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Abstract

Noise filtering is a common step in image processing, and is particularly effective in improving the
subjective quality of images. A large number of techniques have been developed, many of which
concentrate on the problem of removing noise without damaging small structures such as edges. One
recent approach that demonstrates empirical merit is the non-local means (NLM) algorithm. However,
in order to use noise filtering algorithms in quantitative or clinical image analysis tasks an understanding
of their behaviour that goes beyond subjective appearance must be developed. The purpose of this
paper is to investigate the statistical basis of NLM in order to attempt to understand the conditions
required for its use. The theory is illustrated on synthetic data and clinical MR images of the brain.

1 Introduction

Noise filtering is a common pre-processing step in many magnetic resonance (MR) image processing and analysis
tasks, such as segmentation or registration. A wide variety of noise filtering algorithms have been proposed [5],
many of which operate by weighted averaging across local data on the basis that, if the noise on each pixel is
uncorrelated or weakly correlated, then the spatial scale of variation in the underlying signal is typically larger
than that of the noise; averaging thus removes noise whilst preserving signal. Gaussian filters fall into this category
and have been widely used in some applications such as functional MRI [20]. However, the assumption of slow
spatial variation in the signal will be violated at points such as edges, and filters that are insensitive to this
will destructively modify the image at such points due to averaging across data drawn from different intensity
distributions. The characteristic blurring of edges resulting from Gaussian filtering is an example of this effect.
Edge-preserving filters have been proposed to avoid this problem, the best known of which is the anisotropic
diffusion filter (ADF) [15]. Such filters respect edges by averaging in the direction orthogonal to the local image
gradient. However, they can erase small features and may change image statistics. Wavelet-based filters have also
been applied to MRI [13] but tend to introduce characteristic artifacts [5] that can be problematic for clinicians.

In order to mitigate destructive image modification, algorithms have been proposed that incorporate explicit tests
of similarity between the data to be averaged. This may be implemented either in a feature space, as in the
mean shift algorithm [6], or in the image domain, as in bilateral filtering [19], in which the averaging process
incorporates weighting using both the spatial distance between pixels and the difference in intensity. The mean
shift, anisotropic diffusion and bilateral filtering algorithms have been shown to be closely related [1]. The NLM
algorithm [5] develops this concept further by defining similarity on the basis of local context i.e. the intensities
in patches surrounding each pixel, rather than using only the intensities of the pixels themselves. Furthermore,
in NLM the pixel redundancy is not restricted to be local i.e. pixels are not penalised on the basis of geometrical
distance as happens for example in the bilateral filter. The intensity ga of each pixel is modified by comparing the
surrounding patch a = Ai=1...N,j=1...N to other patches b = Bi=1...N,j=1...N across the image, using a similarity
measure such as

d(a, b) =

N
∑

i

N
∑

j

Gρ(r)(Aij − Bij)
2 (1)

where Gρ(r) is a radial Gaussian weighting dependent on the distance r from the centre of the patch, ρ is the scale
parameter, N2 is the size of the patch, and i and j are iterators over the x and y dimensions of the image. The
noise-filtered intensity ĝa is then estimated as a sum of the intensity gb of the central pixel in each of the other



patches B, weighted by their similarity

ĝa =
∑

b

gbw(a, b) ∝
∑

b

gbexp[−d(a, b)/h2] (2)

where h is a scale factor that determines the required degree of similarity and w is the weighting factor. The
weights are normalised to satisfy the usual conditions of 0 ≤ w(a, b) ≤ 1 and

∑

b w(a, b) = 1. Implementations of
NLM typically introduce two corrections in order to avoid over-weighting effects. During the calculation of d(a, b),
the radial Gaussian weighting for the central intensity in each patch is set equal to that for intensities one pixel
away. Furthermore, w(a, a) is set equal to the maximum of the w(a, b) for the calculation of each filtered intensity.

The original description of NLM calls for the averaging process to incorporate all pixels in the image. However, this
leads to impractical processor time requirements. Therefore, on the basis that similar patches are more likely to be
found in the immediate vicinity of the pixel being filtered, the averaging process can be limited to an S ×S search
window where S is smaller than the dimensions of the image [7]. Furthermore, the majority of the computational
effort is taken up in the calculation of d(a, b); some authors (e.g. [10]) have proposed limiting this calculation to
patches that satisfy a threshold on local intensity mean and gradient.

It has been found previously that NLM performs significantly better than other state-of-the-art noise filtering
algorithms in empirical tests on natural images, and that the performance of the algorithm is related to how
similar the noise is to Gaussian noise [5]. This implies that NLM should be applicable to noise filtering in medical
images such as MR, where the noise is expected to be Gaussian or Rician [9], and the algorithm has been shown
to be very effective in empirical tests on clinical data [11, 12]. However, it appears that the theoretical basis of
the algorithm has not been fully understood in statistical terms. One consequence is the presence of several free
parameters (in particular h and ρ) that affect the results. This is not a significant issue in applications where the
visual assessment of the results is the dominant consideration. However, a fundamentally deeper understanding of
the algorithm is therefore required before it can be used with confidence in quantitative or clinical applications.
As with all estimation tasks, this requires identification of the assumptions necessary to derive it from statistical
estimation theory. In particular, the patch similarity and intensity weighting processes must be understood in
terms of conventional statistics.

The remainder of this paper is organised as follows. A statistical interpretation of the NLM algorithm is developed
in Section 2 by drawing analogies between the patch similarity calculation and a standard χ2 similarity test, and
between the intensity weighting process and a χ2 probability calculation. Section 3 describes the methodology
adopted to evaluate the statistically motivated version of the NLM algorithm. Results from the evaluation are
presented in Section 4, and our conclusions and suggestions for further work are presented in Section 5.

