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Uniform Interpolation and
Forgetting for ALC Ontologies with ABoxes

Patrick Koopmann and Renate A. Schmidt
School of Computer Science, The University of Manchester,

Oxford Road, Manchester M13 9PL, United Kingdom

Abstract

Uniform interpolation and the dual task of forgetting restrict
the ontology to a specified subset of concept and role names.
This makes them useful tools for ontology analysis, ontol-
ogy evolution and information hiding. Most previous re-
search focused on uniform interpolation of TBoxes. How-
ever, especially for applications in privacy and information
hiding, it is essential that uniform interpolation methods can
deal with ABoxes as well. We present the first method that
can compute uniform interpolants of anyALC ontology with
ABoxes. ABoxes bring their own challenges when comput-
ing uniform interpolants, possibly requiring disjunctive state-
ments or nominals in the resulting ABox. Our method can
compute representations of uniform interpolants in ALCO.
An evaluation on realistic ontologies shows that these uni-
form interpolants can be practically computed, and can often
even be presented in pure ALC.

Introduction
Ontologies are knowledge bases that are used in diverse ap-
plications ranging from medicine, bio-informatics and soft-
ware development to the semantic web. They are used to de-
fine and store conceptual information about a domain of in-
terest, and are usually represented using a description logic.
Often, an ontology consists of a TBox and an ABox. The
TBox, containing terminological information, defines con-
cepts and relations. The ABox, containing factual informa-
tion, uses these defined concepts and relations to make as-
sertions about individuals.

Uniform interpolation allows for information that is irrel-
evant for a new context, or that should be hidden from cer-
tain users, to be removed from an ontology. This is done by
restricting the set of concept and relation symbols that occur
in the ontology, preserving all entailments of the original
ontology that are expressible in the restricted signature. An
alternative view of uniform interpolation is forgetting. The
aim of forgetting is to eliminate a set of concept and role
symbols from an ontology in such a way that all entailments
in the remaining signature are preserved.

Uniform interpolation has numerous applications, of
which we give some examples; more examples can be found
in Lutz and Wolter (2011) and Ludwig and Konev (2014).
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Ontology Reuse. Often, only a subset of the vocabulary of
an existing ontology is relevant for a particular application.
Uniform interpolants can be used to extract small subsets
of existing ontologies to reuse them in specialized contexts.
Ontology Analysis. By computing a restricted view that
uses only a limited set of symbols of interest, hidden re-
lations between concepts and individuals are made explicit
(Konev, Walther, and Wolter 2009). Logical Difference.
Applying changes to an ontology can lead to undesired new
entailments regarding already defined concepts. The new
entailments in the common signature of two ontologies are
referred to as logical difference (Konev, Walther, and Wolter
2008). The logical difference can easily be computed by
checking for entailment of the axioms of the respective uni-
form interpolants (Ludwig and Konev 2014). Information
Hiding. In applications where ontologies are accessed by
multiple users, it is critical that confidential information is
sufficiently protected (Grau 2010). This can be solved by
sharing a uniform interpolant of the original ontology, where
confidential concepts and relations have been eliminated.

Given its importance for all these applications, uniform
interpolation has recently gained a lot of attention in the lit-
erature. First methods for simpler description logics such
as DL-Lite (Wang et al. 2010) and EL (Konev, Walther,
and Wolter 2009; Lutz, Seylan, and Wolter 2012; Nikitina
and Rudolph 2014), as well as for more expressive ones
such as ALC (Wang et al. 2014; Ludwig and Konev 2014;
Koopmann and Schmidt 2013c), ALCH (Koopmann and
Schmidt 2013a) and even SHQ (Koopmann and Schmidt
2014a) have been devised. However, none of the methods
for the more expressive description logics works without
limitations if ABoxes are involved.

Especially for privacy and information hiding applica-
tions, we believe support for ABoxes is important if uniform
interpolation is to be used effectively. In a lot of cases, con-
fidential information will be stored as facts in ABoxes or
databases used in connection with ontologies. For instance,
Grau (2010) mentions shared patient data records, for which
hiding information is indispensable in order to preserve the
privacy of the patients. So far no method is able to deal with
these situations properly, if the data are to be shared.

