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Abstract—This paper proposes a new method for the proba-

bilistic risk assessment of rotor angle instability in power systems 

using fuzzy inference systems (FISs). The novel two-step ap-

proach first models the stochastic uncertainties present within 

the power system to produced probability density functions (pdfs) 

for stability indicators. These stability indicators are established 

for both small and large disturbance rotor angle stability analy-

sis. The pdfs produced are subsequently decomposed into regions 

based on user-specified threshold values. The outputs from this 

decomposition are analyzed using fuzzy techniques to complete 

the risk assessment of instability. The methodology is applied to a 

multi-area test network into which a VSC-MTDC grid has been 

embedded to support power transfer from a number of large 

wind farms. This new combination of probabilistic and fuzzy 

techniques is shown to provide an effective methodology for 

quantifying the influence of system uncertainties on the risks of 

rotor angle stability.  

 
Index Terms—Fuzzy set theory, large disturbance, risk analy-

sis, rotor angle stability, small disturbance, stochastic 

uncertainty, VSC-MTDC. 

I.  INTRODUCTION 

ISK analysis is of growing importance in power systems 

research as operators seek to maximize the usage of 

existing assets without compromising system integrity. Power 

systems are increasingly operated in uncertain conditions as 

dependence on intermittent renewable energy sources grows 

and new load types are introduced. Risk analysis provides a 

framework in which these uncertainties and their potential 

consequences can be balanced against greater utilization of 

existing system assets.  

The stochastic nature of these system uncertainties means 

that a probabilistic approach is required. Standard determinis-

tic worst-case approaches fail to represent the expected 

variation and can be overly conservative – sometimes restrict-

ing asset usage under normal operation in case extremely rare 

multiple outage events occur. The use of fuzzy techniques to 

analyze the results of probabilistic studies allows rapid as-

sessment of the risks associated with a given operating 

scenario. The fuzzy risk assessment can be easily tailored to 

the regulations and requirements of any power system. Fur-

thermore it is able to provide meaningful risk values within 
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user-defined ranges whilst maintaining enough detail to 

differentiate between scenarios which result in similar risk. 

Fuzzy set theory has been applied to many areas of power 

systems studies [1] with much of the work focused on the 

effective control of system stabilizing devices without the 

need for detailed system models such as [2]–[4], and the 

commitment of generation considering uncertainties as in [5], 

[6]. Fuzzy techniques are able to deal with inherent uncertain-

ty present when using linguistically fuzzy terms. This is 

beneficial when performing risk analysis, as Fuzzy Inference 

Systems (FISs) can handle uncertain fuzzy inputs but return 

crisp numerical risk values. 

There has been limited application of fuzzy techniques to 

the stability assessment (and not stabilizing control) of power 

systems. Fuzzy classification techniques have been demon-

strated as an effective means of detecting transient stability 

issues following the occurrence of a disturbance [7] and using 

steady state data [8]. Rotor angle stability to both small and 

large disturbances is critical to the successful operation of 

power systems and must be assessed thoroughly as system 

uncertainties increase. Fuzzy techniques can be used to com-

plete this assessment and to quantify the risks involved in the 

operation of uncertain power systems. The application of FISs 

for a similar task is demonstrated in [9] where a dynamic 

security index for the system is calculated. However this 

approach uses deterministic values and does not consider the 

probabilities of events or calculate system risk levels. 

The topic of risk assessment of small-disturbance stability 

issues has received very limited attention with most contribu-

tions acknowledging the need for probabilistic approaches 

such as [10]–[14] but falling short of full risk analysis. These 

works develop the use of probabilistic methods to establish 

statistical distributions of critical oscillatory system modes. 

However, they fail to evaluate risk in terms of both probability 

and severity of the resultant conditions – instead determining 

the probability of instability, or of critically underdamped 

oscillations. Some initial work in this area has been published 

by the authors in [15] in which it was shown that risk 

measures can be formulated to assess small-disturbance 

stability issues. 

This paper proposes a novel two-step methodology that 

first simulates the effects that stochastic variations within the 

power system have on stability indicators. These stability 

indicators are established for both small and large disturbance 

rotor angle stability analysis. The pdfs produced following 

Monte Carlo simulation are subsequently decomposed into 

regions based on user-specified threshold values. The outputs 
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from this decomposition are analyzed using fuzzy techniques 

to complete the risk assessment of instability. 

This research presents a probabilistic risk-based approach 

towards rotor angle stability assessment of power systems. 

Fuzzy inference systems are used to quantify both small and 

large disturbance rotor angle instability risks. The methodolo-

gy presented is expandable and could be extended to multiple 

facets of stability and security analysis within power systems 

research. The proposed method is intended to complement 

traditional deterministic security assessment techniques by 

probabilistically handling the uncertainties inherent in power 

system operation. This method can be used to assess the risks 

associated with complex evolving systems that traditional 

deterministic approaches are unable to capture.  
It is demonstrated that the use of cascading FISs allows the 

combination of multiple fuzzy risk values (FRVs) into a single 

system risk value. Furthermore, the use of fuzzy set theory 

allows an easily understandable and customizable approach 

whereby threshold values and performance criteria can be 

tailored to the system being studied and the regulatory frame-

work under which it is operated. In this way, the applicability 

of the proposed approach is ensured.  

II.  PROBABILISTIC FUZZY RISK ASSESSMENT METHODOLOGY 

The probabilistic fuzzy risk assessment methodology pro-

posed can be considered as a two-step approach. First, the 

probabilistic distributions of critical system stability indicators 

through accurate modeling of stochastic uncertainties are 

produced. Second, fuzzy techniques are applied in order to 

analyze these pdfs and translate them into meaningful risk 

values. Both stages of the approach are thoroughly described. 

