the GS phases of these
two special cases when (a) J3 = J2 and (b) J3 = 0, we have
performed a series of CCM calculations based on the Néel,
striped, Néel-II, and spiral states as model states, for various
cuts in the phase diagram at constant values of either J3 or
J2. For example, the phase boundary between the Néel and the
striped phases is obtained, as explained more fully in Sec. V A,
from our extrapolated (m → ∞) LSUBm results for the order
parameter M (namely, the average onsite magnetization) of
the two phases, for a variety of constant J3 cuts. We find
that for values of y ≡ J3/J1 � 0.69, the two magnetization
curves meet at a (positive) nonzero value, indicative of a direct
first-order transition between the states.

For y ≈ 0.69, the two curves become zero at precisely the
same point x ≈ 0.51. Conversely, when y � 0.69, the order
parameters of both the Néel and striped phases become zero
at respective critical values of x before the curves cross (when
solutions exist for both phases), indicating the emergence of a
new phase separating them. The corresponding points where
the magnetic order parameters for Néel order and striped
order vanish are shown in Fig. 2 by (red) times (×) and
(green) plus (+) symbols, respectively. By continuity with our
earlier results8 along the line y = x, we tentatively identify
the intervening phase as the PVBC state. The tricritical QCP
between the Néel, striped, and PVBC phases is thus identified
as being at (x,y) ≈ (0.51,0.69). For values of y � 0.55, no
solution for the striped phase exists with M > 0 for any value
of x, giving first indications of a new phase boundary between
the striped state and another phase that we identify as a spiral
phase.

By comparing the order parameters for the striped and spiral
phases at various constant J2 cuts, we find that for values of
x � 0.66, the two curves meet at a (positive) nonzero value,
again indicative of a direct transition between the states. These
points are shown in Fig. 2 as (cyan) open triangle (�) symbols.
For x ≈ 0.66, the two curves become zero at the same point
y ≈ 0.55. For values x � 0.66, the order parameters of both
the striped and spiral phases become zero at respective critical
values of y before the curves cross. Again, this indicates a
phase separating these phases for values of x � 0.66 (down
to a lower value of x ≈ 0.635 below which the spiral phase
ceases to exist for any value of y), which we again identify
tentatively as the PVBC phase.

In that very narrow window 0.635 � x � 0.66, which is
almost certainly an artifice of our approximations, we denote in
Fig. 2 the points where the magnetic order parameter vanishes
(M → 0) for the striped and spiral states by (cyan) open tri-
angle (�) and (orange) open circle (©) symbols, respectively.
We argue in Sec. V C that these results are consistent with the
existence of a second tricritical QCP at (x,y) ≈ (0.65,0.55)
between the striped, spiral, and (tentatively) PVBC phases.
The remainder of the phase boundary between the spiral and
PVBC states is similarly identified by the vanishing of the
magnetic order parameter of the spiral phase, and these points
are again shown in Fig. 2 as (orange) open circle (©) symbols.

Finally, by comparing the energies of the Néel-II and
spiral phases, we find that for all values of the parameter
J2 � 1 where the spiral phase exists, the Néel-II phase actually

has a lower energy for values of the parameter J3 below a
certain critical value, which itself depends on J2. Similarly,
by comparing the order parameters of these two phases at
various constant J2 cuts, we find that for values of x � 0.69,
the two curves meet at a (positive) nonzero value, indicative
once more of a direct phase transition between the Néel-II and
spiral phases. These points are shown in the phase diagram of
Fig. 2 by (magenta) times (×) symbols.

For x ≈ 0.69, the two curves become zero at the same point
y ≈ 0.12. Conversely, for x � 0.69, the order parameters of
the Néel-II and spiral phases both become zero at respective
critical values of y before the curves cross. This is again
indicative of a phase separating the Néel-II and spiral phases
for x � 0.69 (down to the lower value of x ≈ 0.635 below
which the spiral phase ceases to exist for any value of y),
as noted above. This intermediate phase is again tentatively
identified as having PVBC order. In this way we identify a
third tricritical QCP at (x,y) ≈ (0.69,0.12) between the spiral,
Néel-II, and (tentatively) PVBC phases. Remaining points on
the boundary between the Néel-II and PVBC phases are then
identified by where the magnetic order parameter of the Néel-II
phase vanishes, shown by (blue) plus (+) symbols on the the
phase diagram of Fig. 2.