The first method for uniform interpolation in ALC, pre-
sented in Wang et al. (2009), already considers ontologies
with ABoxes. This method is based on computing the dis-
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junctive normal form of its input, which makes it unpracti-
cal for large ontologies. Later methods for expressive de-
scription logics presented in Ludwig and Konev (2014)
and Koopmann and Schmidt (2013c; 2013a; 2014a) em-
ployed saturation based reasoning techniques to achieve
practicality, but only apply to TBoxes. Moreover, it turns
out that the original approach by Wang et al. (2009) cannot
compute the right uniform interpolant for all ABoxes. In or-
der to preserve all entailments in the desired signature of an
ontology with ABox, it is necessary to use a more expressive
description logic than ALC for the uniform interpolant.

Uniform interpolation and forgetting are tasks much more
difficult than standard reasoning tasks. Not all uniform in-
terpolants can be finitely represented using standard descrip-
tion logics, and it has been shown that the size of a uni-
form interpolant of a TBox can be triple exponential with
respect to the input TBox, if represented in ALC (Lutz and
Wolter 2011). For ALC TBoxes, finite representations can
be obtained by extending the underlying description logic
with fixpoint expressions (using ALCν), or by allowing ad-
ditional symbols in the uniform interpolant (Koopmann and
Schmidt 2013c). This is however not sufficient if ABoxes
are involved, as our results show. If we want to preserve all
entailments in the desired signature, we have to represent the
uniform interpolant in an extended language such as ALCν
with disjunctive ABoxes or ALCOν.

The method presented in this paper is based on a method
for ALCH TBoxes from Koopmann and Schmidt (2013a),
which is extended in non-trivial ways. First, we extend the
calculus with unification based reasoning. As a by-product,
we develop a decision procedure for ALCν ontologies with
disjunctive ABoxes. Second, in order to represent the re-
sult inALCO with classical ABoxes, we devise a method to
approximate disjunctive ALC ABoxes into classical ALCO
ABoxes in the same signature that preserve all classical
ALC entailments. This method is also of interest for ap-
plications other than uniform interpolation.

To summarize, the contributions of this work are the
following: (1) We define a new resolution-based decision
procedure for ALCν ontologies with disjunctive ABoxes.
(2) Based on this procedure, we define a method to compute
uniform interpolants of ALCν ontologies with disjunctive
ABoxes. This method is both able to forget concept and
role symbols. By using helper concepts, these uniform in-
terpolants can be represented in pure ALC with disjunctive
ABoxes. (3) We define a method for efficiently transform-
ing ALC ontologies with disjunctive ABoxes into classi-
cal ALCO ontologies that preserve all entailments in ALC.
(4) Based on these methods, we develop the first method that
is able to compute uniform interpolants of all ALC ontolo-
gies with ABoxes, and represent them asALCO ontologies.
(5) We evaluated the method on realistic ontologies, show-
ing that it is indeed practical, and that in most cases even
ALC is sufficient to represent uniform interpolants of ALC
ontologies with ABoxes.

Detailed proofs of all theorems can be found in the long
version of the paper (Koopmann and Schmidt 2014c). A
preliminary version was presented at the 2014 Description
Logic Workshop (Koopmann and Schmidt 2014b).

Description Logics
In this section, we recall the description logics ALC
and ALCO, and introduce ALCν with disjunctive ABoxes.
Let Nc, Nr, Ni and Nv be pairwise disjoint sets of con-
cept symbols, role symbols, individuals and concept vari-
ables. AnALC concept is an expression of the form A, ¬C,
CtD, CuD, ∃r.C, ∀r.C, whereA ∈ Nc, r ∈ Nr andC,D
are ALC concepts. An ALC TBox is a finite set of general
concept inclusion axioms (GCIs) of the form C v D, where
C, D are ALC concepts. A classical ALC ABox is a set of
concept assertions of the form C(a), and role assertions of
the form r(a, b), where C is any ALC concept, r ∈ Nr and
a, b ∈ Ni. We refer to GCIs, concept assertions and role
assertions collectively as axioms. A classicalALC ontology
is a tuple 〈T ,A〉, where T is an ALC TBox and A an ALC
ABox. The semantics of ALC is defined as usual (see, e.g.,
Baader and Nutt (2007)). We write O |= α, where O is an
ontology and α any GCI, concept assertion or role assertion,
to denote that α is true in every model of O.

