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ABSTRACT. This paper examines a variant of the Hotelling two-stage mill-pricing
duopoly game with ‘linear-quadratic’transport costs and the uniform customer distri-
bution subject to a random shock. The demand is equally likely to be found anywhere
in a fixed interval of feasible product characteristics, with the ex-post differentiation
of tastes parametrized to reflect the degree of uncertainty. It turns out that, for uncer-
tainty big enough, the presence of a linear component in the cost function no longer
rules out an analytical solution to the game, which is a common problem in spatial
competition models. In particular, a subgame-perfect equilibrium is shown to exist in
which the firms’locations approach the socially effi cient ones as uncertainty further in-
creases, regardless of the curvature of the cost function. When the demand uncertainty
reaches maximum, mill-pricing is equivalent to spatial price discrimination under the
most general conditions.
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1 Introduction

Since the publication of Hotelling’s original paper [15], spatial product differentiation has
been a long debated issue in economic literature. The initial “Minimum Differentiation
Principle”was overturned by d’Aspremont et al. [9]. They showed that in a location-then-
price duopoly with linear transportation costs and mill-pricing a pure-strategy subgame-
perfect equilibrium (SPNE) does not, in fact, exist. This is because the firms’tendency to
agglomerate increases the incentive to price-undercut the rival, destroying the pure-strategy
equilibrium (PSE) in prices. The outcome is completely different when the transportation
costs are quadratic, i.e. a SPNE exists in which the firms maximize product differentiation.

The problem of PSE non-existence is by no means limited to linear costs. In another
study [12], Gabszewicz and Thisse observed that, for a family of linear-quadratic costs,
there is a range of locations with no second-stage PSE whenever the weight associated
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with the linear component of the cost function is positive. Anderson [2] analysed this in
more detail, reporting, among others, two very sound negative results. First, a non-zero
linear component of the cost specification rules out the existence of a pure-strategy SPNE.
Second, in a game with “suffi ciently linear”costs and mixed price-strategies allowed, there
can be no symmetric SPNE in which the latter mixed strategies are confined to the non-PSE
subgames off the equilibrium path.

Anderson then obtained the candidate equilibrium locations as best-responses to one
another among all strategies that permit a second-stage PSE. He conjectured that for
costs “not too linear”these locations form the SPNE of the two-stage game, and suggested
this could be shown by deriving the mixed-strategy equilibrium payoffs in the non-PSE
subgames (or putting some well-behaved upper bound on these payoffs). Unfortunately,
as demonstrated by Osborne and Pitchik [20], this is an extremely diffi cult task even in
the simple linear case. As a result, to this day neither the original Hotelling linear cost
specification, nor in fact any cost function with a non-zero degree of linearity, admit of an
analytical SPNE solution.

These problems no longer appear with mill-pricing replaced by spatial price discrim-
ination (see [13] or [16]). Here, the socially-optimal locations (at the market quartiles)
obtain in equilibrium, regardless of which combination of linear and quadratic costs is ap-
plied. However, this form of price discrimination is not always available and is diffi cult
to justify when the firms compete in a space of consumer tastes. The purpose of this
paper is to argue that in the absence of spatial price discrimination a substantial enough
degree of demand uncertainty could play a similar role in ensuring social optimality and
robustness to altering the usual quadratic transport cost specification. In other words, the
much-debated contrasts between the two main Hotelling pricing schemes, as well as the
two most common transportation cost functions (linear vs. quadratic), vanish for demand
uncertainty suffi ciently high.

Several papers have already introduced some form of demand uncertainty into a mod-
ified Hotelling setting. Balvers and Szerb [3] study the effect of random shocks to the
products’desirability under fixed prices. Harter [14] examines the uncertainty in the form
of a uniformly distributed random shift of the (uniform) customer distribution, where the
firms locate sequentially. Other papers, such as [1], concentrate on the strategic effect of
acquiring information about the demand through price-experimentation.

On the other hand, relatively few studies consider the effect of demand uncertainty
in an otherwise unchanged Hotelling framework. Of those, Casado-Izaga [6] adopts the
same form of uncertainty as Harter, but the duopolists locate simultaneously, prior to
observing the actual customer distribution and then choosing prices. Meagher and Zauner
[18] consider a similar setting, but succeed in parametrizing the support of the (uniform)
random variable that shifts the customer distribution and report that demand uncertainty
increases the equilibrium level of product differentiation. The current framework is almost
the same, with the exception of a more general cost specification and some subtle changes,
essential in establishing the analogy with price discrimination and detailed in section two
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of the paper.
It would appear that uncertainty could only intensify the problems (as discussed above)

associated with the mill-pricing regime. It is more diffi cult to ensure a PSE not only for
various location-pairs, but also for all realizations of customer demand. However, uncer-
tainty makes it possible to follow Anderson’s suggestion and put a tractable upper bound
on the mixed strategy equilibrium (MSE) payoffs, in the form of the optimal monopoly
profit (subject to the imposed consumer reservation price). This would be insuffi cient un-
der certainty, but in the present context the non-PSE subgames are becoming more scarce
when there is more uncertainty, meaning that the associated second-stage profits are less
and less important for the first-stage expected payoff. Consequently, even a “generous”up-
per bound is eventually suffi cient to show that no deviation from the candidate equilibrium
locations is profitable.

As a result, a symmetric closed-form solution is obtained, based on the linear-quadratic
cost function. For demand uncertainty suffi ciently high, it is shown to constitute a SPNE
as postulated by Anderson, i.e. with mixed price-strategies played only in the non-PSE
subgames off the equilibrium path. However, Anderson’s second negative result does not
extend here, since the equilibrium exists for any “degree of linearity”of the cost function.
Furthermore, as argued in section three, the current result also has an exclusively pure-
strategy interpretation.

