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Hybrid-automaton models for simulating systems

with sliding motion: still a challenge

Eva M. Navarro-López

School of Computer Science, The University of Manchester, Oxford Road,
Kilburn Building, Manchester, M13 9PL, UK (e-mail:

eva.navarro@cs.man.ac.uk)

Abstract: There is a gap between the modelling and the simulation of discontinuous dynamical systems
(DDS) exhibiting sliding-mode behaviour. Several challenges arise. Mainly, the definition of unique
solutions on the discontinuity surfaces and at their crossings. There are also numerical issues in the
detection and location of the trajectory entering and going out of the discontinuity surface, as well
as when it remains on the discontinuity surface (chattering phenomenon). The aim of this paper is
establishing a semantics for DDS so that a deterministic dynamical behaviour can be defined for
simulation purposes. Particularly, a class of DDS is modelled by using two different hybrid automata.
One of them is called the DDS hybrid automaton, proposed by the author previously. The other is
obtained by modifying the DDS hybrid automaton, and is inspired in computer-simulation-oriented
friction models. The use of a computational model is an elegant way for specifying the multiple
transitions in DDS. The modelling framework is specially useful for specifying transitions when multiple
discontinuity surfaces are present. A system with discontinuous friction and stick-slip oscillations is used
to validate the models. In the example, it is concluded that discontinuous systems can be appropriately
simulated by using hybrid-automaton-based models without the problem of chattering. On the other
hand, the system dynamical behaviour can change depending on the step size of the numerical integration
method and on the hybrid-automaton representation used. The hybrid models are simulated by means of
Simulink/Stateflow R© package.

Keywords: Hybrid systems; Discontinuous systems; Hybrid automata; Computational models; Friction;
Simulation; Stateflow R©.

1. MOTIVATION

How to make completely deterministic, for simulation pur-
poses, the dynamics of a discontinuous system exhibiting slid-
ing motion? What about using hybrid models for this purpose?
What are the dynamical implications of rewriting discontinuous
dynamical systems as hybrid automata? What about the simu-
lation of these hybrid automata? This paper attempts to answer
these questions.

It is well-known that non-uniqueness or even non-existence
of solutions may arise in discontinuous dynamical systems
(DDS) when the trajectories cross or slide on the discontinuity
surfaces. This has been extensively studied in systems with
Coulomb friction and is generically referred to as the Painlavé
paradox. The non-uniqueness of solutions, even for simple sys-
tems, can appear if the system dynamics and all the transitions
are not appropriately specified Lötstedt (1981). A complete
overview of the problem can be found in Brogliato (1999).

The problem of uniquely defining the solution in a DDS has
been solved by means of different methods Filippov (1988);
Utkin (1992). However, there are different challenges concern-
ing the simulation and the numerical integration of these sys-
tems Acary and Brogliato (2008). There are two main issues.
Firstly, maintaining the trajectory on the discontinuity surface
once it has entered the surface, what is called the tracking error.
Several numerical solutions have solved this problem and are
closely related to avoid the chattering phenomenon Zhao and

Utkin (1996); Mosterman et al. (1999). Secondly, detecting and
locating the trajectory crossing the discontinuity surface Park
and Barton (1996); Zhang et al. (2008).

In the last decade, there has been an effort in proposing differ-
ent semantics and computational-oriented frameworks for mod-
elling systems exhibiting sliding-type behaviour. For example,
object-oriented models Elmqvist et al. (1993); Mattsson (1996)
or hybrid dynamic models Mosterman and Biswas (2000) are
used for different applications.

Using a computational model is an elegant way in order to
specify the transitions and event-triggered phenomena appear-
ing in DDS’s. In this paper, two different hybrid models are
proposed for this purpose. The automaton-based framework is
used Alur et al. (1993); Henzinger (1996). The basic hybrid
automaton model is extracted from Johansson et al. (1999);
Lygeros et al. (1999, 2003). It is very similar to the Hybrid
State Model (HSM) proposed in Buss et al. (2002). The main
difference between the HSM and the basic hybrid model used
here, is that the HSM uses an equation-based representation,
and the discontinuity surfaces are defined by means of switch-
ing functions instead of guard sets.

The two proposed hybrid automata model DDS’s with one
discontinuity surface. Systems with multiple discontinuity sur-
faces can be modelled by means of the composition of sev-
eral hybrid automata Navarro-López (2009c). The first hybrid
model, called the DDS hybrid automaton, was previously pro-
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posed by the author Navarro-López (2009c), and has three
discrete locations. This model overcomes some problems en-
countered in the 3-discrete-states object-oriented model given
in Mattsson (1996). The second hybrid model is a variation of
the DDS hybrid automaton with five discrete locations. It is in-
spired in simulation-oriented models of discontinuous friction
Karnopp (1985); Leine et al. (1998), and in the state-transition
diagram of a friction model presented in Elmqvist et al. (1993).
In comparison to Elmqvist et al. (1993), here, some guard and
location domain sets have been changed so that the dynamics
in each discrete location are uniquely defined.