A greatest fixpoint is a concept of the form νX.C[X],
where X ∈ Nv and C[X] is a concept in which X occurs
as a concept symbol, but only positively, e.g., under an even
number of negations. ALCν extendsALC with greatest fix-
points, which are only allowed to occur positively in concept
assertions and on the right hand side of GCIs. Due to this
condition, least fixpoints cannot be equivalently expressed
in ALCν. Intuitively, νX.C[X] represents the most general
concept Cν , with respect to the concept inclusion relation,
for which Cν ≡ C[Cν ] holds, where C[Cν ] is the result of
replacing X in C[X] by Cν . For a formal definition of the
semantics of fixpoint expressions, we refer to Calvanese, De
Giacomo, and Lenzerini (1999).

A disjunctiveALCν ABox is a classicalALCν ABox that
additionally contains disjunctive concept assertions of the
form C1(a1) ∨ . . . ∨Cn(an), where for 1 ≤ i ≤ n, ai ∈ Ni
and Ci is any ALCν concept. The semantics is as expected:
O |= C1(a1) ∨ . . . ∨ Cn(an) iff O |= Ci(ai) for some
i ∈ {1, . . . , n}. A general ALC (ALCν) ontology is a tuple
〈T ,A〉, where A is a disjunctive ABox.

The description logics ALCO and ALCOν extend re-
spectively ALC and ALCν with nominal concepts of the
form {a}, a ∈ Ni. They allow to reference specific individ-
uals in concepts and can be used in any combination with the
other operators. For the semantics of ALCO and ALCOν,
we again refer to Baader and Nutt (2007) and Calvanese, De
Giacomo, and Lenzerini (1999).

Uniform Interpolation
We now define ALC uniform interpolants formally. A sig-
nature is any subset S of Nc∪Nr. The signature sig(E) de-
notes the concept and role symbols occurring in E, where E
ranges over concepts, axioms and ontologies.
Definition 1. Let O be a classical ALC ontology and S a
signature. An ontology OS is an ALC uniform interpolant
of O for S iff the following conditions hold:

1. sig(OS) ⊆ S.
2. For any ALC axiom α with sig(α) ⊆ S, OS |= α

iff O |= α.
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Note that we do not require an ALC uniform inter-
polant OS to be itself a classical ALC ontology. In par-
ticular, OS can also be an ALCOν ontology or an ALCν
ontology with disjunctive concept assertions.

Before we describe our method for computing ALC uni-
form interpolants, we start in a generalized setting, namely,
general ALCν uniform interpolants.
Definition 2. Let O be a general ALCν ontology and S a
signature. OS is a general ALCν uniform interpolant of O
for S, iff

1. sig(OS) ⊆ S and
2. For any ALCν axiom or disjunctive concept assertion α

with sig(α) ⊆ S, OS |= α iff O |= α.
It is easy to verify that the conditions in Definition 2 imply

those in Definition 1. The converse does not hold, since a
general ALCν uniform interpolant might entail disjunctive
concept assertions, which are not necessarily preserved by
classicalALC uniform interpolants. GeneralALCν uniform
interpolants have the nice property that they can always be
represented as general ALCν ontologies themselves:
Theorem 1. LetO be anyALCν ontology, and S any signa-
ture. Then there exists a finite general ALCν ontology OS ,
which is a uniform interpolant of O for S.

The validity of this theorem follows from the correctness
of the method that we describe in the next sections.

Normalized Ontologies
Our approach is based on a method for computing uniform
interpolants of ALCH TBoxes, introduced in Koopmann
and Schmidt (2013a). A key ingredient of this method is
that TBox axioms are represented in a certain normal form.
We extend this presentation with variables and constants in
order to incorporate ABox axioms.
Definition 3. Let Nd ⊆ Nc be a set of specific concept sym-
bols called definers. A concept literal is a concept of the
form A, ¬A, ∃r.D or ∀r.D, where A ∈ Nc, r ∈ Nr and
D ∈ Nd. An ontology O is in normal form if every axiom is
a role assertion, or a clause of one of these two forms, where
Li is a concept literal and ai ∈ Ni for 1 ≤ i ≤ n.