2 Statistical Interpretation of NLM

The NLM algorithm embodied in Eqs. 1 and 2 does not map directly onto statistical estimation processes, but
can be simplified in order to make such an association. The aim here is not to evaluate the modified version in
an algorithmic “shoot-out”, but to determine the statistical characteristics of the original NLM algorithm through
comparison with the modified version. The purpose of Eq. 1 is to measure the similarity between image patches
a and b, and it is immediately clear that the standard quantitative χ2 test provides the statistical equivalent

χ2

ab =
1

2σ2

N
∑

i

N
∑

j

(Aij − Bij)
2 (3)

which is valid for independent, identically distributed (IID) data. In addition, an equivalent function that allows
the overall intensity scale to vary between the patches

χ2 ∝

N
∑

i

N
∑

j

(αAij − βBij)
2 s.t. α2 + β2 = 1 (4)

will also be considered. The required scaling parameter γ = α/β is given by (Appendix A)

γ ≈
2|A||B|

(|A|2 − |B|2) + (|A|2 + |B|2)
=

|B|

|A|

Equation 2 is less straightforward to interpret. However, the NLM algorithm is clearly an estimator of the noise-
free intensity of each pixel. This implies that the weighting of the central intensity in patch b should be related
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Figure 1: (a) The 2D distribution of differences between central intensity values as a function of the patch similarity
measure, and (b) the equivalent plot for the MR brain image Fig. 6a. (c) The marginal projection of the conditional
probability of the data being drawn from the matching distribution (b=a, solid line), showing the exponential
weighting process embodied in NLM and the binary thresholding applicable in cases of no overlap between the
matching and non-matching distributions. (d) The marginal projection of the brain image data (solid curve) with
the expected signal distribution (dashed).

to the probability that it was drawn from the same intensity distribution as the central intensity in patch a,
calculated using the similarity measure. Therefore, the calculation of this probability in the general case would
require knowledge of the distributions both for matching patches (i.e. patches drawn from equivalent structures)
and non-matching patches in the joint space of intensity (or, more specifically, intensity residual ga − gb) and
similarity. Fig. 1a illustrates the concept; the χ2 similarity measure is a standard chi-squared variable with N2

degrees of freedom, since this is the number of pixels in each patch, and so for matching patches the variable
√

χ2/N2 = χ/N is drawn from a distribution that is approximately Gaussian with mean 1.0 and variance 1/N if
N >

∼ 5 [2]. The distribution in ga − gb for matching patches will be identical to the noise distribution. However,
the distributions for non-matching patches will be dependent on image structure and so are, in general, unknown.

If Eq. 2 is replaced with an estimator of ĝa constructed from a weighted mean using the conditional probability of
classification P (a = b|data), then the result is directly analogous to the parameter estimation (maximisation) step
of the Expectation-Maximisation (EM) algorithm [8]; the result is therefore a maximum-likelihood estimate of the
noise-free intensity. As the aim is to test the equivalence of the central pixel intensities in each patch, the data used
in this process should in theory take account of both the patch similarity measure and the central pixel intensity
difference. However, the original specification of NLM uses a weight that is determined from the similarity measure
alone i.e. is analogous to

ĝa =

∑

b gbP (b = a|χab)/σ2

ab
∑

b P (b = a|χab)/σ2

ab

(5)

rather than a probability of classification conditioned on both similarity and intensity residual

ĝa =

∑

b gbP (b = a|χab, ga − gb)/σ2

ab
∑

b P (b = a|χab, ga − gb)/σ2

ab

(6)

where σab expresses how well gb predicts ga i.e. the width of the conditional probability distribution. Using
this marginal projection, rather than the full 2D conditional probability, involves making a number of additional
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assumptions about their relationship. In particular, the 2D conditional probability would give a lower weight to
patches with a high intensity residual due to the increase in the width of the distribution in ga − gb as a function
of similarity (Fig. 1b).

Several methods for calculating P (b = a|χab) could be envisaged as alternatives to the exponential weighting used
in NLM. If there was no overlap between the match and non-match distributions, then a simple binary threshold
would suffice (Fig. 1c). However, as shown in Fig. 1d, the distributions overlap in clinical data, implying that
the weight should be 1 for high patch similarity and drop to zero for statistically dissimilar patches; in either
case exponential weighting is sub-optimal at both high and low similarity. In general the optimal weighting
cannot be determined without knowledge of both the match and non-match distributions. Knowledge of the
expected match distribution P (χab|b = a) and the total sample distribution P (χab) would allow computation of
P (b = a|χab) = P (χab|b = a)/P (χab) (the dashed curve divided by the solid curve in Fig. 1d). Use of this as a
weighting scheme would require either the assumption that the overlap between the true signal and the background
was similar across the image, which is implicit in the original formulation of NLM, or estimation of the actual
distributions present at each point in the image. In order to avoid this, in the work presented here the standard
χ2 hypothesis probability Pab [2] is used

w(a, b) ∝
Pab

σ2

ab

where Pab =

∫ χ2

0

P (χ2

ab|N
2)dχ2 =

∫ χ2

0

2−N2/2

Γ(N2/2)
χN2

−2e−χ2/2dχ2

where Γ(x) is the standard gamma function. This is an approximation that is consistent with the expected
behaviour of the required function and is a less efficient estimator (i.e. errs on the side of caution) for situations
of no overlap. This weighting can be approximated using the error function (erf()) [16] in order to avoid explicit
numerical integration of the distribution, and has the advantage that the weighting factor reduces to approximately
zero for matching patches that are not equivalent within the expected variation due to noise. Calculation of this
quantity also supports testing of the assumed noise distribution. Its numerical implementation requires some care
in order to avoid a six-deep nested loop (Appendix B).