In Sec. V we now describe in more detail how the various
points in the phase diagram of Fig. 2 are obtained.

V. RESULTS

In this section we present and discuss our CCM results for
the spin-1/2 J1-J2-J3 HAFM on the honeycomb lattice.

A. Néel versus striped phases

Figure 3 shows the extrapolated (m → ∞) CCM LSUBm

values for the GS energy per spin for the Néel and striped
states as functions of J2 for various fixed values of J3. The
energy curves cross for all values of the parameter J3 � 0.68,
but not for values J3 � 0.68. This gives us a first indication of
the emergence of an intermediate phase between the Néel and
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FIG. 3. (Color online) Extrapolated CCM LSUB∞ results for the
GS energy per spin E/N as a function of J2, for various fixed values
of J3 in the range 0.5 � J3 � 1.0, for the Néel and the striped states.
The extrapolated LSUBm (m → ∞) results are based on the scheme
of Eq. (6) and the calculated results with m = {6,8,10}.
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FIG. 4. (Color online) Extrapolated CCM LSUB∞ results for the
GS magnetic order parameter M as a function of J2, for various fixed
values of J3 in the range 0.5 � J3 � 1.0, for the Néel and the striped
states. The extrapolated LSUBm (m → ∞) results are based on the
scheme of Eq. (7) and the calculated results with m = {6,8,10}.

striped states, over a finite range of values of the J2 parameter,
below some critical value of the J3 parameter.

The extrapolations become more difficult in the vicinity
of this critical point, and consequently the actual values of
J2 at which the curves cross for fixed values of J3 near the
critical value are more uncertain than those at larger values.
Furthermore, at the actual energy crossing points very near
the critical point, the corresponding values of the magnetic
order parameter (i.e., the average onsite magnetization) M for
one or both states becomes negative and hence unphysical.
Indeed, for the striped state, M < 0 for the entire J3 = 0.5
curve, which is why we have not shown it in Fig. 3.

In order to obtain more accurate values of the critical point,
we also show in Fig. 4 the curves for the extrapolated order
parameters M of the Néel and striped states, corresponding
to values of J3 shown in Fig. 3 for the GS energy per
spin E/N . We observe again that the curves intersect when
J3 � 0.69, and that the corresponding values of (J2,J3) are
our best estimate for the phase boundary between the Néel

and striped states. When J3 � 0.69, the extrapolated order
parameters of both the Néel and striped phases become zero
before the curves intersect, revealing an intermediate phase
in that regime. Our best value for the corresponding tricritical
QCP comes from the data shown in Fig. 4, where it is seen to be
at (J c1

2 ,J
c1
3 ) = (0.51 ± 0.01,0.69 ± 0.01), and where the error

bars are estimates from a sensitivity analysis of the LSUBm

extrapolation scheme.
The extrapolated order parameter M becomes everywhere

negative (i.e., for all values of J2) for the striped state for all
values of J3 � 0.55, as may be seen from data similar to those
shown in Fig. 4. This is a clear first indication that the striped
state becomes unstable as the GS phase in this regime. From
a comparison with the corresponding classical model (i.e., in
the limit s → ∞) discussed in Sec. II, we might expect the
striped state to yield to the spiral state, at least for sufficiently
large values of J2 in the present s = 1

2 case. We investigate this
further in Sec. V C. It is clearly also expected that the Néel
phase will not survive for large enough frustrating values of
J2 > 0, and again from a comparison with the classical model
we expect that the spiral phase might exist in that case too.
Hence, we first make a comparison in Sec. V B of the Néel
and spiral phases.

B. Néel versus spiral phases

We start by analyzing the GS energy per spin E/N for
the spiral state as a function of the spiral pitch angle φ. We
choose the angle φ, for each point in the phase diagram where
the spiral state exists, as the one that minimizes the energy
estimate there. Clearly, the minimizing angle depends on the
particular LSUBm approximation being used. For example, we
show in Fig. 5(a) the GS energy per spin E/N as a function
of pitch angle φ in the LSUB6 approximation, for various
illustrative values of J2, all with J3 = 0.4.