1. TBox clause: L1(x) ∨ . . . ∨ Ln(x)
2. ABox clause: L1(a1) ∨ . . . ∨ Ln(an)
We view clauses as sets of literals, that is, they do not have
duplicate literals and their order is not important. Further-
more, every clause is allowed to contain maximally one lit-
eral of the form ¬D(x) and no literal of the form ¬D(a),
where D ∈ Nd and a ∈ Ni.

A TBox clause L1(x)∨ . . .∨Ln(x) represents the equiv-
alent GCI > v L1 t . . . t Ln. The symbol x occurring
in TBox clauses is referred to as a variable. Observe that
one variable x is sufficient in our representation. We call
elements of the set Ni ∪ {x} terms.

Any generalALCν ontology can be transformed into nor-
mal form using the following rules, applied from left to
right, where Q ∈ {∀,∃}, D ∈ Nd is fresh, C[X] contains a
concept variable X , and C[D] denotes the result of replac-
ing X in C[X] by D.

1. C1 ∨ Qr.C2(t1) ⇔ C1 ∨ Qr.D(t1),¬D(x) ∨ C2(x)

2. C1 ∨ Qr.νX.C2[X](t1) ⇔ C1 ∨ Qr.D(t1),¬D(x) ∨
C2[D](x)

3. C1 ∨ νX.C2[X](t1)⇔ C1 ∨D(t1),¬D(x) ∨ C2[D](x)

These rules are justified by Ackermann’s Lemma (Acker-
mann 1935) and a generalization (Nonnengart and Szałas
1995), which show that the transformation preserves the
same models modulo interpretation of the definer concepts.
The transformation introduces only finitely many fresh de-
finers.

Any ontology in normal form can be converted back into
a general ALCν ontology without definers by applying the
rules in the other direction. This is ensured by the last condi-
tions in Definition 3. Whereas the transformations from left
to right can just be applied to concepts as they are, the trans-
formations from right to left require ¬D(x) to be the only
negative occurrence of the definer D in the ontology. This
is achieved by grouping TBox clauses containing the same
negative literal ¬D(x) into one TBox axiom ¬D(x) ∨ C.
This is possible since negative definer literals only occur in
TBox clauses, and since every TBox clause contains maxi-
mally one negative definer literal.
Example 1. Let O1 = {A v ∀r.(B u C), r(a, b), s(a, b),
¬(A u B)(b)}. For the normal form, we have to replace
(B uC) in the first axiom by a new definer D1. The normal
form ofO1 isN1 = {¬A(x) ∨ (∀r.D1)(x), ¬D1(x)∨B(x),
¬D1(x) ∨ C(x), r(a, b), s(a, b) ¬A(b) ∨ ¬B(b)}.

The set of clauses N2 = {B(b) ∨ (∀r.D1)(a),
¬D1(x) ∨A(x), ¬D1(x) ∨ (∃r.D1)(x)}, D1 ∈ Nd,
is transformed into the general ALCν ontology O2 =
{B(b) ∨ (∀r.νX.(A u ∃r.X))(a)} without definers.

Our method for forgetting concept and role symbols
works on the normal form representation of the input ontol-
ogy. The definers are eliminated afterwards using the right
to left transformations above.

The Calculus
Uniform interpolants are computed by saturating an ontol-
ogy in normal form using the rules of the calculus shown in
Figure 1. Before we describe the rules, a few notions have
to be introduced.

Our normal form allows for a very simple form of unifi-
cation. In our setting, given two terms t1 and t2, the unifier
of t1 and t2 is a substitution that replaces t1 by t2, or vice
versa. Two terms t1 and t2 only have a unifier if t1 = x,
t2 = x or t1 = t2. For example, the terms a and b do not
have a unifier, and the unifier of a and x is σ = [x 7→ a].
Applied to a clause C = A(x)∨B(x), this unifier produces
the clause Cσ = A(a) ∨B(a).