Many risk assessment approaches use economic measures 

to quantify the severity of events in order to facilitate direct 

comparisons. The mitigation of rotor angle stability issues 

within power systems in general can be a very demanding 

task. With many control schemes and protection devices 

installed to prevent system instability and consequently 

catastrophic events, correctly apportioning the economic 

valuation of any system collapse that does occur to these 

individual schemes is extremely complex. Therefore, the 

severity of stability issues is quantified using technical 

measures and probabilistic system stability indicators.  

A. Probabilistic System Stability Indicators 

The production of the pdfs for system stability indicators is 

completed by modeling the stochastic variation of uncertain 

elements within the power system. A large number of feasible 

operating conditions are randomly generated which are subse-

quently investigated so that the stability indicators can be 

determined. Within this work, a numerical Monte Carlo (MC) 

approach is used to produce the pdfs. Efficient sampling 

techniques, such as the probabilistic collocation method [16] 

or two point estimation method [17], could be used to generate 

these pdfs along with distributed processing approaches if 

greater computational efficiency is required. 

Modern power systems are extremely reliable and the prob-

ability of experiencing stability issues within a given forecast 

horizon is very low. For this reason, pure MC simulation may 

fail to accurately produce pdf tail regions and may miss low 

probability events entirely. A combination of MC simulation 

weighted by contingency probabilities will help ensure accu-

rate pdf generation. MC simulation can be used to account for 

continuously varying system uncertainties (such as operating 

conditions) whilst specific contingencies (for example, genera-

tor outages) can be weighted by their probability of 

occurrence. Additionally, methods such as importance sam-

pling can be used to produce only the tail regions of 

distributions to reduce the computational burden of these 

studies if desired. Note that in this paper, the test system used 

displays much more marginal stability that would be the case 

in some practical systems. Contingencies are not considered in 

this illustrative example, and so only MC simulations are 

required to produce the pdfs.  

The power system can be considered to consist of a set of 

uncertain system parameters. The set considered in this study 

includes bus loading levels, load power factors, generation 

output and power flow through HVDC lines. In addition to 

these system uncertainties, fault specific uncertainties must be 

considered when assessing the risk of transient disturbance 

stability issues. In this work, these include fault location (both 

the specific line and the position along the line) and the fault 

type (single-phase-to-ground, phase-to-phase, phase-to-

phase-to-ground, or three-phase). Further uncertainties that 

could be considered include the types of connected load and 

the resulting dynamic behavior of these loads and variation in 

system topology. Wherever possible, historical data for the 

power system in question should be utilized to accurately 

inform the stochastic modeling of each uncertain parameter.  

1) Small Disturbance Stability Indicator 

The damping of the critical electromechanical oscillatory 

mode is selected as the indicator for small disturbance instabil-

ity of the power system. At each randomly selected operating 

point, the system model is linearized and eigenvalue analysis 

is used to identify the critical mode 
crit crit crit

j    . The 

settling time TS of the oscillations described by this second-

order response is inversely proportional to the damping ( )
crit

  

of the mode with positive values representing small disturb-

ance instability. The pdf of 
crit

  is therefore used as the basis 

for the small disturbance fuzzy risk analysis. 

2) Large Disturbance Stability Indicator 

Large disturbance stability is assessed by the critical clear-

ing time (CCT) of the system. A conditional pdf of the CCT 

can be produced – conditional on the fact that a fault of some 

description has occurred. Different methods can be used to 

identify the CCT of a large multi-machine power network 

[18]. The extended equal area criterion [19] is one of the most 

often used methods. This method however, has limited appli-

cation beyond first-swing unstable transient events. Time-

based simulations on the other hand, ensure accurate modeling 

of system dynamics and can be performed iteratively to 

identify the conditional CCT. Though computationally much 

more intensive, their performance can be significantly en-

hanced by the use of variable time step integration, fast 
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instability detection to interrupt simulations, and efficient 

search algorithms. 

Iterative transient simulations are used within this work. 

Both operating conditions and fault details are generated 

randomly by considering the known stochastic variations of 

the uncertain parameters and event details. The MC process is 

used to produce a pdf of the conditional system CCT that can 

subsequently be used for transient disturbance fuzzy risk 

analysis. It should be noted that the use of this conditional 

CCT will result in pdfs with probabilities that may appear 

misrepresentative of true power system behavior. If the proba-

bility of the fault occurring in the time horizon being studied 

were also taken into account, the final probabilities considered 

would be much lower.  

B. Risk Assessment Using Fuzzy Techniques 

Fuzzy techniques are able to handle linguistically fuzzy 

terms, yet still provide crisp numerical outputs that can be 

used to quantify risk and guide system operation. They pro-

vide a good balance between standard risk matrices and 

continuous severity functions. Risk matrices are readily 

understandable but suffer from a lack of fine granularity due 

to the discrete nature of the outputs. Continuous severity 

functions can provide excellent differentiation between the 

risk values of various scenarios but are complex and require 

accurate definition to ensure correct risk quantification. A 

Fuzzy Inference System (FIS) is able to translate linguistically 

defined inputs, via easily defined if-then rules, into numerical-

ly crisp outputs within a user-defined range – providing both 

simplicity and fine granularity. 

An FIS can be used to analyze the results from the proba-

bilistic analysis and provide a Fuzzy Risk Value (FRV). The 

inputs for the Small Disturbance (SD-) FIS and Large Disturb-

ance (LD-) FIS are sourced from the stability indicator pdfs. 

These pdfs are decomposed based on predefined threshold 

values in order to determine the probability of the stability 

indicator falling within a given range. These ranges are de-

fined for both SD and LD stability indicators. 