The obtained equilibrium solution is particularly interesting, because as the demand
becomes more uncertain, the equilibrium locations of the uncertainty mill-pricing game
converge to the social-optimum associated with the SPNE of the certainty price discrim-
ination model. In fact, the discriminatory pricing game is shown to constitute a limiting
case of the current model under the most general conditions. In other words, demand
uncertainty (asymptotically) reconciles the inconsistent outcomes of linear and quadratic
costs under mill-pricing with the socially-effi cient outcome of discriminatory pricing.

2 The Model

As in the classic Hotelling framework [15], there are two firms simultaneously choosing
locations x1, x2 ∈ [0, 1] in the first stage of the game and prices p1, p2 in the second stage,
with a consumer located at x minimizing the total cost of purchase pi + c (|xi − x|) over
i = 1, 2, so long as it does not exceed a finite reservation price r. The transportation cost
function c (·) is linear-quadratic, i.e.:

c (|xi − x|) = a |xi − x|+ (1− a) |xi − x|2 , where a ∈ [0, 1] (1)

As usual, it is assumed that x1 ≤ x2 and the marginal production cost is zero. Furthermore,
in the second stage of the game the firms are allowed to employ mixed price-strategies.

Uncertainty is introduced by assuming that the second-stage (ex-post) customer distri-
bution is uniform on an interval [z, z +m] ⊂ [0, 1] , i.e. contained in the space of feasible
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product characteristics. At the stage of choosing locations, the firms are uncertain of the
exact value of z, which they know to be uniformly distributed on the interval [0, 1−m] ,
where m ∈ [0, 1] is a parameter. In other words, the duopolists expect the demand to be
uniform on a segment of length m, equally likely to be placed anywhere inside the space of
feasible product characteristics.

It is clear that m = 1 corresponds to the standard “certainty” case. As m becomes
smaller, the demand begins to vary between the states of nature. Initially the uncertainty is
small, for instance, whenm = 3/4, the support of the customer distribution is equally likely
to be anything from [0, 3/4] to [1/4, 1]. However, as m further decreases, the consumer
tastes are gradually becoming more variable, until at m = 0 they are completely state-
specific; everyone is located at the same point, the distribution of which is uniform on
[0, 1] . Hence, m may be thought of not only as the ex-post differentiation of tastes, but
also as “the degree of certainty”.

As mentioned earlier, the uncertainty is resolved between the two stages of the game.
The usual solution to the location problem is then to consider a reduced game in which
the payoffs associated with any {x1, x2} are the expected values (with respect to the dis-
tribution of z) of the second-stage equilibrium profits associated with this location-pair.

Remark. The above specification of demand uncertainty also has a natural economic
interpretation. To see this, suppose the distribution of consumer preferences is initially
uniform on [0, 1] . The customers then observe a signal indicating exactly what type of
product is best and the firms think this suggestion is equally likely to be anything within
the space of feasible product characteristics. Having observed a particular value s of the
signal, a consumer located at x re-locates to x+ (s− x) (1−m) . In other words, everyone
moves towards the value of the signal, by a fraction (1−m) ∈ [0, 1] of the distance between
the value of the signal and their original location. Consequently, people whose initial views
were further from what is now suggested as best shift their preferences more than those
individuals who were already close to the value of the signal.

It follows that (1−m) can be interpreted as the “strength of the signal” and it is
easy to check that the resulting ex-post customer distribution is uniform on an interval
[(1−m) s, (1−m) s+m] . Since s is uniform on [0, 1] , the latter is a segment of length
m, equally likely to be placed anywhere inside the space of feasible product characteristics
(just as in the original model specification above).

The current approach can be seen therefore as taking the classic Hotelling framework
and introducing a random shock/signal which distorts the original preferences in such a
way that they are still bound to remain within the initial “main street” of [0, 1]. When
m = 1, the signal’s strength is zero and it has no effect at all. However, as m decreases,
the random signal begins to affect the the customer preferences more and more, making
them more variable and state-specific. A demand more sensitive to random factors means
there is more demand uncertainty.
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Relationship to existing models. The current “uniform-uniform”specification of
demand uncertainty is similar to the one in [18]. The general framework from which both
originate has the consumers uniformly distributed on a segment of length m, shifted by an
also uniformly distributed shock with a value of up to L. Consequently, the support of the
ex-post customer distribution can be anything from [0,m] to [L,L + m] and the space of
feasible tastes (that could appear in some state of nature) is [0, L + m]. Using the classic
ice-cream sellers example, this entails people uniformly distributed on a segment of length
m, equally likely to be found anywhere on a beach of length L+m.

In fact, what determines the outcome of the model (subject to an appropriate re-
scaling) is the ratio (L+m)/m of the length of the space of feasible tastes to the ex-post
length of the market. This is also the most appropriate, invariant to scale measure of
demand uncertainty in this context. It is therefore appropriate to reduce the framework
to a one-parameter model, which could be done in various ways.

If we model demand uncertainty as an increase of L while holding m fixed (as in [18]),
then more uncertainty means “spreading the beach”, with an unchanged consumer cluster
equally likely to be found anywhere inside its new boundaries. Of course, one could simply
define (−∞,+∞) as the space of feasible products, but another issue is that, as uncertainty
increases, the SPNE product differentiation and average cost of purchase increase without
a bound, approaching infinity in the limit. Consequently, any finite consumer reservation
price, no matter how high, would have to be at some point exceeded. Such a specification
would therefore seem appropriate to model demand uncertainty when it is “small”, precisely
the opposite of the present paper’s focus of interest3.