To preserve the normal form, the calculus introduces new
definers dynamically. More specifically, given two defin-
ers D1 and D2, a definer D12 representing D1 u D2 is in-
troduced by adding the two clauses ¬D12(x) ∨ D1(x) and
¬D12(x) ∨ D2(x). These two clauses correspond to the
TBox axiom D12 v D1 u D2. New definers are only in-
troduced if necessary. By reusing already introduced defin-
ers, we maximally introduce 2n many new definers, where n
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Resolution
C1 ∨A(t1) C2 ∨ ¬A(t2)

(C1 ∨ C2)σ

Role Propagation
C1 ∨ (∀r.D1)(t1) C2 ∨ (Qr.D2)(t2)

(C1 ∨ C2)σ ∨ Qr.D12(t1σ)

Existential Role Restriction Elimination
C ∨ (∃r.D)(t) ¬D(x)

C

Role Instantiation
C1 ∨ (∀r.D)(t1) r(t2, b)

C1σ ∨D(b)

where Q ∈ {∃,∀}, σ is the unifier of t1 and t2 if
it exists, D12 is a possibly new definer representing
D1 uD2 and C1 ∨ C2 contains maximally one literal
of the form ¬D(x) and no literal of the form ¬D(a).

Figure 1: The rules of the calculus.

is the number of definers in the normalized input. This re-
sults in a double exponential bound on the number of derived
clauses, and guarantees termination of our method.

The first three rules in Figure 1 are generalizations of the
rules used in Koopmann and Schmidt (2013a). Whereas
the original calculus has only rules for TBox clauses, we
extend them using unification to make them applicable for
cases where the premises contain one or more ABox clauses.
In addition, since an ABox can contain role assertions, we
need a rule that propagates information for universal role
restrictions ∀r.D along role assertions. This is achieved
by the role instantiation rule. Observe that, for a role as-
sertion r(a, b), the rule is only applicable to clauses of the
form C ∨ (∀r.D)(x) or C ∨ (∀r.D)(a).

The side conditions of the rules ensure that only clauses
in the normal form are derived. This way, we ensure that any
derived set of clauses can be transformed back into anALCν
ontology without definers. Clauses of the form ¬D(a) ∨ C
do not need to be derived, as is shown in the correctness
proofs in the long version of this paper.

Example 2. Take the clause set N1 from Example 1. We
can apply role instantiation on ¬A(x) ∨ (∀r.D1)(x) and
r(a, b), using the unifier [x 7→ a], and infer the clause
¬A(a) ∨ D1(b). With the same unifier, we can apply res-
olution on D1(b) in this clause and derive ¬A(a) ∨ B(b)
and ¬A(a) ∨ C(b). Resolution on ¬A(a) ∨ B(b) and
¬A(b) ∨ ¬B(b) derives ¬A(a) ∨ ¬A(b), where the unifier
is [b 7→ b].

Theorem 2. For any generalALCν ontologyO,O is unsat-
isfiable iff the empty clause can be derived in finitely many
steps from its normal form representation using the rules of
the calculus.

Proof (sketch). Termination follows from the fact that, start-
ing from a set N of n ALC clauses, maximally O(22

n

)

many clauses can be derived. A derivation of the empty
clause embodies a direct contradiction. If the empty clause
cannot be derived, we can adapt the model construction used
in Koopmann and Schmidt (2013c) to build a model based
on the saturated set of clauses. Consequently,N has a model
and is satisfiable.

Uniform Interpolation in Normal Form
Let N be any ontology in normal form, S any signature,
and N ∗ the saturation of N using the rules of the calculus.
The clausal representation NS of the uniform interpolant
of N for S is the smallest set of clauses C ∈ N ∗ with
sig(C) ⊆ S ∪ Nd that satisfy at least one of the following
conditions:

1. C ∈ N .

2. C is the result of applying a rule on a literal that is not
in S ∪Nd.

3. C contains a definer D that occurs in another clause
in NS .

It can be shown that every entailment α of N with
sig(α) ⊆ S is also entailed by NS . Condition 1 ensures
that we keep all clauses that were in the desired signature
from the beginning. Condition 2 ensures that we preserve
all possible inferences in S that involve symbols outside S.
It is possible that these inferences are made possible by ap-
plications of the role propagation rule. If this is the case,NS
contains introduced definers. This is taken care of by Con-
dition 3, which ensures that NS is closed under introduced
definers. To be more specific, any existential or universal
restrictions that refer to these introduced definers, and any
clauses of the form ¬D12(x) ∨ C(x) that are necessary to
preserve the meaning of D12, belong to NS . This ensures
that all entailments in S are still preserved after the elimi-
nation of all definers using the normal form transformation
rules described in an earlier section.