1) SD-FIS Input Definition 

Threshold values for 
crit

  (the small disturbance stability 

indicator) are chosen based on the settling time of electro-

mechanical oscillations. The settling time TS is dependent on 

the tolerance (tol.) and 
crit

  according to (1). Equation (1) 

also shows the numerical result if, for example, a 5% tolerance 

of the maximum deviation is desired (as in this work).  

   ln . ln 0.05 3.00
S

crit crit crit

tol
T

  


    (1) 

Threshold values are selected to decompose the 
crit

  pdf 

into regions representing oscillations which are: 

 Unstable (USD): oscillations do not settle,  0 .
crit

   

 Critical (CSD):  60 s, 0.05 0 .
S crit

T      

 Long lasting (LSD):  20 60 s, 0.15 0.05 .
S crit

T        

 Short lasting (SSD):  20 s, 0.15 .
S crit

T     

These regions can be user-defined by power systems engi-

neers to accurately reflect the specific network and regulations 

under which it is operated. The values used in this work are 

for illustrative purpose only. The calculated probabilities for 

each region are used as inputs to the SD-FIS. 

2) LD-FIS Input Definition 

Large disturbance stability is indicated by the system CCT. 

Threshold values for this are selected based on typical protec-

tion device operation times taken from the Alstom Grid 

Network Protection & Automation Guide [20]. If the CCT is 

extremely short, there is small chance that protection devices 

will be able to clear the fault fast enough to avoid system 

instability. Conversely, if the CCT is very long, many differ-

ent graded protection devices will have sufficient time to 

operate, significantly reducing the risk of generators losing 

synchronism. The pdf of the system CCT is therefore decom-

posed into the following regions: 

 Very Short (VLD): CCT 60 ms,  faster than typical opera-

tion times for primary protection devices. 

 Short (SLD): 60 CCT 300 ms,   reliant on successful 

operation of primary protection to clear the fault. 

 Moderate (MLD): 300 CCT 850 ms,   time for backup 

protection in case of failure of primary protection. 

 Long (LLD): CCT 850 ms, time for multiple protection 

schemes to operate before synchronism is lost. 

As with calculation of the SD-FIS inputs, the thresholds for 

the CCT pdf decomposition should be tailored to the system 

being evaluated and the protection schemes in use. Also note 

that additional decomposition zones can be included if re-

quired for the system in question. If this is the case, then 

additional FIS if–then rules should also be defined. It should 

be noted that in this work only rotor angle stability is of 

interest when determining the system CCT for each fault, 

despite the potential existence of other undesirable system 

phenomena (such as over-currents or under-voltages). 

3) FIS Input Fuzzification 

The probability of the stability indicators taking a value 

within the defined regions (USD, CSD, LSD, and SSD for the SD-

FIS, and VLD, SLD, MLD, and LLD for the LD-FIS) are deter-

mined for each FIS. These probabilities are then fuzzified 

using the input membership functions presented in Fig. 1. 

Triangular and trapezoidal functions are selected for simplici-

ty, defining the membership ( ) of the probability values to 

five fuzzy sets: Extremely Rare (E) [0–1%], Rare (R) [0–5%], 

Infrequent (I) [1–15%], Probable (P) [10–90%], and Frequent 

(F) [80–100%]. This selected combination ensures even 

transitions between adjacent fuzzy states for the selected 

probability ranges. Other functions (such as Gaussian or 

sigmoid) and the probability ranges themselves can all be 

adjusted as desired by the user.  

As with stability indicator range selection (e.g., oscillation 

settling time or critical clearing time), it is recommended that 

operational policy and regulatory documents are used to guide 

the selection of probability ranges. This forms an essential part 

of all risk analysis and is not unique to the use of a fuzzy 

approach. If continuous severity indices or risk matrices are 

used, it is still required to assign importance to probability 
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values. The major benefit and flexibility offered by using a 

fuzzy approach is that these assignments are not crisp, i.e., not 

completely black and white. The grey fuzzy region describing 

transition between crisp regions is described mathematically 

and is actively used during the risk analysis procedure. There-

fore, if system operators have less faith in the probability 

range boundaries that are defined, which is often the case, they 

can exploit the fuzziness (by increasing the region of overlap) 

to account for any uncertainty in the risk definition. The fuzzy 

approach therefore, reduces the influence of the selected 

probability ranges on the final risk value by keeping bounda-

ries fuzzy and ultimately provides more robust results. 

  
Fig. 1. FIS input membership functions for stability indicator range 

probabilities. 