In contrast, the idea proposed here is to make the demand more or less variable while
still “within the same beach”. This is achieved by setting L = 1−m, so as to fix the space
of feasible tastes at the traditional unit interval. Consequently, the “uncertainty ratio” is
now equal to 1/m. Instead of “expanding the beach”to make the demand more uncertain,
we keep it fixed, while reducing the length of the consumer cluster. In essence, the location
of a needle in a haystack is more uncertain than that of a substantially larger object

Constraining the products/tastes to a finite Hotelling “Main Street”also has the ad-
vantage of allowing for a consumer reservation price that, despite being finite, is suffi ciently
high so as not to be strategically important anyway (exactly as it is assumed in the classic
Hotelling model). This is not only realistic in economic applications, but will also prove
crucial in establishing the equivalence with discriminatory pricing.

3Another study by Meagher and Zauner [17] considers a random shock arbitrarily distributed on a fixed
interval. Although product differentiation is no longer unbounded, the model requires the variance of the
shock to be small relative to the ex-post differentiation of tastes, so that no firm would ever capture the
entire market in any state of nature. Consequently, this model is also valid for demand uncertainty not too
big.
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3 Results

The reasoning behind the paper’s main result below may be outlined as follows. For a
convex transportation cost function, a PSE exists when both firms are located in the
exterior of the ex-post customer distribution, i.e. when x1, x2 /∈ [z, z +m] . This is because
profits are then concave in own price. On the other hand, if at least one firm located inside
the market and the rival located close enough relative to the market’s length, a discontinuity
of marginal profits may occur where one firm encroaches on the other’s hinterland. This
creates an incentive to undercut the competitor’s price at the candidate equilibrium (one
satisfying the first-order conditions for profit maximizing), thus destroying the PSE. See
[2] for the details.

Nevertheless, if the firms are distant enough from one another relative to m, a second-
stage price equilibrium will exist for any z ∈ [0, 1−m] . This is because for larger product
differentiation a lower price is required to advance into the rival’s hinterland and under-
cutting becomes less attractive.

Hence, the idea is first to identify the “candidate” (local) equilibrium locations, i.e.
ones which are best-responses to one another among all locations that permit a pure-
strategy price equilibrium for all values of z. As m decreases, in order to get close enough
to the rival to start destroying the PSE in some subgames, one has to deviate further from
the “candidate”locations, losing more expected profits due to increased price competition.
Furthermore, even once non-PSE subgames begin to appear, they are less likely to occur for
smaller values of m, because the chances of some firm ending up in the interior of a reduced
market are lower. For small enough m, even when hoping to earn optimal monopoly profits
in all non-PSE subgames, one will be better off at the “candidate” equilibrium position.
This is formalized in the following.

Proposition 1 Consider a two-stage Hotelling duopoly with linear-quadratic transport
costs (1) , where a ∈ [0, 1) , and demand uniform on a segment of length m ∈ (0, 1) ,
equally likely to be found anywhere in [0, 1] . For any non-binding finite reservation price r
and a small enough m there exists a subgame-perfect Nash equilibrium in which the unique
pure-strategy equilibrium prices are played in all subgames in which they exist, including
the equilibrium path, while mixed strategy equilibrium prices are played in all the other
subgames. In any such equilibrium, locations are given by:

x∗1 = 1− x∗2 =
1 + a (1 + 4m)− 8(1− a)m2

4 [1 + a− 2(1− a)m]
(2)

Proof. See the Appendix.

It is interesting to view these findings in the context of the “certainty” mill-pricing
model. In the linear case, originally studied by Hotelling, the best-response dynamics
takes the duopolists towards the centre of the market, which led him to formulating the
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“Minimum Differentiation Principle”[15]. This was overturned later [9], by observing that
this tendency to reduce product differentiation eventually makes the firms enter the area
where no PSE exists.

In contrast, in Anderson’s linear-quadratic model [2], corresponding to the case ofm = 1
in the current specification, one can identify candidate equilibrium locations for “not too
linear” transportation costs4. Those locations are “local” equilibria, in the sense that a
firm’s second-stage PSE profit will decline as it moves away from the candidate equilibrium
location and towards the rival. However, one can still locate close enough to the competitor
so as to eliminate the PSE, making it impossible to show that the proposed locations form
a SPNE without obtaining some estimate of the payoffs in the non-PSE subgames.

Similarly, in case of m ∈ (0, 1) studied in Proposition 1 one can identify “local”equi-
librium locations such that locating any closer to the counterpart will decrease the second-
stage expected profit, as long as PSE in prices exist for all realizations of the uncertainty
z ∈ [0, 1−m]. This can be done for 1− a suffi ciently large relative to m (“not too linear”
costs) or, conversely, for m small enough relative to 1− a.

In fact, for m suffi ciently close to 0, a symmetric SPNE is no longer impossible for
“linear enough”costs. The candidate equilibria exist for all a ∈ [0, 1) and can be shown
to form SPNE. In other words, not only does Anderson’s negative result not extend here,
but the SPNE with locations x∗i may be established.

The finite reservation price r is instrumental in proving Proposition 1. In fact, the
possibility of consumers choosing an “outside option” at some point has already been
studied as a potential remedy for the problem of PSE non-existence under certainty. See,
for example, Economides [10] or, for an extensive recent discussion of the resulting second-
stage equilibria, consult Mérel and Sexton [19].