We note first from Fig. 5(a) that, for various fixed values of
J2, CCM solutions at a given LSUBm level of approximation
exist only for certain ranges of the spiral angle φ. For example,
for J2 = 0, the CCM LSUB6 solutions based on the spiral state
exist only for 0 � φ � 0.12π . In this case, where the Néel state
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FIG. 5. (Color online) (a) LSUB6 results for the GS energy per spin, using the spiral state as CCM model state, as a function of the spiral
pitch angle φ, for some illustrative values of J2 in the range 0 � J2 � 1 and for a fixed value of J3 = 0.4. (b) The pitch angle φ = φLSUBm that
minimizes the energy ELSUBm(φ) of the spiral state. The CCM LSUBm results with m = 8 are shown as functions of J2 for several fixed values
of J3 in the range 0.2 � J3 � 0.7.
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(i.e., where φ = 0) is the stable GS phase that minimizes the
energy, if we try to force the system too far away from Néel
collinearity, the CCM equations themselves become unstable
in the sense that they no longer have a real solution. We note too
that as J2 is increased slowly, the minimum in the energy curve
at φ = 0 becomes shallower, so that by the time J2 = 0.4, it has
almost disappeared. This is a first indication of the imminent
instability of the Néel state as the GS phase if J2 is increased
slightly more.

Similarly, the CCM LSUB6 solutions shown based on
the spiral state exist only for 0.43 � φ/π � 1. In this case,
a spiral state (i.e., with a value φ 
= 0,π ) is the stable GS
phase that minimizes the energy, and if we now try to force
the system too close to the Néel regime, the CCM solution
collapses. We also observe from Fig. 5(a) that for the smaller
value J2 = 0.8, while the energy curve still shows a global
minimum for a noncollinear spiral phase, it has now also
developed a secondary minimum at a value φ = π (i.e., that
of the collinear striped state), which indicates the proximity
of the phase boundary between the spiral and striped states, as
we examine more fully in Sec. V C.

Conversely, as J3 is increased further (for fixed J2), the
spiral minimum becomes more pronounced, and as J2 → ∞
the pitch angle φ → 2

3π . This is as expected since in this
limit the model becomes two weakly connected HAFMs on
interpenetrating triangular lattices, with the classical ordering
of NN spins oriented at angles 2

3π with respect to one another
on each sublattice.

From such data such as shown in Fig. 5(a) we can calculate
the angle φ = φLSUBm that minimizes the energy ELSUBm(φ)
for given values of the exchange coupling strengths. For
example, in Fig. 5(b) we show the angle φ = φLSUB8 from
the LSUB8 approximation, as a function of the parameter J2

for several fixed values of the parameter J3. There is clear
evidence that for values of J3 below some upper critical value
there is no stable spiral solution for any value of φ 
= 0 over a
certain range of the parameter J2, which itself depends on J3.

Thus, we are led to expect a second tricritical QCP in the
(J2,J3) plane at (J c2

2 ,J
c2
3 ), with J

c2
3 < J

c1
3 , such that (a) for

values J3 > J
c1
3 the Néel and striped states meet at a common

phase boundary discussed in Sec. V A above, (b) for values
J

c1
3 > J3 > J

c2
3 there is an intermediate phase between the

Néel and striped states, and (c) for values J3 < J
c2
3 there is an

intermediate phase between the Néel state and the spiral state
with φ 
= π . Thus, the QCP at (J c2

2 ,J
c2
3 ) is a tricritical point

between the Néel, striped, and intermediate phases. From the
results discussed in Sec. V A, we now expect that J

c2
3 ≈ 0.55,

and we discuss this further below.
Figure 6 shows our results for the GS energy per spin E/N

as a function of J2, for various fixed values of J3, for the
Néel and the spiral states. It clearly illustrates the existence of
an intermediate phase between the Néel and the spiral phases
(including the striped state as a special case of the latter) for
values J3 < J

c1
3 .