3 Evaluation Methodology

3.1 Simulated Data

Several stages of evaluation were performed, using implementations of both the original and statistically motivated
variants of NLM within the TINA open-source medical image analysis software (www.tina-vision.net). The first
used simulated data sets in order to illustrate the effects of including a free scale parameter in the statistically-
motivated version of NLM. First, a 256x256 pixel simulated image was generated, consisting of 32x32 pixel regions
with intensities drawn randomly from a Gaussian distribution with a standard deviation of 32 grey-levels. A
Gaussian random noise field with a standard deviation of 1 grey level was then added; the resulting image is shown
in Fig. 2a. The statistically motivated version of NLM was applied to this image using the similarity measure
given by Eq. 3, with σ set to the standard deviation of the image noise in order to scale the definition of similarity
according to the level of evidence available in the image. Filtered intensities were estimated using

ĝa =

∑

b gbPab/σ2

ab
∑

b Pab/σ2

ab

=

∑

b gbPab/χ2

ab
∑

b Pab/χ2

ab

(7)

where σab is the standard deviation of the difference distribution for gb − ga. For matching patches we expect
σab = σ. The use of an estimate of local variance derived from patch similarity reduces the dependency of the
algorithm on the assumed value of global image noise σ. Regions that do not match take no part in the weighted
average and N2Paa/χ2

aa = 1 by definition. Pixels that do not change their value upon application of this filter
(ga − ĝa = 0)1 represent statistically unique locations. Matching image patches of 11x11 pixels were sought in a
23x23 pixel region about the central pixel ga.

The similarity measure given by Eq. 3 represents a simple approach to determining correspondence. However,
many natural images exhibit spatially varying illumination, which interferes with similarity measures based on
exact matching of intensities. A similar process occurs in the majority of MR images in the form of intensity
inhomogeneity introduced by variations in the imposed (B0) magnetic field. Therefore, a second and more realistic
data set was produced by adding a uniform slope in intensity (1/4 grey-levels per pixel) to the image prior to the

1Final results are represented as integer values so that this definition identifies unique locations as a lack of change at a level much
less than intrinsic image noise.

5



(a) (b)

Figure 2: (a) Simulated data with no illumination variation and (b) consequent change in input values following
filtering with Eq. 7.
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Figure 3: (a) Data with illumination variation changing left to right and (b) the resulting change due to filtering with
Eq. 7. (c) The resulting change due to filtering with Eq. 9, incorporating scale-adjustment. (d) The distribution
of hypothesis probabilities for (c) is uniform, as expected, for data drawn from the assumed distribution, with a
peak at zero corresponding to unique locations.

addition of noise; the result is shown in Fig. 3a. In order to compensate for the intensity slope, image regions were
matched using the similarity measure incorporating a free scale parameter as described above

χ2

ab =
1

σ2(1 + γ2)

N
∑

i

N
∑

j

(γAij − Bij)
2 (8)

with γ calculated using |B|/|A| for purposes of computational efficiency. This was not found to result in an
observable change in the sampled distributions (see below). This variable is expected to be a χ2 statistic with
N2 − 1 degrees of freedom. The variable

√

χ2/(N2 − 1) is drawn from a distribution that is approximately a

Gaussian with mean 1.0 and a variance κ/
√

(N2 − 1). The value of κ = 0.9 was set to adjust empirically for the
extra instability introduced into the variable due to error in γ (a similar problem to that accommodated by the
Student T-test). Weighted averaging was computed using

ĝa =

∑

b γgbPab/(χ2

ab(1 + γ2))
∑

b Pab/(χ2

ab(1 + γ2))
(9)

This takes appropriate account of the accuracy of each estimate (γgb), such that each data point is weighted by
the expected difference between the sample and the underlying true value.

3.2 Clinical MR Data

The differences between the behaviour of the original NLM algorithm represented by Eqs. 1 and 2 and the scale-
adjusted, statistically motivated variant were demonstrated using a clinical MR image volume of the normal brain
acquired with informed consent and subject to local ethics committee approval. A 1.5-T system (ACS-NT, with
PowerTrack 6000 gradient subsystem; Philips Medical Systems, Hamburg, Germany) with a birdcage head coil
receiver was used. A fast spin-echo inversion-recovery (IRTSE) image volume (repetition time, 6850 msec; echo
time, 18 msec; inversion time, 300msec; echo train length, 9) was obtained in contiguous 3-mm thick sections
throughout the brain, with an in-plane resolution of 0.89mm2 (matrix, 256 × 204, field of view, 230 × 184mm),
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(a) (b) (c)

Figure 4: (a) IRTSE MR image and (b) intensity changes due to filtering with Eq. 9. (c) The intensity changes
due to filtering with the original NLM algorithm for comparison.

and real image reconstruction was performed. A single structure-rich slice from the volume, shown in Fig. 4a,
was chosen for analysis and both the original NLM algorithm and the statistically motivated variant incorporating
scale adjustment were applied. Noise was estimated directly ([14]) from the image in the region of the brain and
patch similarities computed over a 7x7 region (shown in previous work [11] to provide an optimal balance between
accuracy and required processor power for the original NLM algorithm).