The specification of DDS’s given in this paper leads to a
simulation algorithm. The events or discrete transitions are
defined in order to clearly specify all the possible changes in the
dynamics. As a consequence, the hybrid automata proposed can
be translated to a program or to any other description language.

The simulation of the hybrid dynamical systems is carried out
by means of the Simulink/Stateflow R© toolbox of MATLAB R©

The MathWorks, Inc. (1999–2003). The translation between the
Simulink/Stateflow models and the hybrid automata is far from
being trivial Agrawal et al. (2004); Alur et al. (2008).

In order to validate the hybrid models, a system with discon-
tinuous friction and different sliding-mode-related dynamics is
considered. It is the torsional model of a conventional vertical
oilwell drillstring of 2 degrees of freedom (DOF), which has
been widely studied by the author, for instance, Navarro-López
and Cortés (2007); Navarro-López and Licéaga-Castro (2009a);
Navarro-López (2009b) and references therein.

2. A HYBRID AUTOMATON FOR DISCONTINUOUS
DYNAMICAL SYSTEMS

The following general hybrid automaton Navarro-López (2009c)
is used. It is based on the hybrid model given in Johansson et al.
(1999); Lygeros et al. (1999, 2003).

Definition 1. A hybrid automaton with inputs and outputs is a
collection

H = (Q,E,X ,Σ,U ,O,Y ,Dom,F , Init,G,R,h,r)

where:

• Q = {q1, q2, . . . , qN} is a finite set of discrete states or
locations.

• E ⊆ Q×Q is a finite set of edges called transitions or
events.

• X ⊆R
n is the continuous state space. U ⊆R

m and Y ⊆
R

m are the continuous input and output spaces, respec-
tively. Moreover, Xi ⊆X , Ui ⊆ U and Yi ⊆ Y are the
continuous state, input and output spaces corresponding to
each location qi. The state of H is (q,x) ∈ Q×X .

• Σ = {σ1, σ2, . . . , σM} is a finite set of symbols labelling
the edges and representing the discrete input events.

• O = {o1, o2, . . . , oK} is a finite set of symbols represent-
ing the discrete output events.

• Dom : Q→ 2X ×U is the location domain. It is a mapping
from the locations Q to the set of all subsets of X ×U ,
that is, Dom assigns a set of continuous states and inputs
to each discrete state qi ∈Q, thus, Dom(qi)⊂X ×U .

• F = {fqi
(x,u) : qi ∈ Q} is the collection of vector

fields describing the continuous dynamics such that fqi
:

X ×U →X . Each fqi
(x, ·) is assumed to be Lipschitz

continuous on the location domain for qi in order to ensure
that the solution within Xi exists and is unique.

• Init ⊆ Q×X is a set of initial states.
• G : E → 2X is a guard set. Funtion G assigns to each edge

e = (qi,qj) ∈ E a set of continuous states (G(e) ⊂ X ).
Each guard set plays the role of an enabling condition in
order to change the location.

• R : E×X ×U → 2X is a reset map for the continuous
states for each edge. It is assumed that ∀e ∈ E , G(e) 6= /0
and ∀x ∈ G(e), R(e,x,u) 6= /0.

• h : Q×X ×U → Y is the continuous output mapping,
there is one for each location.

• r : Q×X ×Σ×U →O is the discrete output map, there
is one for each location.

As long as the system is within location qi, the continuous state
x must satisfy x ∈Dom(qi). The transition from a discrete state
qi to another qj is enabled when the continuous state x reaches
the guard G(qi,qj) ⊂X of some edge (qi,qj) ∈ E . Then, the
discrete state changes to qj and at the same time, x is reset to
the value specified by R(qi,qj,x,u)⊂X . H will be represented
as a directed graph (Q,E) with vertices Q and edges E . For
each vertex qi ∈Q, a set of initial conditions, a vector field and
a domain are given. In addition, a guard, a label and a reset
function are associated with each edge, e ∈ E .

Now, a DDS with one discontinuity (or switching) surface is
modelled as a hybrid automaton H. A state-dependent input
control u(x) is used, consequently, the vector fields can be
written as fqi

(x), and,

ẋ =

{

f+(x) if x ∈ S+,

f−(x) if x ∈ S−,
(1)

where x ∈X ⊆R
n is the state vector, f+ and f− are continuous

and smooth, and S+ = {x ∈X : s(x) > 0}, S− = {x ∈X :
s(x) < 0}, with s a smooth scalar function with nonvanishing
gradient. The discontinuity surface is S = {x ∈X : s(x) = 0},
and X = S+ ⋃

S−
⋃

S. On S, f+(x) and f−(x) do not agree.

The discontinuity surface is divided into two regions, the sliding
set Ss, which is closed, and the crossing set Sc, which is open.
Then S = Ss

⋃

Sc. Ss is the set where a sliding motion can take
place, and Sc is the set of S within which the trajectory crosses S
without sliding. The system dynamics on S are ẋ = fs(x), where
fs is the equivalent dynamics Filippov (1988); Utkin (1992).