For the spiral state, the extrapolations are calculated using
the LSUBm calculated results with m = {4,6,8}, rather than
with the set m = {6,8,10} used for the Néel state. This
is partly due to the very high number, Nf = 347 287, of
configurations needed for the spiral state at the LSUB10
level of approximation, compared with the corresponding
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FIG. 6. (Color online) Extrapolated CCM LSUB∞ results for the
GS energy per spin E/N as a function of J2, for various fixed values
of J3 in the range 0.2 � J3 � 0.6, for the Néel and the spiral states.
The extrapolated LSUBm (m → ∞) results are based on the scheme
of Eq. (6) and the calculated results with m = {6,8,10} for the Néel
state, and with m = {4,6,8} for the spiral state. For the spiral state,
the results use the pitch angle φ = φLSUBm that minimizes the energy
E = ELSUBm(φ).

much smaller number, Nf = 6237, for the Néel state, as
seen from Table I. This difference is compounded by the
fact that for the spiral state we need to do LSUBm runs
for each point in the phase space as a function of the pitch
angle φ. This makes LSUBm calculations for the spiral
state with m � 10 particularly demanding of computational
resources. Nevertheless, we did perform LSUB10 calculations
for the spiral state for the special case J3 = 0 in our previous
study of the J1-J2 model,14 where we performed separate
extrapolations using the LSUBm results with m = {6,8,10}
and m = {4,6,8}. We found that both extrapolations were
in very good agreement with one another, and hence feel
confident that the spiral-state extrapolations for the full J1-
J2-J3 model considered here with the limited set m = {4,6,8}
will be equally robust since it is now prohibitively expensive
of computational resource to perform LSUB10 calculations
for the spiral state over the whole region of phase space where
it is the stable GS phase.

As is usually the case, the CCM LSUBm results for finite
m values for a given phase extend beyond the actual physical
LSUB∞ boundary for that phase. Thus, the energy curves
shown in Fig. 6 for fixed values of J3 terminate at certain values
of J2, which are determined by the termination points of the
highest LSUBm approximations used in the extrapolations,
beyond which no real solution exists for the corresponding
coupled CCM equations. We note from Fig. 6 that the maxima
in the energy curves occur close to these LSUBm termination
points for the largest m values employed, which in turn lie
close to the physical (LSUB∞) phase-transition points.

We show in Fig. 7 our results for the GS magnetic order
parameters M for both the Néel and the spiral states, as
functions of J2, for the same fixed values of J3 shown in
Fig. 6 for the GS energy. As we indicated above, LSUB10
calculations are prohibitively expensive for the spiral state,
and hence we need for extrapolation purposes to include
the LSUB4 results. When the data set m = {4,6,8} is thus
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FIG. 7. (Color online) Extrapolated CCM LSUB∞ results for the
GS magnetic order parameter M as a function of J2, for various fixed
values of J3 in the range 0.2 � J3 � 0.6, for the Néel and the spiral
states. The extrapolated LSUBm (m → ∞) results are based on the
scheme of Eq. (9) and the calculated results with m = {6,8,10} for
the Néel state, and with m = {4,6,8} for the spiral state. For the spiral
state, the results use the pitch angle φ = φLSUBm that minimizes the
energy E = ELSUBm(φ).

employed, it is clearly preferable to use the extrapolation
scheme of Eq. (9) rather than that of Eq. (7), so as not to give the
m = 4 result too much weight. As a check we have performed
LSUB10 calculations for the two values J3 = 0.2,0.4, for
which we have also made extrapolations using Eq. (9) with
m = {6,8,10}. These are indicated in Fig. 2 by the larger
(orange) open circles. We find, gratifyingly, that the two
extrapolations agree well with one another at both values
J3 = 0.2,0.4, which gives credence to our results using the
data set m = {4,6,8} elsewhere for the spiral state.

In our earlier study14 of this model with J3 = 0, we also
computed LSUB12 results for the Néel state and found that
the Néel order vanished at a value J2 ≈ 0.207 ± 0.003 when
we performed extrapolations including the m = 12 point. This
point is shown in Fig. 2 by the larger (red) times (×) symbol,

although the value obtained with the more limited data set
m = {6,8,10} used in Fig. 7 is in good agreement with it.
Similarly, in our earlier study along the J3 = J2 line,8 we also
used LSUBm results with m = {6,8,10,12} to perform the
extrapolations and found that in this case Néel order vanished
at a value J2 ≈ 0.466 ± 0.005, and this value is also shown in
Fig. 2 by a larger (red) times (×) symbol.