3.3 Quantitative Evaluation of Non-Local Means

The final stage of evaluation focused on quantitative analysis of the performance of NLM. Three additional MR
image volumes, a variable echo proton density (VE(PD)), a variable echo T2 (VE(T2)) and a fluid-attenuated
inversion recovery (FLAIR), were acquired from the same subject and scanner described above; again, single
structure-rich slices were chosen from equivalent positions in each volume for analysis. The images are shown in
Fig. 6. The original and scale-adjusted, statistically motivated variants of NLM were applied to all four images.
Two performance measures were applied to the results. First, a Monte-Carlo stability analysis [18], which measured
the relative change in the output image intensities produced by the addition of a small amount of noise to the input
images, was applied to estimate the fraction of noise remaining after filtering. Second, the number of reconstructed
pixels whose intensity was modified by more than three standard deviations of the image noise was counted, after
compensating for local field inhomogeneity using the algorithm described by [17]. This measure is referred to as
the residual outlier measure (ROM) and, since the expected value for a perfect noise filter can be calculated as
the two-tailed integral of the noise distribution beyond 3σ, any deviation from this expected value quantifies the
number of pixels to which inappropriate smoothing is applied. The local image noise was estimated independently
of the Monte-Carlo stability analysis using a technique based upon the distribution of local derivatives [14]. In
order to provide a benchmark for the evaluation, it was also applied to three conventional noise filtering schemes.
The first, tangential filtering [4], is the simplest possible version of anisotropic diffusion and applies averaging
over three pixels (one central and two either side) along the normal to the direction of maximum local image
gradient. In the absence of noise, the gradient along this normal is expected to be zero in any image composed of
smooth, continuous regions. Since many medical image modalities produce images that conform to this behaviour,
tangential smoothing is theoretically the least destructive (i.e. best edge-preserving) of the simple noise filtering
schemes (where simple is used in the sense that all pixels are treated equally). Gaussian filtering using a kernel
with a standard deviation of 1 pixel and median filtering over the local neighbourhood of 9 pixels were also used.

4 Results

4.1 Simulated Data

Figures 2a and 3a show the simulated data set without and with a smoothly varying intensity change respectively;
the intensity changes introduced by smoothing with the statistically motivated variant of NLM without a free scale
parameter, using the similarity measure described by Eq. 3, are shown in Figs. 2b and 3b. Note that in Fig. 2b the
unique regions of the image (corners of each square patch) are generally left unmodified (0 difference) as expected
i.e. no similar patches can be found on the basis of the similarity measure, and so no smoothing is applied at these
locations. In Fig. 3b this behaviour is observed across the entirety of the image; the similarity measure described
by Eq. 3 and based on exact matching of intensity values is incapable of finding matching patches in the presence
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(a) (b)

Figure 5: Magnified regions from Fig. 4 (a) before filtering and (b) after filtering with Eq. 9. Despite many areas
being left unmodified there is little subjective evidence of under-filtering.

(a) (b) (c)

Figure 6: Clinical MR data used in addition to Fig. 4a: (a) VE(PD); (b) VE(T2); (c) FLAIR.

of the uniform intensity variation, and so little smoothing is applied at any location. The differences introduced
by smoothing Fig. 3a with the statistically motivated variant of NLM incorporating scale adjustment, using the
similarity measure described by Eq. 8, is shown in Fig. 3c. Following the scaling modification the filtering results
are comparable to the original result Fig. 2b, with only unique locations being left unmodified. The quantitative
validity of the method can be tested by observing the sample distribution (histogram) of hypothesis probabilities
for this data, shown in Fig. 3d. The distribution is uniform, as should be the case for hypothesis probabilities [3],
except for the peak at zero that corresponds to non-equivalent regions. This also validates the choice of κ and the
use of the approximation for γ.

4.2 Clinical MR Data

Figure 4a shows the structure-rich slice from the IRTSE MR image volume chosen for analysis; the intensity change
introduced by filtering with the scale-adjusted, statistically motivated version of NLM is shown in Fig. 4b. As
in the simulated data, many locations are left unmodified on the basis of statistical uniqueness i.e. no matching
patches can be found using the similarity measure; these tend to be located around the tissue boundaries as
expected. This result is typical of clinical MR data. Magnified regions of Fig. 4a are shown in Fig. 5, illustrating
the noise removal. This process can be considered a safe strategy for noise filtering in these images. Data is only
modified when each estimate of the central pixel comes from a region that satisfies the hypothesis test. However,
the intensity changes introduced through application of the original NLM algorithm are shown in Fig. 4c. The less
conservative exponential weighting embodied in this algorithm results in noise removal even in unique regions; few
locations in the image are left unmodified, even without the incorporation of a free scale parameter. This implies
that filtered estimates must necessarily include data from patches that cannot justifiably be expected to be from

8



0.3 0.4 0.5 0.6
Monte-Carlo Stability

500

1000

1500

2000

2500

3000

3500

4000

R
es

id
ua

lO
ut

lie
r

M
ea

su
re

Median Filtering

Gaussian Smoothing

Tangential Smoothing

Non-local Means

Statistical NLM

Figure 7: The proportion of noise removed (Monte-Carlo stability) and number of pixels destructively modified
(ROM) during smoothing of the clinical MR images shown in Fig. 4a and Fig. 6. NLM was applied using a patch
size of 7x7. The results of tangential smoothing over the three pixels along the normal to the direction of maximum
local image gradient, Gaussian smoothing with σ=1 pixel and median filtering over 9-pixel patches are also shown.

Median Gaussian Tangential NLM Stat. NLM
IRTSE 0.64 (1559) 0.27 (2405) 0.66 (698) 0.50 (125) 0.51 (4)

VE(PD) 0.66 (1466) 0.26 (3127) 0.68 (530) 0.55 (45) 0.37 (2)
VE(T2) 0.63 (1287) 0.26 (1909) 0.69 (426) 0.44 (43) 0.48 (5)
FLAIR 0.63 (1934) 0.27 (3827) 0.69 (966) 0.56 (194) 0.40 (9)

Table 1: Numerical results from Fig. 7, showing the Monte-Carlo stability and the ROM (in brackets) for each of
the noise filtering techniques on each of the MR images.

the same distribution as the central pixel.