4) Fuzzy Risk Evaluation 

Fuzzification of the inputs (or antecedents) provides the 

membership of each stability indicator region to the fuzzy 

probability sets shown in Fig. 1. A Mamdani-type FIS [21] is 

used to complete the fuzzy risk assessments of rotor angle 

stability. Each FIS evaluates a set of if–then rules using 

weighted implication methods in order to determine individual 

output (or consequent) functions. The consequent functions 

are subsequently aggregated together, before a defuzzification 

technique is used to provide a crisp fuzzy risk value (FRV).  
TABLE 1 

IF-THEN RULES FOR THE SD-FIS 

Rule If 
Then 

Weight 
SD–FRV  

1              High 1 

2              High 1 

3       High 1 

4       Medium 0.1 

5       Medium 0.1 

6       Medium 0.1 

7       Medium 0.1 

8       Low 0.01 

9       Low 0.01 

10             Low 0.01 

11                   Low 0.01 

12                         Low 0.01 

TABLE 2 

IF-THEN RULES FOR THE LD-FIS 

Rule If 
Then 

Weight 
LD–FRV  

1              High 1 

2              High 1 

3       High 1 

4       Medium 0.1 

5       Medium 0.1 

6       Medium 0.1 

7       Medium 0.1 

8       Low 0.01 

9       Low 0.01 

10             Low 0.01 

11                   Low 0.01 

12                         Low 0.01 

The rule set for the SD-FIS is presented in Table 1, and for 

the LD-FIS in Table 2. A shorthand notation is used so that 

small-disturbance unstable oscillations are frequent is denot-

ed by        based on the relevant letters in parentheses 

throughout this methodology. For both FISs, weights are used 

to ensure that High FRVs take precedence over Medium FRVs 

(which subsequently take precedence over Low FRVs). The 

weights shown in Table 1 have been selected from a number 

of tested candidate options as they ensure the hierarchy of 

individual consequent values is preserved in the final defuzzi-

fied FRV. The use of weights also reduces the total rule set as 

not all possible input permutations must be defined. Member-

ship functions for the consequent FRV fuzzy sets are shown in 

Fig. 2. Initial results using symmetrical triangular membership 

functions resulted in poor differentiation between results 

within the same final risk categorization (Low, Medium, or 

High). Skewed triangular sets have therefore been selected to 

ensure that variations in membership values will result in 

variations in the final defuzzified FRV. 

 
Fig. 2. Output fuzzy risk value (FRV) membership functions. 

 

A variety of logical operators, implication methods, aggre-

gation methods and defuzzification techniques can be applied 

with fuzzy inference systems [21]. Within this work, a maxi-

mum function is applied for or operations, the implication 

method is the minimum, the aggregation method is a sum, and 

centroid defuzzification is used. These common Mamdani 

inference rule base operations [22] provide standard exten-

sions of Boolean logic and have demonstrated good results.  

It must be stressed that the fuzzification membership func-

tions and the rule sets can and should be tailored to meet the 

requirements of practical systems which will operate under 

different security criteria. For example, if desired, additional 

output FRV functions can be described to account for high 

impact events such as blackouts, with rules appropriately 

weighted to ensure that even a low probability of occurrence 

for an event will not mask its significance. 

III.  TEST NETWORK & SYSTEM UNCERTAINTIES 

The methods described within this paper are illustrated us-

ing a heavily modified version of the 16 machine, 68 bus 

reduced order representation of the New England Test System 

and the New York Power System (NETS & NYPS). The 

network (including modifications) is shown in Fig. 3. System 

analysis and simulations are all performed within the 

MATLAB/Simulink environment making use of modified 
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MATPOWER [23] functions to perform optimal power flows. 

 
Fig. 3. Modified NETS NYPS test network, including six-terminal VSC-

MTDC grid and additional wind farms. 

A. AC System Details 

Generators G1–13 are modeled and controlled as detailed in 

[24] with G1–8 under slow DC excitation (IEEE-DC1A), G9 

equipped with a fast acting static exciter (IEEE-ST1A) and a 

Power System Stabilizer (PSS), and G10–13 under constant 

manual excitation. All generators are represented by full sixth 

order models. System loads are modeled as constant imped-

ance. Other load models can be used without any loss of 

generality of the proposed methodology. Full system details, 

generator and exciter parameters are given in [24] with PSS 

settings for G9 taken from [25]. 

The standard test network in [24] also contains three large 

generators representing external networks which import 

approximately 2.1 GW into the NYPS area under nominal 

loading. In the modified network, the generators, buses, and 

lines composing these external networks have been replaced 

with a five line, six terminal VSC-MTDC network connected 

to five 450 MW wind farms (GWF-A–E).  

Additionally, due to the integration of a large amount of 

intermittent generation, the inter-area AC ties between the 

NETS and NYPS region have been compensated with series 

capacitors. The compensation of these lines (line 1–2, line 1–
27, and line 8–9) allows increased power transfer from NETS 

to NYPS during periods when wind generation is low.  

B. VSC-MTDC System Details 

The VSC-MTDC system enables power transfer from the 

wind farms into the AC network. Each converter station is 

modeled as an injection of active and reactive power neglect-

ing high frequency device switching operations [26]. 

Converter station controllers are included as described in [27] 

and DC lines are modeled as presented in [28]. 

All converter stations connected to the NYPS region (VSC-

2–4) regulate active power injection into the AC system using 

a DC voltage droop characteristic to facilitate power sharing 

during HVDC outage contingencies [29]. Additionally, VSC-

2–4 all support the local AC voltage at the connection bus 

through reactive power injection. This control is set so that 

reactive power injection will not vary unless local AC system 

voltages vary outside a deadband of ±0.05 pu around the 

voltage reference (the initial load flow solution). These con-

verters, therefore, operate in Active Power Voltage Droop–AC 

Voltage control mode. 

The active power injected into the MTDC system at each 

converter station connected to a wind farm (VSC-1,5,6) is 

determined by the output of the renewable energy sources. 

Reactive power is supplied as required to support the renewa-

ble generation. These converters operate in AC Frequency–AC 

Voltage control mode. All controller and system details for the 

VSC-MTDC system are provided in Appendix I.  

C. Wind Farm System Details 

Five 450 MW wind farms (GWF-A–E) are connected to the 

test network through the VSC-MTDC system. For the studies 

performed it has been assumed that the power output from the 

wind farm will be constant during each individual investigated 

operating point (i.e. wind speed fluctuations are neglected). As 

the converters connected to the wind farms operate in AC 

Frequency–AC Voltage control, all power produced by the 

wind farm is transferred to the VSC-MTDC system.  