From curves such as those in Fig. 7, we use the points
where the extrapolated values of the order parameter M vanish
to plot the boundaries of the Néel and spiral phases shown
in Fig. 2. As expected from our discussion in Sec. V A, a
Néel-ordered phase exists for all values of J3 up to some critical
value of J2 which marks its phase boundary. For values J3 <

J
c1
3 ≈ 0.69 ± 0.01, this phase borders a QP phase, whereas

for J3 > J
c1
3 it borders the striped state at a first-order phase-

transition boundary. Curves such as those in Fig. 7 show clear
evidence for an intervening phase between the Néel and spiral
phases (with pitch angle φ 
= π ) everywhere that the spiral
phase exists. Instead, the spiral phase meets the striped phase
along a common boundary (on which φ = π ) for all values
J2 > J

c2
2 � 0.65. There is thus a second tricritical point at

(J c2
2 ,J

c2
3 ), as we discuss more fully in Sec. V C, at which the

striped, spiral, and quantum paramagnetic phases meet.

C. Striped versus spiral phases

We recall that classically (i.e., when s → ∞) we have that
for a fixed value of J2 > 1

2 the GS phase is the striped phase for
J3 > 1

2J2 + 1
4 and the spiral phase for J3 < 1

2J2 + 1
4 . There is

a continuous phase transition between the two classical states
along the boundary line J3 = 1

2J2 + 1
4 ,J2 � 1

2 on which the
spiral pitch angle φ = π . Our results for the present s = 1

2
model, as we shall see in the following, indicate that quantum
fluctuations stabilize the collinear order of the striped state
to lower values of J3, for fixed J2, than the classical limit.
Furthermore, the quantum fluctuations also seem to turn the
classical second-order transition into a quantum first-order
one.
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FIG. 8. (Color online) (a) The angle φ = φLSUBm that minimizes the energy ELSUBm(φ). The CCM LSUBm results with m = 8 are shown
as functions of J3 for several fixed values of J2 in the range 0.7 � J3 � 1.0. Note that φ = π corresponds to the striped state. (b) Extrapolated
CCM LSUB∞ results for the GS energy per spin E/N as a function of J3, for various fixed values of J2 in the range 0.7 � J3 � 1.0, for the
spiral and the striped states. The extrapolated LSUBm (m → ∞) results are based on the scheme of Eq. (6) and the calculated results with
m = {4,6,8}. For the spiral state, the results use the pitch angle φ = φLSUBm that minimizes the energy E = ELSUBm(φ).
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Thus, we show in Fig. 8(a) the angle φ = φLSUB8 that
minimizes the energy ELSUB8(φ) as a function of J3, using the
spiral state as our CCM model state, for various fixed values of
J2. Similar curves are found for other LSUBm approximations.
Unlike in the classical case, where φ → π continuously at the
critical value, there is now a discontinuous jump on the phase
boundary. Its origin lies in the double-minimum structure of
the corresponding energy curves (for fixed values of J2 and
J3) as functions of the pitch angle φ, comparable to that shown
in Fig. 5(a) for the case J2 = 0.8, J3 = 0.4.

Figure 8(b) shows the corresponding extrapolated CCM
LSUB∞ results for the GS energy per spin E/N of the spiral
and striped states, as functions of the parameter J3, for the
same fixed values of J2 shown in Fig. 8(a). The first-order
transition between the spiral and striped states can clearly be
seen to occur close to, but not precisely at, the corresponding
maxima in the energy curves.

As before, the actual phase boundary is most clearly seen
from our similarly extrapolated CCM LSUB∞ results for
the magnetic order parameter M shown in Fig. 9. For all
values of J2 � 0.66, there is a clear and sharp minimum in
M at the phase-transition point in the parameter J3 where
the striped and spiral phases meet. When J2 ≈ 0.66, the two
curves meet at M = 0. For this value of J2, the magnetic order
parameter M for the spiral state is very small (and positive)
for all values of J3, and as J2 is decreased further, the spiral
state rapidly disappears altogether for J2 � 0.635. In the very
narrow regime 0.635 � J2 � 0.66, we see from Fig. 9 that
there appears to be an intrusion of the intermediate (quantum
paramagnetic) phase, as shown in Fig. 2 by the appearance
of both (cyan) open triangle (�) and (orange) open circle
(©) symbols at the striped-spiral phase boundary at the two
values J2 = 0.64,0.65. It seems almost sure, however, that this
effect arises from our extrapolations, and is an indication of
the (small) errors inherent in them. Our best estimate from the
results shown in Fig. 9 is thus that the second tricritical QCP,
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FIG. 9. (Color online) Extrapolated CCM LSUB∞ results for
the GS magnetic order parameter M as a function of J3, for various
fixed values of J2 in the range 0.64 � J2 � 1.0, for the spiral and the
striped states. The extrapolated LSUBm (m → ∞) results are based
on the scheme of Eq. (9) and the calculated results with m = {4,6,8}.
For the spiral state, the results use the pitch angle φ = φLSUBm that
minimizes the energy E = ELSUBm(φ).

where the spiral, striped, and quantum paramagnetic phases
meet, occurs at (J c2

2 ,J
c2
3 ) = (0.65 ± 0.02,0.55 ± 0.01).