4.3 Quantitative Evaluation of Non-Local Means

Figure 7 shows the ROM and Monte-Carlo stability for noise filtering of the MR images shown in Fig. 4a and
Fig. 6 with the original and scale-adjusted, statistically motivated NLM algorithms, Gaussian filtering, tangential
smoothing and median filtering. The results are provided numerically in Table 1. The ROM should be equal
to 0.27% of the pixels which, given the size of the images, is approximately 60 pixels. Tangential smoothing,
which theoretically should be the least destructive of the simple noise filters, removes approximately 25% of
the noise but applies inappropriate smoothing to approximately 2.7% of the pixels due to destabilisation of the
gradient calculations by the image noise. Median filtering removes more noise but is approximately twice as
destructive, whilst Gaussian smoothing removes approximately 75% of the noise at the expense of degrading the
images significantly. The original NLM algorithm removes approximately 50% of the noise, and so falls mid-way
between tangential filtering and Gaussian filtering. It has an average ROM of approximately 100 pixels, about
50% higher than the value expected for a perfect noise filter, again indicating that some pixels are modified
inappropriately. The scale-adjusted, statistically motivated variant of NLM provides slightly better noise removal
whilst achieving a ROM consistent with zero, although the differences between the two NLM variants are not
statistically significant on either measure. This behaviour is expected for a strict test of similarity; pixels lying in
the tails of the noise distribution represent uncommon intensities by definition; few pixels with similar intensities
will be found by the similarity metric, and so these pixels will be left largely unmodified. An implementation of
NLM with a strict test of similarity should therefore achieve a ROM of zero by definition.
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5 Discussion and Conclusions

The statistically motivated variant of NLM differs from the original algorithm in two main ways. First, radial
Gaussian weighting has been removed from the similarity metric such that it becomes a standard χ2 test of patch
similarity. There appears to be no conventional statistical analogue of the radial Gaussian weighting process.
Second, the averaging process has been modified so that the intensities are weighted by a conditional probability of
classification, through analogy with the Expectation-Maximisation algorithm, such that it becomes a maximum-
likelihood estimator of the noise-free intensities. In general it is not possible to compute the required conditional
probability without knowledge of the distributions both for matching and non-matching patches in the joint space
of intensity and similarity. The χ2 hypothesis probability used here is a less strict test of similarity by comparison.

In tests on both simulated and clinical data the modified algorithm finds instances of data, representing unique
structures in the images, that have no statistically similar patches, resulting in extended areas of unmodified pixels.
The presence of illumination variation in the simulated images or intensity inhomogeneity in MR images causes
this behaviour to extend over the entire image. However, even the incorporation of a free scale parameter to
estimate local patch intensity variation, whilst recovering many matches, leaves areas of unmodified pixels. In
other tests it was found that reduction of the patch size from 7x7 to 5x5 in the MR brain images reduced the
proportion of non-filtered pixels from 30% to 15%, although this does not necessarily represent an improvement
in performance since it reduces the power of the technique to discriminate between matching and non-matching
patches. By comparison, the original specification of NLM with exponential weight factors and spatial Gaussian
weighting produces far fewer unmodified pixels. The analysis presented here therefore suggests that conventional
NLM methods may be modifying data inappropriately, by combining data that cannot be considered equivalent
at the level of the information present, potentially introducing an image structure dependent bias on the filtered
values. Such behaviour must be carefully considered in clinical applications. All variants of NLM result in some
unmodified pixels, implying that the noise on the filtered images is spatially varying and correlated with image
structure; this would have to be taken into account in any subsequent analysis procedure. The demand for strict
identicality between image patches appears to be the root cause of these problems, and so it may be possible to
alleviate them through more sophisticated processing, such as constructing an eigenvector model of patch variation
using principal component analysis.

The quantitative evaluation performed here suggests that NLM removes on average about half of the noise present;
by comparison, tangential filtering (the simplest possible instantiation of ADF) removes about a quarter of the noise,
whilst Gaussian filtering removes about three quarters. However, NLM achieves a significantly lower ROM than
alternative techniques, indicating that the incorporation of an explicit test of similarity is effective in preventing
destructive modification of the images e.g. blurring of edges. The original NLM algorithm does not achieve the
theoretical optimum ROM, confirming that some pixels are modified inappropriately i.e. the exponential weighting
is not sufficiently strict. The scale-adjusted, statistically motivated variant of NLM achieves slightly better noise
removal, probably due to the presence of the scale adjustment; the inhomogeneity correction algorithm applied
to the images does not remove all inhomogeneity, and the scale adjustment allows the algorithm to detect more
matching patches in the presence of any residual inhomogeneity. In addition, it achieves an ROM of almost exactly
zero in all cases, as would be expected with a strict test of similarity. It should also be noted that the original
paper on NLM [5] suggested incorporating a test on the output data such that, if pixels were modified by more
than the expected amount given the noise, the smoothed value should be averaged with the original, noisy intensity
to provide some degree of correction; a method for performing this averaging was also derived. This introduces an
explicit correction for pixels not well described by the implicit image model assumed by the filter, and for which the
filter therefore gives erroneous results. Since the ROM was designed to directly quantify the number of such pixels,
applying this correction prevents subsequent ROM-based evaluation. However, an alternative measure based on
the Komolgorov-Smirnov distance between the intensity residuals and the expected noise distribution could be
applied. The correction is very effective in improving the empirical performance of all noise filtering algorithms.

A simple analogy can be identified between NLM noise filtering and biological vision in humans. There is some
evidence that the brain analyses microtextures in images by identifying common patterns, or templates, and
representing image data as the conjunction of such patterns. The idea that matching processes occur in early
vision has long been established, and supports tasks such as “pop-out”, where unusual structure is immediately
identified. If this is the case then the process of representation is in itself a noise-filtering system analogous to
NLM; the main difference is that the templates might be pre-learned in human vision, but are obtained on-the-fly
in NLM. This suggests that a possible improvement to the NLM filter as presented here could be the use of patch
dictionaries for specific classes of images, allowing the removal of noise from unique locations in such images by
simple patch substitution, taking scale differences into account. Otherwise, the computational processes required
to support NLM are entirely biologically plausible i.e. consistent with those thought to be supported by neurons.
Additional psychophysical support for this hypothesis is provided by the observation that humans can visually
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identify image noise (e.g. Fig. 5). The noise-filtering algorithms that give the best subjective performance will
therefore be those, perhaps like NLM, which replicate the human vision system and so provide the expected output.
Such a filter could therefore be used in clinical applications without destroying information that a clinician would
consider significant.