D. Operational Constraints 

An optimal power flow solution is used within this work to 

more accurately generate representative system operating 

points. All voltages are constrained within the range 0.9–1.1 

pu. Generator cost data, and active and reactive power limits 

can be found in [30].  

For practical implementations it is also important to include 

all known security constraints that exist within the network. 

This will typically include static constraints (e.g. line current 

limits), dynamic security proxies (e.g. inter-area power trans-

fer limits to minimize oscillations) which may be expressed as 

nomograms. Inclusion of these will ensure that the pdfs 

produced accurately represent the system variation due to 

uncontrollable system uncertainty and do not contain situa-

tions that would be avoided through mitigating control action. 

Such constraints are not provided for this test system and to 

arbitrarily create them for this purpose would not be of any 

practical value. However, in order to anticipate how inclusion 

of such operational security constraints may affect the quanti-

tative results obtained – a study is included in Section IV 
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which addresses this and helps to illustrate the proposed 

methodology.  

E. System Uncertainties 

The uncertainty surrounding operational forecasts and in-

termittent generation will result in variations of the critical 

system stability indicators. This section will outline the uncer-

tainties that are considered for the test system described.  

1) Loading Uncertainty 

Variation in the loading values and load power factors (p.f.) 

at each AC system bus represent uncertainty in loading fore-

casts. The correlation of different load types is also considered 

with loads categorized as residential or industrial based on 

their nominal p.f. (values over 0.9 are classed as residential). 

Correlation coefficients ρ between different loads are 0.8   

between residential loads, 0.4   between industrial loads, 

and 0.2   between residential and industrial loads [31]. All 

loads follow a Gaussian distribution with nominal mean 

values and standard deviation (s.d.) of 1.67% (5% at 3σ). Load 

p.f. values are non-correlated with s.d. of 1.67%. 

2) Wind Farm Generation Uncertainty 

Electrical power output from the multiple wind farms (GA–
E) is determined by the local wind speed v. Within this work, v 

is a random variable sampled from a Weibull distribution, as 

described by (2). 

     1

for 0,

0 0.

kk
vk v e v

f v

v


 

   
 

 (2) 

In (2), k is the shape parameter and φ is the scale parame-

ter (commonly signified by  but called φ here to avoid 

confusion). In this study, values for these parameters were 

sourced from [32] with 2.2k   and 11.1  . Each wind farm 

has a total generating capacity of 450 MW and is assumed to 

consist of 90 Areva M5000 5 MW turbines [33]. The total 

power produced is calculated by generating the local wind 

speed, determining a single turbine’s output according to its 
power curve, and then scaling the individual turbine output to 

the capacity of the whole wind farm. More accurate calcula-

tion of wind farm output e.g., [34], [35] is possible though this 

would not affect the methodology presented, only the final 

numerical results. 

As multiple wind farms are connected to the same VSC-

MTDC converter stations, a level of correlation in the wind 

speeds they experience is expected. Correlated multivariate 

Weibull distributed random variables are modeled by initially 

generating marginal univariate distributions related by a 

multivariate Gaussian copula. These random variables are 

subsequently transformed into Weibull distributed parameters, 

preserving the rank correlation between the initial Gaussian 

variables.  

The correlation coefficients used to define the Gaussian 

copula are sourced from [36] and it is assumed that wind 

farms connected to the same converter station are located 50 

km apart, and wind farms connected to different converter 

stations are 200 km apart. These assumptions result in correla-

tion coefficients of 0.73   and 0.58   for 50 km and 200 

km separation respectively. 

3) VSC-MTDC Operational Uncertainty 

The VSC-MTDC grid operates to deliver all power from 

the intermittent wind resource to the AC network and there-

fore the uncertainty surrounding its operation is tied to the 

wind farm power output. A simple power sharing strategy is 

utilized within this study wherein VSC-2 delivers 40% of the 

total wind power production, VSC-3 delivers 20%, and VSC-4 

acts as a slack to account for the losses within the VSC-

MTDC system (approximately 2.5% of total power transmis-

sion). It should be noted that this slack behavior only occurs 

during the DC load flow solution and that for dynamic studies 

the voltage droop characteristic ensures that variations in 

active power injection are shared by all converters. 

4) Fault Specific Uncertainty 

For large disturbance stability risk assessment, the uncer-

tainty surrounding the disturbance must also be considered in 

addition to system operating condition uncertainties. It is 

assumed that all faults occur on transmission lines, and not 

within transformers or on system buses. The specific line is 

selected randomly with a probability equal to the ratio be-

tween the impedance of the specific line and sum of all 

transmission line impedances within the network. The position 

fault position along the line follows a uniform distribution as 

in [37]. Different fault types have different probabilities of 

occurrence with a 70% probability of Line–Ground (L–G), 

15% probability of Line–Line (L–L), 10% probability of Line–
Line–Ground (L–L–G), and a 5% probability of Line–Line–
Line (L–L–L) faults, adopted from [38]. Unbalanced faults are 

modeled as proper shunt admittances with equivalent fault 

admittances calculated as in [18]. 

IV.  APPLICATION, RESULTS AND DISCUSSION 

The probabilistic risk assessment methodology using fuzzy 

techniques has been applied to the test system described in 

order to assess the risk of rotor angle instability issues. This 

has been completed by simulating the uncertainties described 

for both small and large disturbance stability analysis. This 

illustrative test system does not exhibit the same high levels of 

reliability as practical power systems as it does not contain 

parallel transmission paths and is a reduced order equivalent 

model. Therefore the probabilities of stability issues and 

associated risks will be higher for this illustrative example 

than anticipated for practical systems. 