The difference is that the current model follows the mainstream of spatial competition
literature in assuming that r is “non-binding”, i.e. suffi ciently high so as not to affect
the equilibrium characteristics in any way. Despite this, it turns out it can still facilitate
establishing the SPNE. This is because the reservation price is used not as a factor affecting
the players’PSE play, but rather as a basis for putting an upper bound on the MSE payoffs
when the PSE fail to exist.

Such a “generous”upper bound would still be insuffi cient in case of m = 1, as stud-
ied by Anderson. However, the non-PSE subgames become more scarce as m decreases.
Hence, any finite benefits of deviating from x∗i achieved in those subgames are eventually
outweighed by the losses due to increased price competition incurred in those subgames in
which the PSE still exist.

We now turn to the case of a = 1, i.e. the standard linear cost function. This is
the case most-exposed to the problem of PSE non-existence. Firstly, the incentives to
price-undercut the rival at her location are maximized, since this results in instantaneously

4Although Anderson uses two parameters, a and b as the respective weights of the linear and quadratic
components, it turns out that the results only depend on a/b, i.e. the model is compatible with the current
specification.
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acquiring the entire market. Secondly, the cost function is least convex among the studied
class, minimizing the tendency for strategic product differentiation, and hence making it
easier to undercut the closely located competitor. For more on the relationship between
the curvature of transport costs and PSE existence under certainty, see [11].

The reason why a = 1 is a case which requires a separate treatment is that the second-
stage profit functions are no longer continuous. However, the proof of Proposition 2 below
is analogous to that of Proposition 1 above and the latter result can be extended here. In
fact, because this case is also relatively simple in terms of mathematical tractability, more
can be said about the degree of uncertainty that is suffi cient for the proposed SPNE to
occur.

Proposition 2 Consider a two-stage Hotelling duopoly with linear transport costs (1) ,
where a = 1, and demand uniform on a segment of length m ∈ (0, 1) , equally likely to
be found anywhere in [0, 1] . For any non-binding finite reservation price r and a small
enough m there exists a subgame-perfect Nash equilibrium in which the unique pure-strategy
equilibrium prices are played in all subgames in which they exist, including the equilibrium
path, while mixed strategy equilibrium prices are played in all the other subgames. In any
such equilibrium, locations are given by x∗i with a = 1. Furthermore it is suffi cient that
m ≤ 1/9 for such an equilibrium to appear.

Proof. See the Appendix.

The above threshold value of m is relatively low. However, there are good reasons to
believe that, in general, less uncertainty is required to ensure the existence of the proposed
SPNE.

First of all, in establishing the above suffi cient condition no attempt was made to
obtain the exact MSE payoffs in the non-PSE subgames. Instead, a “generous” upper
bound was put on those payoffs, equal to the maximum of what a firm could earn over all
price-pairs. This was partly with mathematical tractability in mind and partly to preserve
an exclusively pure-strategy interpretation of the obtained SPNE5. Nevertheless, there
is evidence to suggest that the MSE payoffs are lower than those in the candidate PSE
(satisfying the first-order conditions) and diminishing quickly as product differentiation
falls (see [20]). In any case, they must be significantly lower than the applied upper bound
and hence less uncertainty is required to render a deviation from x∗i into the non-PSE area
unprofitable.

Another reason why, in general, less uncertainty should be necessary for the proposed
SPNE to exist, is that, as already indicated, a = 1 is the case most-exposed to the problem
of PSE non-existence. Consequently, the threshold value of m is likely to be lower than
1/9 for a < 1, despite being more diffi cult to obtain.

5By construction, locations x∗i are best-responses to one another regardless of what happens in any
non-PSE subgames. Hence, in a game with pure-strategy pricing, a player i who considers the unique PSE
a credible indication of second-stage profits will also regard x∗i as an optimal reaction to x

∗
−i.
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Finally, one could consider binding (i.e. arbitrarily low) reservation prices. Although
complicated on the technical side, this would allow for lower upper bounds on the MSE
payoffs, while also potentially reducing the range of locations / states of nature where the
PSE fail (see [10]).

A closer look at the SPNE locations (2) reveals that ∂x∗1/∂a > 0. Not surprisingly, a
higher curvature of the cost function results in an increased tendency for strategic product
differentiation, just as it happens under certainty. However, we also have ∂2x∗1/∂a∂m > 0,
meaning that this effect is weakened when demand uncertainty increases. In other words,
the model is more robust to variations in the transport cost function when the demand
becomes more uncertain.

In fact, as m → 0, i.e. approaches the extreme case all customers located at the same
point, we have convergence to x∗1 = 1 − x∗2 = 1/4 for any a ∈ [0, 1]6. This leads to an
interesting analogy with the aforementioned ’certainty’model of discriminatory (rather
than mill-) pricing.

Corollary 3 As m→ 0, the equilibrium locations x∗i converge to the socially optimal ones
associated with the certainty price-discrimination model for any a ∈ [0, 1].

The next proposition shows that this is by no means a coincidence. In the extreme case
of m = 0, a direct equivalence between demand uncertainty and discriminatory pricing
holds under the most general conditions, in terms of the distribution of the random shock,
the transport cost function and the number of players, which can be greater than two7.

Proposition 4 Consider a two-stage Hotelling mill-pricing n-player game with any non-
decreasing transport cost function c (|xi − x|), in which all consumers are located at the
same point drawn from a probability distribution F. This game is equivalent to a “certainty”
price discrimination Hotelling n-player game with transport cost function c (|xi − x|) and
customer distribution F.