Given any general ALCν ontology O and any signa-
ture S, this is how a general ALCν uniform interpolant OS
is computed: (1) O is transformed into a set N of clauses
in normal form. (2) For N , we compute the set NS defined
above using the rules of the calculus. (3) Finally, we elimi-
nate all definers by applying the normal form transformation
rules from right to left. We have the following theorem.

Theorem 3. Let O be any general ALCν ontology and S
any signature. The described method always terminates and
the returned ontology, OS , is a general ALCν uniform in-
terpolant of O for S. Furthermore, OS is in the worst case
of size O(22

n

), where n is the size of O.

Example 3. Let O1 and N1 be is as in Example 1 and S =
{A,C, r, s}. We already computed all inferences for N1 in
Example 2. Following the above conditions, we have that the
clausal representation of the uniform interpolant of O1 for
S isNS1 = {¬A(x)∨ (∀r.D1)(x), ¬D1(x) ∨ C(x), r(a, b),
s(a, b), ¬A(a) ∨ ¬A(b)}. After eliminating the only de-
finerD1, we obtain a uniform interpolant ofO1 for S, which
is OS1 = {A v ∀r.C, r(a, b), s(a, b), ¬A(a) ∨ ¬A(b)}.
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Representing the Result in ALCO
Since all classical ALC ontologies are also ALCν ontolo-
gies, the method can be used for computing a finite uni-
form interpolant of any ALC ontology, but in an extended
language, because these uniform interpolants may contain
greatest fixpoint concepts and disjunctive concept asser-
tions. These are not supported by standard description logic
reasoners or the web ontology standard language OWL. For
this reason, it is of interest to represent the uniform inter-
polant in a more common description logic.

If a definer can only be eliminated by introducing a fix-
point, we can omit this elimination and keep the correspond-
ing cyclic definer concept. As a result, we obtain an ontol-
ogy that is not completely in the desired signature, but pre-
serves all entailments we are interested in. The cyclic defin-
ers that stay in the ontology can be seen as helper concepts
that “simulate” the greatest fixpoints and make a finite rep-
resentation possible, despite cycles in the TBox. For appli-
cations that require the uniform interpolant to be completely
in the desired signature, e.g. logical difference, the fixpoint
can be approximated by bounded iterative unfolding, as de-
scribed in Koopmann and Schmidt (2013c).

Another problem is illustrated by the uniform inter-
polant OS1 computed in Example 3. Due to the clause
¬A(a) ∨ ¬A(b), and because a and b are connected by
the two role assertions r(a, b) and s(a, b), one can verify
that OS1 |= (¬A t ∃r.(¬A u E) t ∃s.(¬A u ¬E))(a), for
any ALC concept E. These cannot be captures by a finite
classical ALC ontology. However, in ALCO, we can cap-
ture them by the concept assertion (¬At∃r.(¬Au{b}))(a),
taking into account the role assertions r(a, b) and s(a, b) in
the uniform interpolant. (Another solution, using a tech-
nique from Areces et al. (2003), involves the introduction of
additional roles for each disjunction. But this approach un-
necessarily extends the signature of the uniform interpolant.)

If all individuals occurring in an ABox clause C are con-
nected to some root individual a via a chain of role asser-
tions, C can be represented as a classicalALCO concept as-
sertion on a in the same way as in the example. We call these
concept assertions ALCO convertible. If an ABox clause C
is notALCO convertible, we cannot expressC as a classical
concept assertion, but C might still contribute to the entail-
ment of other classical concept assertions. To compute a set
of clauses that can be fully translated into ALCO, and that
preserves all entailments which are classical ALC axioms,
we use our calculus in a similar way as for computing uni-
form interpolants. Let N be any set of clauses and N ∗ the
saturation of N . The set N conv is the smallest set of clauses
C ∈ N ∗ that are ALCO convertible and satisfy at least one
of the following conditions:

1. C ∈ N .
2. C is the conclusion of any rule application on a clause that

is not ALCO convertible.
N conv preserves all entailments of N that are representable
as classical ALC axioms. N conv can be transformed into
an ALCO ontology without definers, and all remaining dis-
junctive concept assertions can be represented as classical
concept assertions using nominals.