Appendix A: Estimating Normalisation

Application of the variational principle to the problem of matching two scaled noisy image patches I and J , results
in the optimisation function

χ2 ∝
∑

n

(αIn − βJn)2 s.t. α2 + β2 = 1

Putting α = sin(θ) and β = cos(θ) the scaling that minimises the χ2 function can be determined as follows

∂χ2

∂θ
∝ 2

∑

n

(cos(θ)In + sin(θ)Jn)(sin(θ)In − cos(θ)Jn) = 0

so that the minimum is defined according to

tan(2θ) =
2

∑

n InJn
∑

n I2
n −

∑

n J2
n

the denominator and numerator of which can be considered as the sides of a right-angled triangle allowing cos(2θ)
and sin(2θ) to be determined

cos(2θ) =

∑

n(I2

n − J2

n)
√

4(
∑

n InJn)2 + (
∑

n I2
n − J2

n)2
sin(2θ) =

2
∑

n InJn
√

4(
∑

n InJn)2 + (
∑

n I2
n − J2

n)2

The factor needed to rescale image I in order to minimise the χ2 is γ = sin(θ)/cos(θ). Using the identities
sin(θ) = sin(2θ)/2cos(θ) and cos(θ) =

√

(cos(2θ) + 1)/2 gives

γ =
sin(2θ)

cos(2θ) + 1
=

2|I||J |cosφ

|I|2 − |J |2 +
√

4|I|2|J |2cos2φ + (|I|2 − |J |2)2

where φ ≈ 0 for similar patches.

Appendix B: Numerical Details

The main approach used here to avoid lengthy execution times was to expand the patch similarity measure as

χ2

ij =
1

σ2(1 + γ2)

N
∑

n

(γIn − Jn)2 =
1

σ2(1 + γ2)

[

γ2
∑

n

I2

n +
∑

n

J2

n − 2γ
∑

n

InJn

]

computing the quantities

A =

n
∑

I2

n B =
∑

n

J2

n and C =
∑

n

InJn

from differences in precomputed integral images2 of I2, J2 and IJ , allowing the efficient calculation of γ =
√

B/A
for one hypothesised shift of the patch across the entire image, and all of the other factors required. This allows
implementation of the algorithm within a 4- rather than 6-deep nested loop, reducing execution time from hours
to minutes. Additional improvements in efficiency can be gained by rejecting scale values that do not lie in the
range 0.5 < γ < 2.0, and also by rejecting new estimates γgi to the weighted sum when |γgi − gj|/σ > 8.0.
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Response to IET Computer Vision Reviewers’ Comments

We include, in the following sections, the Reviewers’ comments received when this paper was submitted to IET
Computer Vision (in italics) and our responses (in normal text), as we believe that they are illuminating both in
regard to the main text and the reviewing process itself (the latter with particular reference to the comments we
received from Reviewer 3). Comments relating to minor syntax errors have been omitted.

Comments to Editor

Thank you for your e-mail providing the Reviewers’ comments on our paper “A Statistical Interpretation of Non-
Local Means”. We have implemented the majority of the changes suggested by Reviewers 1 and 2 directly, and
provide a detailed list of these modifications in an accompanying document entitled “A Statistical Interpretation
of Non-Local Means: Response to IET Computer Vision Reviewers’ Comments”.

We would like to raise some concerns over the comments made by Reviewer 3. Their review consists of just four
sentences:

• Textual elaborateness with insufficient citations suggestive of author bias in presentation. Justify.

• Manuscript presentation could have created better impact with evidence than descriptive summaries.

• Is it possible to test the proposed method using any other strict statistical tool? Justify.

• Suggested that an acceptable sample population is chosen and used for testing the proposed method. Visual,
Graphical and Tabular evidence be given to support exhaustive testing.

None of the points made are supported by examples, or provide practical suggestions for alterations to the paper.
For example, with reference to the first point, at which locations in the paper is the text over-elaborate? Which
citations should be added to the paper? Which statements in the paper are biased? The fourth point seems to
suggest that the Reviewer would like to see the entire evaluation replaced with a different set of experiments,
although again they do not define what is meant by an “acceptable sample population”, or state what is wrong
with the existing evaluation.

In the face of such a lack of specific comments, we have found it hard to respond to this review. We have done so
mostly by listing changes made in response to specific comments from the other Reviewers, where they seem to be
appropriate. We therefore hope that you will take the poor quality of this review into consideration when deciding
whether to accept the paper.

Reviewer 1

• I felt the organisation of the paper would be improved if the statistical NLM interpretation (sect 2.1) was in
a dedicated section (ie sect 2.), allowing sect 2.2-2.4 to be in a sect 3 entitled Evaluation Methodology or
similar. Fig 2 could also be moved back, and possibly combined with Fig 5 (fig 2a and 5a appear to be the
same?).

We agree with all of these suggestions, and have implemented them directly. One additional benefit of this
reorganisation is that the subsections in the new Evaluation Methodology section correspond exactly to those
in the Results section. Therefore, we have also modified the subsection headings so that they are the same
across these two sections.