Proof. Take a second-stage price subgame of the “uncertainty”game in which the con-
sumers are located at point z. This is clearly the same as a Bertrand game with firm i
producing at a (asymmetric) cost c (|xi − x|) . Consequently, the firm closest to z (and
hence most cost-effi cient) captures the entire demand, by marginally undercutting a zero
mill price of the second-closest firm. The profit of firm i is therefore:

π∗i (x1, ..., xn, z) = max

{
0,min

j /∈i
[c (|xj − z|)− c (|xi − z|)]

}
6A similar observation has been made by Kieron Meagher in the context of a quadratic cost game

(a = 0) with uncertainty specified as in [18]. This can be found in an unpublished working paper “On the
Equivalence of Asymptotic Demand Location Uncertainty and Spatial Price Discrimination”. I am grateful
to Kieron Meagher for making it available to me.

7This refers to the usual n−player Hotelling framework (as in [5]). Each consumer minimizes the total
purchasing cost pi + c (|xi − x|) over i ∈ 1, 2, .., n and the firms simultaneously choose first locations and
then prices. Everything else is as defined in Section 2.
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which is the same as the second-stage equilibrium profit attained at location z in the “cer-
tainty”price discrimination game (see [13] or [16]). Consequently, the first stage expected
profit in the “uncertainty”game becomes:

Πi (x1, ..., xn) =

∫ +∞

−∞
π∗i (x1, ..., xn, z)F (z)

which, again, is the same as the total profit from all locations in the certainty price dis-
crimination game. As the payoff functions and strategy spaces are the same, the two games
are equivalent.

The above result provides a helpful insight into the mechanics of the model and makes
it possible to interpret the first two propositions in terms of the analogy between demand
uncertainty and discriminatory pricing.

When the demand varies between the states of nature, the firms are effectively price
discriminating between them, adapting different price strategies for different realizations
of the uncertainty. As m decreases, it becomes more likely for the ex-post consumer
demand to be located in a firm’s hinterland, while also far enough from the rival for the
firm to favour capturing it entirely. Such “monopolistic” equilibria gradually replace the
“competitive” ones and the firms’profits are to an increasing extent stemming from the
advantage in transportation costs, i.e. from being better placed relative to the ex-post
customer demand. This creates an incentive for the duopolists to minimize the transport
costs incurred by the consumers over all states of nature, which means implicitly pursuing a
socially-optimal objective. For this reason, the curvature of the cost function also becomes
less and less important for location decisions. As m goes to zero, the equilibrium locations
x∗i associated with different values of a converge to the effi cient ones associated with the
“certainty”price discrimination model.

On the one hand, these results are in contrast with those of Meagher and Zauner ([17],
[18]). Instead of an increase of product differentiation and a decline of welfare as uncertainty
increases, we have convergence to the intermediate, socially optimal differentiation level as
uncertainty approaches its upper bound.

On the other hand, it is interesting to note that for large levels of demand uncertainty
locations x∗i are not far from the ones obtained by Osborne and Pitchik [20] who focused
on the mixed-strategy price equilibria under certainty and linear costs. In a sense, demand
uncertainty is similar to price-randomization, in that any strategy-pair produces a random
distribution of second-stage profit allocations.

In fact, an even more direct parallel can be drawn between the current model and
the work of Bester et al. [4]. The latter study considers mixed-strategy locations under
quadratic costs and the resulting PSE in prices. When a player responds to a random
distribution of the competitor’s locations for a fixed distribution of tastes, it is similar to
responding to a fixed location of the competitor when the exact placement of the customer
demand is random. Either way, a firm is uncertain of how close it would be to the consumer
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distribution when compared with the rival, which is what drives the second-stage equilib-
rium profits. However, in the present model a firm cannot itself set a random response,
but is restricted to choosing a single location. It is therefore to no surprise that the former,
richer strategy space results in an infinite number of possible equilibrium configurations
(see [4] for the details). What the current approach and the other two mentioned have in
common is that they all allow for an intermediate level of product differentiation, possibly
more realistic than the extreme maximum or minimum differentiation results.

4 Concluding Remarks

The paper examined the Hotelling two-stage mill-pricing duopoly with customer demand
uniform on a segment of a given length, equally likely to be found anywhere in the usual
unit interval of feasible product characteristics. Parametrizing the segment’s length to
reflect the degree of uncertainty made it possible to avoid assuming an infinite customer
reservation price. This in turn allowed for an investigation of the effect of an arbitrarily
uncertain demand.

In particular, based on a linear-quadratic cost function, SPNE were established for
demand uncertainty suffi ciently large, similar to the candidate equilibria postulated by
Anderson under certainty. However, Anderson’s negative results do not extend here, as the
proposed SPNE exist for any degree of linearity of the cost function.

In fact, as demand uncertainty increases, the curvature of transport costs becomes less
important for the equilibrium outcome and the SPNE locations associated with different
linear-quadratic cost functions converge at the socially-optimal ones associated with the
certainty price-discrimination model. In other words, the much-debated contrasts between
the two main Hotelling pricing schemes, as well as the two most common transportation
cost functions (linear vs. quadratic), vanish for demand uncertainty suffi ciently high.

The intuitive explanation of those results relies upon observing that, when setting
different prices for different realizations of customer demand, the duopolists are effectively
price-discriminating between the states of nature. When the ex-post differentiation of
tastes decreases, it becomes vital to secure the equivalent of a cost advantage over the
opponent, by making it cheaper for the customers to get to the firm’s location. Eventually,
the flexibility of price-discriminating between the states of nature becomes close to that of
setting prices independently at each physical location and the firms implicitly pursue the
socially desirable objective of minimizing the total transportation costs. In the limiting case
of consumer tastes being completely state-specific, the “uncertainty”mill-pricing model
and the “certainty” discriminatory pricing game are equivalent under the most general
conditions.
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Appendix

For shortness, some algebraic derivations are relegated to the on-line Wolfram Mathematica
appendix (http://tinyurl.com/29vk5vl), where numbers in curly brackets {#} represent
a position therein where a particular statement is verified.