A. Small Disturbance Risk Assessment 

The probabilistic fuzzy risk assessment has been completed 

with varying levels of installed series capacitor compensation 

on the inter-area AC ties between the NETS and NYPS 

regions (shown in Fig. 3). The modal plot for the critical 

system mode (of approximately 0.6 Hz) following 5000 MC 

runs when no compensation is installed is shown in Fig. 4. 

Also shown in Fig. 4 is the pdf of 
crit

  (determined using a 

kernel smoothing density estimate) and the probabilities that 

critical mode oscillations will be short (SSD), long (LSD), 

critical (CSD), and unstable (USD).  

The resulting probabilities for the SD stability indicator 
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ranges are used as the inputs for the fuzzy risk assessment. 

Fig. 5 demonstrates the rule evaluation process for the system 

with no compensation, where the four rules with non-zero 

consequents are displayed (refer to Table I for the symbols 

used in this figure). The consequent risk areas (selected 

according to each rule) are filled according to the membership 

level of the antecedent at the input (probability) value denoted 

by the dashed red lines. This consequent risk area is subse-

quently weighted before being aggregated together. The final 

defuzzified FRV is calculated as the centroid of the final 

aggregated risk area and is denoted by a further dashed red 

line. It is calculated to be 0.76, and there is therefore high risk.  

 
Fig. 4. Modal plot and resulting pdf for critical mode damping with no 

series compensation. 

 

 
Fig. 5. SD-FIS rule evaluation with no series compensation installed.  

 

Probabilistic fuzzy risk assessments have also been com-

pleted for the test system with 30% and 50% series 

compensation levels. The inclusion of the series capacitors 

aids power transfer from the NETS area to the NYPS area, 

reducing the stress on the network and resulting in fewer 

instances when oscillations are critical or unstable. This is 

clearly evident in Table 3, where critical oscillation region 

probabilities and final SD-FRV values are collated. 

TABLE 3 

SD-FRV VALUES WITH VARYING LEVELS OF SERIES COMPENSATION 

Level of Series 

Compensation (%) 

Critical oscillation probabilities (%) 
SD-FRV 

P(USD) P(CSD) P(LSD) P(SSD) 

0 6.2 5.6 22.8 65.4 0.76 

30 0.3 1.4 17.2 81.1 0.46 

50 0 0.1 6.2 93.7 0.21 

1) Anticipated Effects of Security Constraints 

As stated in Section III.D, this test network is simulated 

using very few operational constraints. For practical imple-

mentations (in real power systems) the inclusion of multiple 

static limits and dynamic security proxies would likely skew 

the pdfs obtained during the probabilistic assessment towards 

more stable situations (with many marginally stable and 

unstable cases removed by the included constraints). As 

previously stated, these constraints are not available for this 

network as they simply do not exist. Nevertheless, it is possi-

ble to anticipate their effects – the pdf skewing – and to 

generate results to represent this. These results can then be 

used to further demonstrate the robustness of the proposed 

method (whilst it is acknowledged that the precise quantitative 

results would likely change for practical implementations). 

Three example pdfs have been generated using the general-

ized extreme value (GEV) distribution (which provides a good 

approximation of the distribution in Fig. 4). These are shown 

in Fig. 6 where the skewing effects can be seen, particularly on 

the pdf during the (zoomed) unstable regions. Pdf (a) is 

broadly analogous to the results obtained using the full study 

with no series compensation installed – with pdfs (b) and (c) 

representing increasingly more secure system operation. These 

example pdfs have been analyzed using the SD-FIS to produce 

final fuzzy risk values shown in Table 4. 

 
Fig. 6. Example pdfs for critical mode damping from GEV distributions. 

TABLE 4 

SD-FRV VALUES FOR ANTICIPATED EFFECTS OF SECURITY CONSTRAINTS 

Pdf 
Critical oscillation probabilities (%) 

SD-FRV 
P(USD) P(CSD) P(LSD) P(SSD) 

(a) 5.6 2.3 15.1 77.0 0.78 

(b) 1.2 0.8 8.4 89.6 0.54 

(c) 0.1 0.1 2.6 97.2 0.28 

It is evident from these results that the SD-FRV values ob-

tained from the nominally more secure pdfs result in reduced 

risk values. This is as would be expected from this robust 

fuzzy risk analysis methodology. 

2) Capturing High Impact Low Probability Events 

It has also been emphasized that this proposed fuzzy meth-

odology can be easily customized to include further user 

defined risks. To illustrate this, an example is presented to 

demonstrate how risks associated with high impact low 

probability events can be included.  

Assuming further analysis (such as contingency studies) 

can provide the probability of small-disturbance stability 

related blackout P(Blackout), this can easily be incorporated 

into the existing SD-FIS. Fig. 7 shows new membership 

functions that can be used to include this feature. The proba-

bility membership function is concerned only with whether or 

Rule Antecedent Consequent

5

6

9

(USD=I)

(LSD=P)

(CSD=I)

(SSD=P)
P(SSD) = 65.4% 

P(CSD) = 5.6% 

P(LSD) = 22.8% 

P(USD) = 6.2% 

Aggregation

FRV = Medium

Weight = 0.1

FRV = High

Weight = 1

FRV = Medium

Weight = 0.1

FRV = Low

Weight = 0.01

Defuzzified FRV = 0.76

3
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not blackouts are possible and utilizes a logarithmic scale. The 

final fuzzy risk value has an extreme risk classification added 

to the SD-FRV membership functions previously described by 

Fig. 2. In addition, the simple (highly weighted) rule in Table 

5 is added to the SD-FIS to incorporate the risk associated 

with this high impact event. 