Fig. 2a and Fig. 5a are the same, but we believe that Figs. 2 and 5 should be separate, as Fig. 2 shows
the clinical MR data used in testing and Fig 5 shows results (the input data is included in Fig. 5 in order
to allow a direct visual comparison with the results). Therefore, we have moved Fig. 2 back as suggested,
so that it is contained within the new evaluation methodology section, and removed Fig. 2a so that Fig. 2
now shows the additional MR images used together with the IRTSE image (and mentioned this in the Figure
caption).

• The abstract is concerned with noise filtering in general whereas line 1 of the introduction is specifically focused
on MR imaging. I think that it would be helpful for the reader if the introduction could briefly describe the
noise types for which the NLM algorithm performs well (the last para on pg 11 could be moved here also).
For example, additive Gaussian noise is used in the simulations and therefore it is appropriate for images
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characterised by Gaussian noise (of which MRI is a good example) rather than impulsive or multiplicative
noise?

We have moved the sentence describing previous empirical evaluations of NLM from the last paragraph of
page 11 to the start of the 4th paragraph of the introduction, and added the requested material at this point
i.e. Buades concluded that the more similar the noise is to genuine white noise, the better NLM works (this
is due to the restrictions of the similarity test i.e. the more structure the noise contains, the more it begins
to look like genuine image structure, and so the more NLM tends to leave it unaltered). This also helps
to put our focus on medical imaging into context, and so we have expanded this point a little. Finally, we
have altered one sentence in the abstract from “quantitative image analysis tasks” to “quantitative or clinical
image analysis tasks” to make it clear that our main focus is on clinical imaging.

• Although a comparison with the original NLM algorithm is performed for the MR data, it is not included
for the simulated data. I would like to see this comparison included in sect 3.1. As the noise-free intensities
are available here, they can be used in a quantitative comparison and a simple measure such as SNR used to
quantify the improvement gained by using the statistically motivated NLM.

We take the point that a quantitative evaluation could be performed using the simulated data, and that
knowledge of the gold standard result (i.e. the noise-free simulated data) would allow some simple metrics to
be applied. However, we strongly feel that this material should not be added to the paper, for two reasons.

First, the aim of this section of the paper (i.e. Sections 3.1 and 4.1 in the revised manuscript) is to illustrate
two specific points. The simulated data was constructed to have a grid of unique locations (i.e. locations
for which the surrounding patch of intensities is unlike any other patch of intensities in the image). This
grid can be seen in the result (Figs. 2b and 3c). Therefore, the first point illustrated using this data is
that NLM tends to leave such unique locations unmodified, as there are no similar patches of intensities in
the rest of the image that can be used in the averaging process. This is in turn used to explain the results
shown in Fig. 4. The second point illustrated using this data is that, when a smooth intensity variation
is added (as might be generated by illumination effects in natural images or an inhomogeneity artefact in
clinical MR images), all locations in the image become unique. This motivates the addition of a free scale
parameter to the statistically motivated variant of NLM; without this illustration it is not obvious that a
free scale parameter is required. We feel that attempting to turn this section of the paper into a quantitative
evaluation section would deemphasise these points, and the intended message would be lost.

Second, we feel that performing the proposed evaluation would not add anything to the existing evaluation.
Simulated data can always be criticised on the basis that it does not provide a realistic test i.e. does not
contain the full range of features, artefacts etc. that would be expected in natural or clinical images. This
is particularly true in the case of the simulated data set used in the paper which, being designed to provide
a regular grid of unique locations in order to illustrate the points described above, is highly unrealistic i.e.
very different from the clinical data upon which the algorithm was actually tested. Our stated aim was to
investigate the statistical basis of NLM, in order to allow its use in quantitative or clinical tasks, where its
behaviour must be completely understood. Therefore, the quantitative evaluation section of the paper used
clinical images, so that the data could not be criticised as being unrealistic. Therefore, any quantitative
testing on simulated data is redundant: it would simply provide a less-convincing evaluation of algorithmic
performance than that already present in the paper.

Reviewer 2

• Lack of references

– you refer to anisotropic diffusion (AD) algorithm but the original Perona’s and Malik’s paper is not cited
(Perona, P.; Malik, J. ”Scale-space and edge detection using anisotropic diffusion”, IEEE Transactions
on Pattern Analysis and Machine Intelligence, Volume 12, Issue 7, Jul 1990 Page(s):629 - 639)

– I would also mention the mean shift (MS) algorithm (it can also be used for filtering, see D. Comaniciu,
P. Meer: Mean Shift: A Robust Approach toward Feature Space Analysis, IEEE Trans. Pattern Analysis
Machine Intell., Vol. 24, No. 5, 603-619, 2002)

– An interesting relationship between AD, MS, and BF is derived in: D. Barash ”A Fundamental Rela-
tionship between Bilateral Filtering, Adaptive Smoothing and the Nonlinear Diffusion Equation” , IEEE
Transactions on Pattern Analysis and Machine Intelligence, Volume 24, Issue 6, Page(s):844 - 847,
Jun 2002.
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– When you mention ”... Gaussian filters fall into this category and have been widely used in some
applications such as functional MRI.” Please, mention a reference related to.

We have added all of the suggested references to the paper.

• At the end of Introduction Section you have to explain the organisation of the paper.

A paragraph explaining the layout of the paper has been added at this point.

• Some terms of relationships or formulas are not explained (perhaps I have not seen them).

– Formula (2): what is gb?

gb is the intensity of the central pixel in patch B: this is defined in the line of text above Eq. 2. We
have altered the text at this point to clarify the definition of gb.

– what is erf() ?

erf() is the error function i.e. erf(x) = 2
√

π

∫ x

0
exp−t2 dt. It is closely related to the incomplete gamma

functions and also to the Gaussian distribution i.e. erf( x
√

2π
) is the integral of a Gaussian distribution

with mean 0 and standard deviation σ from −x to x. The point is that these indefinite integrals cannot
be performed analytically, but most numerical software libraries (e.g. math.h if you are using C) will
provide a function that gives a numerical approximation. We have added a reference to avoid this
confusion in future.