Proof of Proposition 1. We begin by obtaining the “candidate”equilibrium locations
(2). To this end, consider first a second-stage subgame associated with a particular location-
pair and value z of the random shock. Assume, for the moment, that the firms are restricted
to playing pure-strategy prices and let x̃i denote the value of x solving equation (Ai) below:

p1 + a (x1 − x) + (1− a) (x1 − x)2 = p2 + a (x2 − x) + (1− a) (x2 − x)2 (A1)

p1 + a (x− x1) + (1− a) (x1 − x)2 = p2 + a (x− x2) + (1− a) (x2 − x)2 (A2)

p1 + a (x− x1) + (1− a) (x1 − x)2 = p2 + a (x2 − x) + (1− a) (x2 − x)2 (A3)

where (A1) and (A2) correspond to the hinterlands of the respective firms and (A3) to the
area “in between”. Next, define pci.j as the candidate “competitive” equilibrium price of
firm i in area j, i.e. as the solution to:

∂ [p1 (x̃j − z) /m]

∂p1

(
pc1.j , p

c
2.j

)
=
∂ {p2 [1− (x̃j − z) /m]}

∂p2

(
pc1.j , p

c
2.j

)
= 0

where πci.j is the corresponding candidate equilibrium profit. Similarly, let pmi.j denote
the candidate “monopolistic” equilibrium price of firm i in area j, i.e. the solution to

x̃j

(
pm1.j , 0

)
= z+m for player 1 and x̃j

(
0, pm2.j

)
= z for player 2. For “exterior”locations,

i.e. x1, x2 /∈ [z, z +m] , the profit functions are concave and a PSE must exist. Indeed, in
case of z +m ≤ x1 we have {1}:

∂ [p1 (x̃1 − z) /m]

∂p1
(pm1.1, 0) < 0⇔ z < z1.1 =

1

2

(
a

1− a + x1 + x2

)
− 2m

i.e. for z < z1.1 firm 1 chooses to take the whole market even when p2 = 0, earning pm1.1.
On the other hand, for z ≥ z11 a competitive equilibrium is “feasible”, i.e. x̃1 (pc1.1, p

c
2.1) ≤

z + m {2} . By symmetry, for z > x2 and z > z2.2 = (x1 + x2 − a/ [1− a]) /2 + m firm 2
monopolizes the market, while for x2 < z < z2.2 profits are given by πci.2.

When the market is not contained in some firm’s hinterland, we have {3}:

∂p1 [p1 (x̃3 − z) /m]

∂p1
(pm1.3, 0) < 0⇔ z < z1.3 =

1

2
(x1 + x2)− 2m

∂p2 [1− (x̃3 − z) /m]

∂p2
(0, pm2.3) < 0⇔ z > z2.3 =

1

2
(x1 + x2) +m

12
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i.e. for x1 −m < z < z1.3 firm 1 captures the entire market at price pm1.3, while firm 2 does
the same for z2.3 < z < x2 at price pm2.3. On the other hand, when the firms are placed
on the market’s opposite sides (i.e. x1 < z and z + m < x2) then profits are concave and
given by πci.3 in equilibrium for z1.3 < z < z2.3. Furthermore, for x2 − x1 > 4m we have
z1.3 > x1 and z2.3 < x2 −m, which means a PSE exists for any value of z. Suppose that,
in addition, x1 > m and x2 < 1−m. Then the expected PSE profit of firm 1 is:

Π1 (x1, x2) =

x1−m∫
0

pm1.1dz +

z1.3∫
x1−m

pm1.3dz +

z2.3∫
z1.3

πc1.3dz

where we have used the fact that z1.3 < z1.1 and skipped multiplying by 1/ (1−m), the
density of the distribution of z, since it will not affect the optimal choice of location. By
symmetry, we have Π2 (x1, x2) = Π1 (1− x2, 1− x1) and {4}:

∂2Π1
∂x21

< 0,
∂2Π2
∂x22

< 0

leading to the first order conditions:

∂Π1
∂x1

(x∗1, x
∗
2) =

∂Π2
∂x2

(x∗1, x
∗
2) = 0

The only solution to those FOC’s which could satisfy x∗2−x∗1 > 4m andm < x∗1 < x∗2 < 1−m
is (2) and a suffi cient condition for this to happen is m ≤ 1/10 {5}.
Let Π∗ denote the expected profit obtained by substituting (2) into Π1. We will show that
for m small enough it is not profitable for player 1 to deviate from x∗1, regardless of what
the players do in the non-PSE subgames.

Consider first a deviation to x1 < m, in which case the expected profit is:

Π̂11 (x1, x
∗
2) =

z1.3∫
0

pm1.3dz +

z2.3∫
z1.3

πc1.3dz

and we have {6}:
∂Π̂11
∂x1

(x1, x
∗
2) > 0 for x1 < m < 1/10

Next, consider the case of x∗2 − 4m < x1 < x∗2 − 2m, so that x1 − m < z1.3 < x1 and
x∗2−m < z2.3 < x∗2. Since the profits in any subgame (including the non-PSE ones) cannot
exceed r, the overall expected profit must then be smaller than:

x1−m∫
0

pm1.1dz +

z1.3∫
x1−m

pm1.3dz +

x1∫
z1.3

r dz +

x∗2−m∫
x1

πc1.3dz +

z2.3∫
x∗2−m

r dz
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which in turn is less than:

Π̂21 (x1, x
∗
2) =

x1−m∫
0

pm1.1dz +

x1∫
x1−m

r dz +

z2.3∫
z1.3

πc1.3dz +

x∗2∫
x∗2−m

r dz

where the fact that πc1.3 ≥ 0 {7} was used. For m ≤ 1/10, Π̂21 (x1, x
∗
2) is concave in x1 {8}.