Theorem 4. Let N be any ontology in normal form. Then,
the described method for approximating disjunctive concept
assertions computes an ALC or ALCO ontology O with
classical ABox, and we have for any classicalALC axiom α
without definers that O |= α iff N |= α.

By combining this technique with our method for com-
puting general ALCν uniform interpolants, we can com-
pute ALC uniform interpolants in ALCOν with classical
ABoxes for anyALC input ontology. Furthermore, by keep-
ing definers that can only be eliminated using fixpoints, we
can represent all uniform interpolants as classical ALCO
ontologies.

Evaluation
To investigate practicality of our approach, we have im-
plemented a prototype using the OWL API1 and some of
the optimisations mentioned in Ludwig and Konev (2014)
and Koopmann and Schmidt (2013b). Experiments were
conducted on a set of ontologies taken from the NCBO Bio-
Portal2 and the Oxford Ontology3 repositories, which we
restricted to axioms fully expressible in ALC, where do-
main and range restrictions were interpreted as correspond-
ing ALC axioms. For a detailed description of these reposi-
tories, see Matentzoglu, Bail, and Parsia (2013). The experi-
ments have been performed on a desktop PC with Intel Core
i7 350GHz CPU and 8 GB RAM.

To obtain a set of ontologies that test the ABox process-
ing of our method and can be evaluated in reasonable time,
we selected ontologies according to the following criteria:
They (1) could be downloaded and parsed by the OWL API
without errors, (2) contain more ABox axioms than TBox
axioms, (3) are consistent, (4) contain at least 100 TBox ax-
ioms, (5) contain at least 80% TBox axioms that are inALC,
(6) contain at least one axiom that is in ALC but not in EL,
and (7) contain at most 40,000 axioms. The selected ontolo-
gies are listed in Table 1, which shows the number of TBox
axioms, ABox axioms, concept symbols and role symbols
for each ontology. CCON, CTX, ICPS, ICF and SSE were
taken from the NCBO BioPortal repository, whereas 00104,
00596, 00597 and 00773 were taken from the Oxford Ontol-
ogy repository.

For the experiments, our assumption has been that the
targeted applications require either uniform interpolants for
relatively big signatures (e.g., logical difference, informa-
tion hiding) or for relatively small signatures (e.g., ontology
analysis). We therefore generated for each ontology 350 sig-
natures which included any concept or role symbol with a
probability of 90% (forgetting about 10% of all symbols),
and 350 signatures which included any concept or role sym-
bol with a probability of 10% (forgetting about 90% of all
symbols). We then computed uniform interpolants for these
signatures represented as ALCO ontologies with classical
ABoxes. For each experimental run, the timeout was 30
minutes.

1http://owlapi.sourceforge.net/
2http://bioportal.bioontology.org/
3http://www.cs.ox.ac.uk/isg/ontologies/

179



Ontology TBox ABox Concepts Roles
CCON 214 364 86 28
CTX 364 1,553 290 22
ICPS 953 4,254 432 135
ICF 1,991 17,223 1,596 41
SSE 267 2,323 243 18
00104 1,157 2,451 1,094 6
00596 2,257 2,658 2,023 19
00597 2,887 3,646 2,341 25
00773 581 2,334 244 83

Table 1: The input ontologies.

Ontology Timeouts Duration TBox ABox
CCON 1.1% 14.1 sec. 89.1% 92.0%
CTX 4.0% 72.6 sec. 87.5% 153.5%
ICPS 21.1% 11.1 sec. 243.2% 81.0%
ICF 0.0% 13.0 sec. 86.6% 38.1%
SSE 0.0% 1.9 sec. 85.3% 99.5%
00104 0.0% 8.2 sec. 87.9% 97.8%
00596 0.0% 10.6 sec. 85.3% 89.4%
00597 6.6% 108.8 sec. 167.6% 91.1%
00773 0.0% 3.9 sec. 109.2% 104.2%

Table 2: Uniform interpolants for symbols selected with
90% probability.