We also note from Fig. 9 that when 0.635 � J2 � 0.77
and J3 > 0, the magnetic order parameter M of the striped
state becomes zero at a lower critical value of J3. For the
special case J3 = 0 investigated earlier,14 the spiral state is
actually unstable since the Néel-II state was seen to have
lower energy for all values of J2 in the range investigated,
namely, J2 � 1, where solutions for the spiral state could be
found. From continuity we expect the Néel-II state to remain
the stable GS phase for small enough values of J3 below
some critical value for each fixed value of J2, above which
value the spiral phase becomes the stable GS phase. Thus, we
are led to expect that there might exist a third tricritical QCP
at (J c3

2 ,J
c3
3 ) between the spiral, quantum paramagnetic, and

Néel-II GS phases. We examine this further in Sec. V D.

D. Spiral versus Néel-II phases

In Fig. 10, we show results for the GS energy per spin
E/N of both the spiral and Néel-II states as functions of the
parameter J3, for various fixed values of the parameter J2 in
the range 0.7 � J2 � 1.0. Although the energy differences are
small for each fixed value of J2, the results at each LSUBm

level, as well as the extrapolated results, clearly show an energy
crossing point. These energy crossing points are thus our first
estimates of the phase-boundary points between the spiral and
Néel-II states.

Since the energy differences of the spiral and Néel-II states
are relatively small, we have found it preferable to use the
extrapolation scheme of Eq. (8) in this case, and to employ
the same data set with m = {4,6,8} for both (Néel-II and
spiral) phases, even though results with m = 10 are more
readily available for the Néel-II state. We have, however,
demonstrated that the results so obtained are robust and
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FIG. 10. (Color online) Extrapolated CCM LSUB∞ results for
the GS energy per spin E/N as a function of J3, for various fixed
values of J2 in the range 0.7 � J2 � 1.0, for the Néel-II and the spiral
states. The extrapolated LSUBm (m → ∞) results are based on the
scheme of Eq. (8), and the calculated results with m = {4,6,8} in both
cases. Results for the spiral state use the pitch angle φ = φLSUBm that
minimizes the energy E = ELSUBm(φ). Curves with small symbols
attached refer to the Néel-II state, whereas those with large symbols
refer to the spiral state.
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reliable by making further checks in some limited test cases
using the extrapolation scheme of Eq. (6) fitted to the results
m = {4,6,8,10} or the extrapolation scheme of Eq. (8) fitted
to the results m = {6,8,10}, for example.

Real CCM LSUBm solutions based on the Néel-II state as
model state cease to exist, for a fixed value of J2, above some
termination value in the parameter J3 that itself depends on
the truncation index m, just as we have indicated above for
other phases. These LSUB8 terminations are what cause our
extrapolations for the Néel-II state to be shown only up to
certain values of J3 for each curve shown in Fig. 10. In each
case, the LSUBm solution with a finite value of m extends
further into the region where the Néel-II solution actually
ceases to exist (i.e., to after the energy crossing point with the
spiral phase). Presumably, in the m → ∞ limit, the LSUBm

termination points for the Néel-II phase would coincide with
the phase boundary with the spiral phase. Simple heuristic
extrapolations based on the results with m = {4,6,8} agree
well with the energy crossing points, and are hence entirely
consistent with this hypothesis.

We note from Fig. 10 that as the parameter J2 is decreased
towards the lower limiting value J2 ≈ 0.635, below which the
spiral state ceases to exist, the energy curves for the Néel-II
and spiral phases lie increasingly close to one another, and
hence the crossing point becomes increasingly difficult to
determine. Accordingly, we expect that a better indicator of
the phase boundary might be obtained from a comparison of
the magnetic order parameters of the two states, as now shown
in Fig. 11.