Solving:
∂Π̂21
∂x1

(x1, x
∗
2) = 0

for x1, substituting the obtained value back into Π̂21 (x1, x
∗
2), subtracting the outcome

from Π∗ and finally calculating the limit of the resulting expression as m → 0 yields
(5 + 7a) /256 > 0 {9}. This means that for m suffi ciently small Π̂21 (x1, x

∗
2) is less than Π∗

and a deviation from x∗1 to x1 ∈ [x∗2 − 4m,x∗2 − 2m] is not profitable.

Next, note that for m ∈ [0, a/ [2 (1− a)]) we have z1.1 > x1 − m and z2.2 < x∗2{10} and
consider the following cases:

1. {11} x1 ∈ [x∗2 − 2m,x∗2 −m] :

Π̂31 (x1, x
∗
2) =

x1−m∫
0

pm1.1dz +

x1∫
x1−m

r dz +

x∗2−m∫
x1

πc1.3dz +

x∗2∫
x∗2−m

r dz

and since:

∂Π̂31
∂x1

(x1, x
∗
2) < 0 for x1 ∈ [x∗2 − 2m,x∗2 −m] and m ≤ min{a/ [2 (1− a)] , 1/10}

it is suffi cient to observe that:

lim
m→0

[
Π∗ − Π̂31 (x∗2 − 2m,x∗2)

]
=

2 + a

16
> 0

2. {12} x1 ∈ [x∗2 −m,x∗2] :

Π̂41 (x1, x
∗
2) =

x1−m∫
0

pm1.1dz +

x∗2∫
x1−m

r dz

and since:

∂Π̂41
∂x1

(x1, x
∗
2) < 0 for x1 ∈ [x∗2 −m,x∗2] , r > 0 and m ≤ 1/10

it is suffi cient to observe that:

lim
m→0

[
Π∗ − Π̂41 (x∗2 −m,x∗2)

]
=

2 + a

16
> 0
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Finally, note that in the present case of a ∈ [0, 1) the second-stage profit functions are
continuous and hence, by Theorem 3 in Dasgupta and Maskin [7] a mixed-strategy price
equilibrium always exists. Clearly, the corresponding profits may not exceed r. It follows
that form suffi ciently small player 1 (and, by symmetry, player 2) cannot profitably deviate
from the equilibrium characterized in Proposition 1. Finally, note that the candidate
equilibrium locations are unique and hence any SPNE which entails playing the PSE where
available must have locations (2) . �

Proof of Proposition 2. Again, some algebraic derivations are relegated to the on-
line appendix, where numbers in curly brackets {#} represent a position therein where a
particular statement is verified.

We begin by obtaining the “candidate”equilibrium locations (2). Clearly, for z < x1 −m
the unique price equilibrium is {p1 = x2 − x1, p2 = 0}, i.e. firm 1 doing just enough to
capture the whole market with firm 2 setting its price to zero. For x1 −m < z < zm1 =
1
2 (x1 + x2 − 4m) firm 1 still attracts all consumers, earning a profit of x1 + x2− 2 (z +m)
{13} . Conversely, firm 2 takes the whole market for z > zm2 = 1

2(2m+x1+x2) {14} . For the
intermediate zm1 < z < zm2 , either no equilibrium exists or there is a usual “competitive”
equilibrium, obtained by finding the location of the “indifferent”consumer x̃ and solving

∂ {p1 (x̃− z) /m}
∂p1

=
∂ {p2 [1− (x̃− z) /m]}

∂p2
= 0

for p1, p2, which gives the equilibrium profit of firm 1:

π∗c =
[x1 + x2 − 2 (z −m)]2

18m

The necessary and suffi cient condition for the price equilibrium to exist for all zm1 < z < zm2
is x2 − x1 ≥ 2m {15} , which also ensures that x1 −m < zm1 . Assume first that x1 < m.
The expected profit of firm 1 is then:

1

1−m

 zm1∫
0

x1 + x2 − 2 (z +m) dz +

zm2∫
zm1

π∗c dz


which is increasing in x1 for x1 < m and x2 − x1 ≥ 2m {16} . On the other hand, for
x1 ∈ [m,x2 − 2m] , the expected profit of firm 1 is given by:

1

1−m

 x1−m∫
0

x2 − x1 dz +

zm1∫
x1−m

x1 + x2 − 2 (z +m) dz +

zm2∫
zm1

π∗c dz
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which evaluates to {17}:

Π1 (x1, x2) =
4m2 + 4mx1 − 3x21 − 4mx1 + 2x1x2 + x22

4− 4m

By symmetry of the game, we have Π2 (x1, x2) = Π1 (1− x2, 1− x1) . Since ∂2Πi/∂x2i =
3/ [2 (m− 1)] < 0 {18}, the candidate equilibrium is given by {19}:

∂Π1
∂x1

=
∂Π2
∂x2

= 0⇔ x∗1 = 1− x∗2 =
1

4
(1 + 2m)

which means both players earn:

Π∗ =
3− 12m+ 28m2

16 (1−m)

and the condition x∗2 − 2m ≥ x∗1 > m is satisfied for m ≤ 1/6 {20} .
We now establish the conditions for {x∗1, x∗2} to form a SPNE, by showing that no deviation
to a x1 > x∗2 − 2m can give player 1 an expected profit larger than Π∗ for uncertainty big
enough relative to a non-binding reservation price r.
First of all, the smallest such price is r = x∗2. To see this, observe first that for any response
to x∗2, no consumer ever has to incur a total cost of more than x

∗
2 in any “competitive”

price equilibrium {21}. Consequently, the associated equilibrium payoffs remain the same,
while the profits from any price-deviation could only decrease with the reservation price
imposed. This leaves any “competitive”price equilibria unaffected by the reservation price.
On the other hand, in any “monopolistic”equilibrium the total cost incurred by a consumer
cannot exceed the cost of travelling to the location of the player who sets his mill-price to
zero. This means it cannot exceed r when the player located at x∗2 ends up with no market
share. And when it is the deviating player who ends up with nothing, r does not matter
for his second-stage equilibrium profit anyway.

The next step is to verify that with r ≥ x∗2, x1 ∈ (x∗2 − 2m,x∗2) , p2 = r and either firm
located in [z, z +m], firm 1 would choose a p1 to capture the entire market subject to
the imposed reservation price {22}. This gives an upper bound of πl = (r − x1 + z)
on the second stage profits of the deviating firm when x1 − m < z < x1 − m/2 and
πr = (r −m+ x1 − z) when x1 −m/2 < z < x2 {23} .
Since x∗2−x1 < 2m, we either have a “competitive”price equilibrium or none for x1−m <
z < x∗2. Let:

zu1 =
1

8

[
3 + 18m+ 4x1 − 6

√
2m(12m+ 4x1 − 3)

]
zu2 =

1

8

[
3− 30m+ 4x1 + 6

√
2m(12m+ 4x1 − 3)

]
and it follows that firm 1 never wants to undercut the candidate equilibrium price of the
rival for z < zu1 , while the opposite is true for z > zu2 {24} .
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1. Consider first the case of x1 ∈ (x∗2 − 2m,x∗2 −m) . We then have {25}:

x∗2 > zu1 > x∗2 −m > x1 > zu2 > x1 −m

which means the price equilibrium does not exist for z ∈ (x1 −m, zu2 ) and for z ∈
(zu1 , x

∗
2) . Since z

u
1 > x1 − m/2 {26}, the best the deviating player can get in the

latter case is πr. As for z ∈ (x1 −m, zu2 ) , let x̂1 = 3/4 +
(
5/2− 3

√
2
)
m and observe

that x1 < x̂1 ⇔ zu2 < x1 −m/2 {27} . Consequently:

(a) for x1 ∈ (x∗2 − 2m, x̂1) , the best the deviating player can get when z ∈ (x1 −m, zu2 )
is πl and the maximum expected profit becomes:

Π̂a1 =
1

1−m

 x1−m∫
0

(x∗2 − x1) dz +

zu2∫
x1−m

πl dz +

zu1∫
zu2

π∗c dz +

x∗2∫
zu1

πr dz


(b) for x1 ∈ (x̂1, x

∗
2 −m) , the best the deviating player can get is πl when z ∈

(x1 −m,x1 −m/2) and πr when z ∈ (x1 −m/2, zu2 ), so that the maximum
expected profit becomes:

Π̂b1 =
1

1−m

 x1−m∫
0

x∗2 − x1 dz +

x1−m
2∫

x1−m

πl dz +

zu2∫
x1−m

2

πr dz +

zu1∫
zu2

π∗c dz +

x∗2∫
zu1

πr dz


2. Suppose now x1 ∈ (x∗2 −m,x∗2) and let x̃1 = 3/4 − m. We have zu1 < zu2 ⇔ x1 >
x̃1 {28} and:

(a) for x1 ∈ (x∗2 −m, x̃1) we have x1 − m/2 < zu2 < zu1 < x∗2 {29}, so that the
maximum expected profit is still given by Π̂b1.

(b) for x1 ∈ (x̃1, x
∗
2) we have z

u
2 > zu1 , so that no “competitive”equilibria exist and

the maximum expected profit becomes:

Π̂b2 =
1

1−m

 x1−m∫
0

x∗2 − x1 dz +

x1−m
2∫

x1−m

πl dz +

x∗2∫
x1−m

2

πr dz


All in all, in order to ensure that no deviation from x∗1 is profitable, we need:

∀x1 ∈ (x∗2 − 2m, x̂1) : Π∗ ≥ Π̂a1 (C1)

∀x1 ∈ (x̂1, x̃1) : Π∗ ≥ Π̂b1 (C2)

∀x1 ∈ (x̃1, x
∗
2) : Π∗ ≥ Π̂b2 (C3)
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and it can be shown {30} that the conditions (C1) - (C3) are all true for m < m ≈ 1/9
and r ∈ [x∗2, φ (m)] , where lim

m→0
φ (m) = +∞. By symmetry, the same conditions guarantee

that no deviation from x∗2 is profitable for player 2.

It remains to recall that by Theorem 3 in Dasgupta and Maskin [8], a mixed-strategy
price equilibrium exists in a Hotelling game with linear costs for any x1 < x2. Clearly,
the expected profit of a firm in any such equilibrium cannot exceed the optimal monopoly
profit (πl or πr). Suppose the players play the pure-strategy equilibrium prices where
available and mixed-strategy equilibrium prices otherwise. Then the first-stage expected
profit of a player deviating from x∗i cannot exceed the one based on getting pure-strategy
equilibrium profits where available and the optimal monopoly profits otherwise. Hence,
the subgame-perfect equilibrium as described in the Proposition exists and has locations
(2) . �
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