The results are shown in Table 2 and 3, where we show the
number of timeouts, the average duration of each success-
ful run, and the percentage of the average number of TBox
and ABox axioms in the computed uniform interpolants in
comparison to those in the input ontologies. For the uni-
form interpolants that included any symbol with a proba-
bility with 90%, each ABox axiom contained on average
2.6 symbols, whereas each TBox axiom contained on aver-
age 8.5 symbols (counting concept symbols, role symbols,
individuals and operators). For the uniform interpolants that
included any symbol with a probability of 10%, each ABox
axiom contained on average 2.4 symbols and each TBox ax-
iom 13.5 symbols. As the table shows, many uniform in-
terpolants that included symbols with a probability of 10%
only had small TBoxes. This can be explained by the small
number of symbols present in these ontologies, which re-
stricts the number of axioms that can be expressed.

Most concept assertions used just one concept symbol,
whereas a few used simple concept disjunctions or role re-
strictions. On the other hand, the structure of the TBox ax-
ioms was affected more, especially in uniform interpolants
with small signatures. Whereas a lot of axioms had simple
forms such as A v B, A v ∃r.B or A tB t C v ⊥, some
would involve deep nestings of role restrictions. We also
noticed that more complex axioms sometimes contained re-
dundant information that was not detected by our prototype.
A typical example are patterns such as A u (¬A t C), that
could have been simplified using further resolution steps. In
general, the majority of axioms was still easily human read-
able.

Ontology Timeouts Duration TBox ABox
CCON 0.0% 4.0 sec. 3.3% 62.5%
CTX 91.7% 607.1 sec. 3.5% 28.2%
ICPS 19.1% 28.2 sec. 68.4% 465.7%
ICF 0.0% 7.4 sec. 4.5% 11.2%
SSE 0.0% 23.4 sec. 3.3% 28.3%
00104 0.0% 2.4 sec. 3.7% 48.0%
00596 0.0% 10.4 sec. 3.5% 10.5%
00597 51.1% 705.5 sec. 179.8% 11.4%
00773 0.0% 24.9 sec. 29.1% 286.3%

Table 3: Uniform interpolants for symbols selected with
10% probability.

Only uniform interpolants of the ontologies CCON,
00597 and 00773 contained cyclic definers. Of their uniform
interpolants, only 7.2% contained cyclic definers. Interest-
ingly, no uniform interpolant made use of nominals. The
reason is that the ontologies of our corpus only contained
few role assertions, and imposed a relatively simple struc-
ture. However, in 25.3% of cases we had to use our method
for eliminating disjunctive ABox statements, which always
succeeded without introducing nominals. Hence, eliminat-
ing all non ALCO convertible clauses quickly resulted in
clause sets fully representable in ALC.

As the tables show, the results varied considerably de-
pending on the structure of the ontology, and the size was
not the only determining factor. For example, CTX has
only 290 TBox axioms, but caused in 91.7% of the cases
timeouts when computing small uniform interpolants. Anal-
ysis of the signatures that caused timeouts showed that in
most cases just a small number of symbols was responsible,
whereas the majority of concepts could be eliminated very
quickly. In practical applications, one might therefore con-
sider to extend the desired signature by one or two symbols,
determined by some heuristics, if the computation turns out
to be too expensive and the application allows it.

Conclusion and Future Work
We have presented a new method for computing uniform
interpolants of ALC ontologies with ABoxes. Though the
problem is complex and theoretical results show the target
language needs to be slightly more expressive, our exper-
iments show that in most cases uniform interpolants can
be computed in reasonable time and do not fall outside the
boundary of ALC.

We are currently extending the approach to more expres-
sive description logics, allowing for role hierarchies, tran-
sitive roles, inverse roles or cardinality restrictions. Even
though our prototype already uses optimisations, further
optimisations would strengthen the approach further, espe-
cially for ontologies with large ABoxes, but also for com-
puting smaller axioms.
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