 
Fig. 7. Input probability (left) and output FRV (right) membership 

functions for blackouts. 
TABLE 5 

ADDITIONAL IF-THEN RULE FOR THE SD-FIS INCLUDING BLACKOUT 

Rule If Then SD–FRV Weight 

13                   Extreme 10 

With these additional membership functions and rule 13 

included, and assuming that P(Blackout)=0.001%, the new 

SD-FIS provides a fuzzy risk value of 1.37. If the probability 

of blackout increases to 0.01% (i.e. by a factor of ten), the 

final FRV increases to 1.52. From Fig. 7, it is clear that any 

value of FRV greater than one will indicate the potential for 

high impact events and should be carefully investigated.  

B. Large Disturbance Risk Assessment 

The fuzzy risk assessment has also been completed for 

large disturbances. In all cases, faults are cleared through the 

removal of the faulted line. No auto-reclosing schemes are 

considered within this study, though they could be included as 

required by considering the probability of successful reclosing 

(on a per feeder basis if historical data allows).  

 
Fig. 8. Pdf for system CCT with no series compensation. 

 

To ensure accurate representation of the faster time periods 

in the CCT pdf, 1000 MC runs for each fault type are simulat-

ed, before scaling and summing the individual pdfs according 

to the fault-type probabilities previously stated. This ensures 

that the more serious, but less probable, fault types are simu-

lated many times and reduces the risk of outlying results 

skewing the pdf. To improve total simulation time, any CCTs 

longer than 1 s are not determined and a CCT of 1 s is as-

sumed for that given set of system uncertainties. The resulting 

pdf of the system CCT (the large disturbance stability indica-

tor) is shown in Fig. 8, when no compensation is used. Also 

shown, are the probabilities for the CCT regions: Very Short 

(VLD), Short (SLD), Moderate (MLD), and Long (LLD). The 

arrows represent lumped probabilities for CCTs of 0 s and 1 s. 

13.8% of cases will have a CCT of 0 s due to the criticality of 

the faulted line with its disconnection resulting in instability. 

The 39.6% of cases with CCT greater than 1s will follow the 

same exponential decay seen between 0–1 s. However, resolu-

tion of this portion of the pdf is not required for these studies 

and therefore has not been determined. 

The probabilities shown in Fig. 8 are used as inputs to the 

LD-FIS to determine the fuzzy risk value. Rule evaluation is 

not shown but the final LD-FRVs are detailed in Table 6 for 

the system without and with same levels of capacitor series 

compensation considered as for the small disturbance analysis.  

It is evident from Table 6 that the level of compensation 

has little effect on the LD-FRVs with high risk values of 0.80 

or higher in all cases. The minor variations between the final 

fuzzy risk values are due to the variation caused by the MC 

process. The high risk of large-disturbance instability is 

caused by the topology of the network with many faults 

resulting in CCTs of 0 s (due to instability when the faulted 

line is cleared by disconnection of the affected line). In practi-

cal power systems, such critical lines would consist of double 

circuits to ensure that the loss of one line would not result in 

transient instability and the collapse of the system – signifi-

cantly increasing the CCT. Nevertheless, it is evident that the 

presented methodology is readily applicable to both small and 

large disturbance rotor angle stability risk assessments.  

TABLE 6 

LD-FRV VALUES WITH VARYING LEVELS OF SERIES COMPENSATION 

Level of Series 

Compensation (%) 

CCT probabilities (%) 
LD-FRV 

P(VLD) P(FLD) P(MLD) P(SLD) 

0 29.3 18.4 11.8 40.5 0.83 

30 27.6 18.5 19.8 34.1 0.80 

50 30.9 19.2 10.8 39.1 0.84 

V.  FUZZY RISK OF SYSTEM ROTOR ANGLE INSTABILITY 

The small and large disturbance fuzzy risk values can also 

be combined to determine a single Rotor Angle Stability 

(RAS) FRV. As with the previous risk assessments, this can 

be achieved using an FIS. The FISs are cascaded as shown in 

Fig. 9 in order to determine a single risk value that can be used 

to describe the exposure to instability due to the uncertainty 

surrounding the forecast operating point.  

 
Fig. 9. Cascading fuzzy inference systems to produce a system level rotor 

angle stability fuzzy risk value (RAS-FRV). 

 

The inputs to the RAS-FIS are the SD- and LD-FRVs (as 

determined using the previously outlined FIS structures). Input 

and output membership functions are given by the triangular 

functions previously described in Fig. 2. The rule set for this 

FIS is defined simply using the three if–then rules in Table 7. 

The differences between the rule weights are reduced for this 

10-4
0

1

Probability

M
e

m
b

e
rs

h
ip

, 

Possible

0 2
0

1

FRV
M

e
m

b
e

rs
h

ip
, 

Extreme (E)L

1

M H

10-2 100 102

SD-FIS
σcrit pdf

LD-FIS
LD-FRV

RAS-FIS RAS-FRV

CCT pdf

SD-FRV

ACCEPTED VERSION OF MANUSCRIPT



 9 

FIS (compared to the previous FISs) so that the final RAS-

FRV reflects a balance of the SD- and LD-FRVs – whereas 

previously the primary desire was to highlight any high risk 

level. The rule set is, however, still weighted towards prioritiz-

ing high risks, and these weights can (of course) be modified 

to reflect the risk evaluation performance desired. 

Rule evaluation for the three system scenarios (with vary-

ing levels of series compensation) results in the final RAS-

FRVs detailed in Table 8. It is evident that these risk values 

are dominated by the high large disturbance risk values. 