• Section 2.3 Why did you use a region of 7x7 and not a region of 5x5 or other size? Please, explain it.

Manjon et al. evaluated the effect of this parameter in a previous paper (MRI denoising using Non-Local
Means, Medical Image Analysis 12 p. 514, 2008; cited in the paper), concluding that a 7x7 similarity patch
provided an optimal balance between accuracy and required processor power. We have added a statement
to this effect to the paper.

• Section 2.4 Why have you compared the filter against Gaussian filtering and median filtering and you have
not used AD, MS or Wavelets?

As stated in the Introduction, the aim of this paper was not to perform a large-scale comparison of many
different noise filtering algorithms (in any case, this has already been done by Manjon et al. and Buades
et al.: see the references in the paper), but to try to understand the NLM algorithm in a statistical sense.
Therefore, all evaluation stages were focused towards this aim. In the comparison to other noise filtering
algorithms, the underlying aim was to quantify how much noise was removed by NLM and how destructive
it was to image content, and to compare this between the original and statistically motivated versions of the
algorithm. The other algorithms included in this section were present only to provide some context for the
results. Therefore, they needed to be simple algorithms, familiar to the readers of the paper (i.e. widely
used), whose properties would be known in advance (e.g. the fact that median filtering is not very destructive
to image content but also does not remove much noise, and that Gaussian filtering provides a high degree of
noise removal but tends to blur the edges in the image). In this context, we feel that algorithms like mean
shift and wavelet smoothing are too complex to provide an easily understandable context.

We also note that, again with a view to providing an easily understandable context for the NLM results, we
tried to keep the settings of free parameters as low as possible, and did not evaluate the effects of changing
them (e.g. using multiple different Gaussian filters with different kernel sizes). In this context, anisotropic
diffusion is present in the comparison in the form of the tangential smoothing algorithm, which is the simplest
possible implementation of anisotropic diffusion, as mentioned in Section 3.3.

In retrospect, entitling the relevant sub-sections “Comparison to Other Noise Filtering Algorithms” was
a mistake in the light of the above comments, and was bound to lead to this confusion. Therefore, was
have changed the title of these sub-sections (both in the Evaluation Methodology and Results sections) to
“Quantitative Evaluation of NLM”.

• Results. A table indicating rates will show the advantages of the filter and it would also improve the quality
of the paper.

We have added a table of numerical results as suggested.
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Reviewer 3

• Textual elaborateness with insufficient citations suggestive of author bias in presentation. Justify.

The Reviewer does not specify the points at which the text is over-elaborate, specify which papers should
be cited, specify at which points the paper is biased, or make any suggestions for alterations to remedy any
of these issues. In the absence of this information, it is difficult to interpret the Reviewer’s comment or
decide which changes should be made to the paper. However, we have added more references to the paper
in response to a comment from Reviewer 2 (see above), and have also clarified the text at several points in
response to specific comments made by the other Reviewers (again, see above).

• Manuscript presentation could have created better impact with evidence than descriptive summaries.

The Reviewer does not specify what additional evidence is required to support the conclusions we draw in
the paper. We contend that the paper incorporates sufficient quantitative evidence to support our main
conclusion i.e. that the original NLM algorithm incorporates a similarity test that, in comparison to a
strictly statistical test of similarity when applied to clinical MR images, is not sufficiently strict to avoid any
destructive image modification. This conclusion is clearly stated in the second paragraph of the Conclusions
section (see the response to the final comment, below).

• Is it possible to test the proposed method using any other strict statistical tool? Justify.

We note that the Reviewer does not suggest alternative metrics, or describe why they would be superior to
the ones used in the paper. There are only two important measures of the performance of any noise filtering
algorithm: how much of the noise does it remove, and how much does it degrade image structure. We have
directly evaluated these two quantities in the quantitative evaluation section of the paper, and contend that
they do constitute strictly statistical metrics. Numerous different measures could no doubt be devised: for
example, the noise removal efficiency could be quoted in terms of SNR rather than as a percentage of noise.
However, such measures would contain the same basic information as those used in the paper.

• Suggested that an acceptable sample population is chosen and used for testing the proposed method. Visual,
Graphical and Tabular evidence be given to support exhaustive testing.

The reviewer does not specify what would constitute an “acceptable sample population”, or specify how the
evaluation present in the paper is insufficient. They seem to be suggesting that the statistically motivated
variant of NLM should be tested simply by applying it to a large image library. However, it is difficult to see
what this would add to the paper.

Our stated aim was not to perform a wide-ranging algorithmic “shoot-out”, but to determine the statistical
foundations of NLM, in order to determine if it can be used in clinical tasks where any destructive modifi-
cation of the images would be unacceptable, as it might remove information that a clinician would consider
important. The approach taken was to identify an analogous method based on standard statistics, and then
to compare the performance of the original and statistically motivated variants of NLM. We achieved this
in two stages. First, tests on simulated data qualitatively illustrate the behaviour of the algorithm i.e. the
tendency to leave unique image regions unmodified, and the subsequent need for a free scale parameter. Sec-
ond, tests on clinical data were used in a quantitative evaluation, and showed that the original NLM variant,
whilst less destructive than simple noise filters like Gaussian smoothing (used in some fMRI applications, as
stated in the Introduction) still modifies some pixels that are left unmodified by the statistically motivated
variant. We contend that this provides sufficient evidence to support our main conclusion, that the original
NLM algorithm incorporates a similarity test that, in comparison to a strictly statistical test of similarity
when applied to clinical MR images, is not sufficiently strict to avoid any destructive image modification.
This conclusion is clearly stated in the second paragraph of the Conclusions section.
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