For values of J2 � 0.69, the curves for the magnetic order
parameters M of the Néel-II and spiral phases cross in the
physical regime (i.e., at a positive value of M). These crossing
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FIG. 11. (Color online) Extrapolated CCM LSUB∞ results for
the GS magnetic order parameter M as a function of J3, for
various fixed values of J2 in the range 0.4 � J3 � 1.0, for the
Néel-II and the spiral states. The extrapolated LSUBm (m → ∞)
results are based on the scheme of Eq. (9), and the calculated
results with m = {4,6,8} for both the Néel-II and spiral phases for
values J2 = 0.69,0.695,0.7,0.8,0.9,1.0; and with m = {6,8,10} for
the Néel-II phase for values J2 = 0.4,0.5,0.6. For the spiral state,
the results use the pitch angle φ = φLSUBm that minimizes the energy
E = ELSUBm(φ). Curves with small symbols attached (left curves)
refer to the Néel-II state, whereas those with large symbols (right
curves) refer to the spiral state.

points are our best estimates for the corresponding points
on the boundary between the two phases, and these are
shown in the phase diagram of Fig. 2 by (magenta) times
(×) symbols. For J2 � 0.8, these values are in excellent
quantitative agreement with the corresponding energy crossing
points from Fig. 10. For smaller values of J2, down to J2 ≈
0.635, below which the spiral state ceases to exist for any value
of J3, the energy crossing points become increasingly difficult
to estimate accurately, as discussed above, and generally lie
slightly below the much more accurate values obtained from
Fig. 11, although still in good qualitative agreement with them.

Our best estimate for the position of the third tricritical
QCP [(J c3

2 ,J
c3
3 ) = (0.69 ± 0.01,0.12 ± 0.02)], which marks

the point where the spiral and Néel-II phases meet the QP
phase, comes from curves such as those shown in Fig. 11.
For values J2 < J

c3
2 ≈ 0.69, we use the corresponding values

of J3 at which the magnetic order parameter M → 0 for the
Néel-II phase, as shown in Fig. 11, to find the phase boundary
between the Néel-II and QP phases. The corresponding points
are shown in the phase diagram of Fig. 2 by (blue) plus (+)
symbols.

E. Quantum paramagnetic (PVBC?) phase(s)

So far, we have seen that in the parameter-space window
J2,J3 ∈ [0,1], the spin-1/2 J1-J2-J3 HAFM on the honeycomb
lattice with J1 ≡ 1 has regions of five different GS phases. Four
of these (viz., the Néel, striped, Néel-II, and spiral phases) are
quasiclassical in nature, and they almost completely surround
the fifth QP phase, as shown in Fig. 2, with each of them sharing
a boundary with the (almost) enclosed region of the QP phase.
(Indeed, it seems likely that if the diagram were extended
slightly to negative values of J3, the QP region would be seen
to be entirely enclosed.) In the window J2,J3 ∈ [0,1], there are
three tricritical QCPs (and it seems likely that a fourth, which
marks the meeting of the Néel, Néel-II, and QP phases, will
occur just outside the window).

From our current results discussed here, the question still
remains open, however, as to the exact nature of the QP phase.
What we know from previous CCM work8,14 is that the QP
phase appears to have PVBC ordering at least at four points
along its boundary. These include the two points marked with
the larger (red) times (×) symbols in Fig. 2 along its boundary
with the Néel state where it crosses both the J3 = 0 axis and
the J3 = J2 line, the point marked with the larger (green) plus
(+) symbol along its boundary with the striped state where it
crosses the J3 = J2 line, and the point marked with the larger
(blue) plus (+) symbol along its boundary with the Néel-II
state where it crosses the J3 = 0 axis.

Those points were identified as lying on a phase boundary
with the PVBC state by calculating, within the same CCM
LSUBm approximations as used to calculate the phase-
transition points that marked the vanishing of the magnetic
order parameter M in each case (i.e., for the Néel, striped,
and Néel-II phases, respectively), the susceptibility of the
respective phases against the formation of PVBC order. We
showed, within the accuracy of our results, that each of
the above four points where the respective magnetic order
parameter of each quasiclassical phase goes to zero coincide
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with the points at which the corresponding susceptibility of
the state to PVBC order becomes infinite.