TABLE 7 

IF-THEN RULES FOR THE RAS-FIS 

Rule If 
Then Weight 

RAS–FRV =   

1 SD-FRV    LD-FRV    High 1 

2 SD-FRV    LD-FRV    Medium 0.4 

3 SD-FRV    LD-FRV    Low 0.2 

In all three cases, the final rotor angle stability fuzzy risk 

value is high (with values always greater than 0.73). These 

values are dominated by the large disturbance risks which are 

high and unaffected by the level of series compensation. 

However, the differences between the small disturbance risk 

values affect the RAS-FRVs – with the risk reducing as the 

level of series compensation rises. It is evident from this 

example and Fig. 9 that cascading FISs can be used to quanti-

fy the system risk level using simple and understandable rules, 

whilst still maintaining a sufficient level of detail to differenti-

ate between scenarios. 

TABLE 8 

RAS-FRV VALUES WITH VARYING LEVELS OF SERIES COMPENSATION 

Level of Series 

Compensation (%) 
SD-FRV LD-FRV RAS-FRV 

0 0.76 0.83 0.85 

30 0.46 0.80 0.76 

50 0.21 0.84 0.73 

A. Comparison with Risk Matrix Approach 

In order to highlight the benefits initially described in Sec-

tion II.B – namely that fuzzy systems are described by simple 

and comprehendible rule sets and provide numerically crisp 

risk values – the results from the RAS-FIS are compared with 

those obtained using a traditional risk matrix approach. 

The scarcity, if not complete lack, of methods for risk anal-

ysis of system stability hinders robust comparison of the 

proposed fuzzy approach with other approaches. Of the 

previously discussed work on fuzzy approaches and probabil-

istic stability assessment of power systems, [7]–[9] focus on 

purely deterministic application of fuzzy logic, whilst [10]–
[14] demonstrate probabilistic analysis but do not attempt to 

quantify the severity of resultant conditions and therefore are 

not measures of risk. The new work in [15] demonstrates the 

application of risk analysis to small-disturbance stability using 

risk matrices to quantify the system risk level. The risk matrix 

approach represents an established risk quantification tech-

nique that has been utilized in many sectors and with which 

system operators are most familiar. It is therefore, used here, 

as the only suitable, if not only available, benchmark for the 

comparison with the proposed fuzzy approach. 

The risk matrix shown in Fig. 10 is an equivalent represen-

tation of the RAS-FIS described by the weighted rule set in 

Table 7. Evaluation of the final combined rotor angle stability 

risk is completed and the results are presented in Table 9. 

  SD-FRV 

  High Medium Low 

L
D

-F
R

V
 High High High High 

Medium High Medium Medium 

Low High Medium Low 

Fig. 10. Comparative risk matrix, equivalent to the RAS-FIS hierarchical 

rule set. 

 

It is readily evident that the use of the risk matrix – whilst 

valuable for high level risk analysis – fails to preserve much of 

the information and offers no differentiation between different 

scenarios resulting in the same final risk classification. The 

fuzzy approach, however, is shown to provide valuable, 

numerical risk values which enable more informed operational 

decisions. 

TABLE 9 

COMPARISON OF RAS-FIS AND RISK MATRIX ANALYSIS 

Level of Series Compensation (%) RAS-FRV Risk Matrix 

0 0.85 High 

30 0.76 High 

50 0.73 High 

VI.  CONCLUSIONS 

This paper presented a novel two-step methodology to 

quantify the risk of rotor angle instability within power sys-

tems. The proposed technique first simulates the stochastic 

variations within the power system using the Monte Carlo 

approach to determine how stability indicators (such as 

critical mode damping, or fault critical clearing times) are 

affected. The pdfs for these stability indicators are decom-

posed based on user-defined threshold values to determine the 

probability that the stability indicator will exist within given 

ranges. These probabilities are used as the inputs to FISs 

which are used to assess the risk value by evaluating easily 

defined rule sets. Furthermore, these FISs can be combined to 

determine a single risk level for the system.  

This novel approach to probabilistic risk assessment of ro-

tor angle stability has been demonstrated using a multi-area 

power system model including a VSC-MTDC grid with large 

penetration of intermittent wind generation. The results have 

illustrated the effectiveness of combining fuzzy techniques 

with probabilistic analysis for risk assessment. Furthermore, 

the approach is readily customizable as threshold values and 

rule sets can be tailored to the system being studied and the 

regulatory framework under which it is operated. This meth-

odology provides an expandable framework which can be 

used to assess further facets of risk assessment through the 

definition of suitable indicators. As with all risk analysis 

techniques, the final rule sets and inference systems used must 
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be validated against offline contingency analysis in order to 

thoroughly evaluate the ability of the risk analysis technique to 

highlight and quantify issues arising in prescribed scenarios 

and operating conditions. 

VII.  APPENDIX I: VSC-MTDC SYSTEM & CONTROLLER DATA 

All data provided is based on a 100 MW HVDC base (with 
base

DC
V  320 kV). Converter stations cause active power flow 

losses of 1%. The droop characteristic is defined as (3). 

 1ref ref Vdc ref

droop droop dc dc
P P k V V      (3) 

Controller parameters for the VSC-MTDC converter stations: 

10P Q

P P
K K  , 50P

I
K  , 20Q

I
K  , 10Vdc

droop
k  .

 

VSC-MTDC converter capacitance (including lumped line 

capacitance) for terminals 1–6 (pu): 

 0.1311, 0.1827, 0.1712, 0.1770, 0.1454, 0.1168MTDC

DC
C   

VSC-MTDC Line Data: 

Line From To R (pu) L (pu) 

1 1 2 45.43 10  52.28 10  

2 2 3 49.93 10  54.10 10  

3 3 4 43.31 10  51.37 10  

4 4 5 48.28 10  53.41 10  

5 4 6 42.79 10  51.14 10  
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