VI. SUMMARY AND DISCUSSION

We have studied the spin-1/2 HAFM on the honeycomb
lattice with NN, NNN, and NNNN exchange interactions,
namely, the so-called J1-J2-J3 model described by the
Hamiltonian of Eq. (1), in the case where all the bonds are
antiferromagnetic in nature (i.e., Jn > 0, n = 1,2,3). We have
set J1 ≡ 1 to set the overall energy scale, and we have restricted
attention here to the window J2,J3 ∈ [0,1] for the remaining
parameters.

Whereas in the classical model the only three phases present
in the J2,J3 ∈ [0,1] window (viz., the Néel, striped, and spiral
phases) meet at a single tricritical point at (J c,cl

2 ,J
c,cl
3 ) =

(0.5,0.5), there are now three tricritical QCPs in the same
window for the s = 1

2 model. The classical tricritical point
separates into two tricritical QCPs at (J c1

2 ,J
c1
3 ) = (0.51 ±

0.01,0.69 ± 0.01) between the Néel, striped, and QP phases,
and at (J c2

2 ,J
c2
3 ) = (0.65 ± 0.02,0.55 ± 0.01) between the

striped, spiral, and QP phases. A third tricritical QCP at
(J c3

2 ,J
c3
3 ) = (0.69 ± 0.01,0.12 ± 0.02), is identified for the

spin-1/2 model between the spiral, Néel-II, and QP phases.
In overall terms, our results for the phase diagram are

in good agreement with other very recent analyses of this
model. These include studies using a combination of various
exact diagonalization (ED) and self-consistent cluster mean-
field (SCCMF) techniques,9,10 an unbiased pseudofermion
functional renormalization group (PFFRG) method,7 series
expansion (SE) techniques,11 and an entangled-plaquette
variational (EPV) ansatz.12 It is clear that the spin-1/2 J1-J2-J3

HAFM on the honeycomb lattice is a challenging model, but
one in which there seems now to be a growing consensus on
its overall phase structure. There is very good agreement over
the regions in which the Néel and striped phases exist, and
we believe our own CCM results now give perhaps the best
quantitative results in these cases for the positions of the phase
boundaries and the positions of the two tricritical QCPs at
(J c1

2 ,J
c1
3 ) and (J c2

2 ,J
c2
3 ).

An uncertainty remains over the precise extent of the phase
with spiral order, and whether or not there is a Néel-II phase
along the J3 = 0 line for values of J2 beyond the point
where the QP phase disappears, and hence also for small

positive values of J3 up to the point where spiral order sets in.
The other main uncertainty is the nature of the QP phase itself.
We have argued here that over at least some widely separated
points on the boundaries with the Néel, striped, and Néel-II
phases, the QP phase has PVBC order. Two quite separate ED
calculations9,10 also give clear evidence that much of the QP
phase has PVBC order, although the latter calculations10 are
only done along the J3 = 0 line.

By contrast, the EPV calculations12 along the J3 = 0
line seem to favor a disordered (QSL) phase, while spin-
wave calculations3 favor the staggered dimer valence-bond
crystalline (SDVBC) order of the lattice nematic state along
the same line in the QP regime. The PFFRG study,7 also done
over the entire J2,J3 ∈ [0,1] window, finds evidence too that
a large part of the QP regime has strong SDVBC order, while
the part with smaller values of J2 has only weak PVBC order.
On the other hand, the SE study11 finds that SDVBC order is
not favored, at least for low values of J3.

We should note, however, that the SE study is in broad
disagreement with most other studies along the J3 = 0 line, in
that it finds no evidence at all for a magnetically disordered
phase there, but instead finds that the Néel phase first gives
way to the second classical spiral phase, and then later to
the spiral phase considered here, as J2 is increased. On the
other hand, the SE results are consistent with the finding from
the ED + SCCMF analysis9 that at least for some parameter
ranges, the SDVBC state might be very difficult to distinguish
from magnetically ordered states such as our S state.

Finally, we note that the ED + SCCMF study also presents
evidence for the Néel to PVBC transition being a strong
candidate for a deconfined transition, just as we have found in
our earlier CCM studies of the model along the J3 = J2 line8

and along the J3 = 0 line.14 Clearly, this model still has open
questions, but we believe that the CCM results presented here
have furthered our understanding of it.
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