In this paper, the Utkin’s equivalent control method is used
Utkin (1992), which, as it is established in Zhao and Utkin
(1996); Mosterman et al. (1999), gives better chatter-free
simulation results for some cases. Then,

fs(x) =
f+(x)+ f−(x)

2
+ ueq(x)

f−(x)− f+(x)

2
(2)

with ueq(x) ∈ [−1,1] a scalar function playing the role of the
equivalent control. From (2), and taking into account that fs

must be tangential to S, one yields to,

ueq(x) =−
〈▽s(x), f+(x)〉+ 〈▽s(x), f−(x)〉

〈▽s(x), f−(x)〉− 〈▽s(x), f+(x)〉
, (3)

where ▽s is the gradient of s and 〈·, ·〉 denotes the scalar
product of vectors. The sliding set has the following form,

Ss := {x ∈ S : −1≤ ueq(x)≤ 1}. (4)

Sc is the complement set of Ss in S. It is assumed that there
are no points on Ss at which both f + and f− are tangent
to S. Furthermore, the sliding set is attractive for x such that
〈▽s(x), f−(x)〉− 〈▽s(x), f+(x)〉 > 0 and repulsive for x such
that 〈▽s(x), f−(x)〉− 〈▽s(x), f+(x)〉< 0 Kuznetsov (2003).
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Definition 2. Navarro-López (2009c) A DDS hybrid automaton
with 3 discrete states (HDDS1

) describing the dynamics of
system (1) is a particular case of H with,

• Q = {q1, q2, q3}= {slip+, slip−, stick}, X ⊆ R
n.

• E = {(q1,q2), (q1,q3), (q2,q1), (q2,q3), (q3,q1), (q3,q2)}.
• Σ = {a,b,c}, one edge label is assigned to each type of

guard. For specification purposes, these discrete inputs
can be considered redundant and unnecessary.

• Dom(q1) = S+, Dom(q2) = S−, Dom(q3) = S.
• fq1

(x) = f +(x), fq2
(x) = f−(x), fq3

(x) = fs(x).
• Init = Q×X /Us, with Us := {x ∈ Ss : 〈▽s(x), f−(x)〉−
〈▽s(x), f+(x)〉< 0}. Then, the problem of nonuniqueness
of solutions starting at unstable sliding sets is avoided. In-
deed, in most cases, solutions starting away from unstable
sliding surfaces do not usually reach them.

• G(q1,q3) = G(q2,q3) = Ss, G(q1,q2) = G(q3,q2) = {x ∈
S : ueq(x) > 1}, G(q2,q1) = G(q3,q1) = {x∈ S : ueq(x) <
−1}.

• R(qi,qj,x) = {x}, ∀i, j ∈ {1, 2, 3}.
• y = h(q1,x) = h(q2,x) = h(q3,x) is the continuous output,

which is the same for all the locations. No discrete outputs
are considered.

A similar hybrid model is obtained in Sedghi et al. (2002);
Sedghi (2003). The difference with this work is that the hybrid
framework used in Sedghi et al. (2002); Sedghi (2003) is an
equation-based representation.

In the next section, HDDS1
is rewritten for stick-slip systems

with discontinuous friction. In Section 4, a variation of HDDS1

is considered for stick-slip systems. It includes transition states
between stick and slip phases in order to take into account
friction models which are more appropriate for simulation pur-
poses. This extended DDS hybrid automaton is valid for DDS
with one discontinuity surface, although for space reasons, it is
only presented for systems with discontinuous friction.

3. THE DDS HYBRID AUTOMATON FOR SYSTEMS
WITH FRICTION AND STICK-SLIP

The DDS hybrid automaton HDDS1
is rewritten for a system

with discontinuous friction: a simplified 2-DOF-model of a
vertical oilwell drillstring. It is a particular case of the n-
DOF model proposed in Navarro-López and Cortés (2007). The
change in the number of DOF’s only implies the change in the
dimension of the continuous state space within each location.

The drillstring torsional behaviour is described by a simple
torsional pendulum driven by an electrical motor, and the bit-
rock contact is described by a dry friction model. The drill pipes
are represented by a linear spring with torsional stiffness kt and
a torsional damping ct, which connect the inertias Jr and Jb.

The system state vector is x = (ϕ̇r, ϕr−ϕb, ϕ̇b)
T, with ϕi, ϕ̇i

(i ∈ {r, b}) the angular displacements and angular velocities
of the top-rotary system and the bit. At the top-drive system,
a viscous damping torque is considered (crx1). Tm = u is the
torque applied by a motor at the surface and is considered as a
constant input. Tb(x3) = cbx3 + Tfb

(x3) is the torque on the bit
with cbx3 approximating the influence of the mud drilling on
the bit behaviour. Tfb

(x3) is the friction modelling the bit-rock
contact, and Tfb

(x3) = fb(x3)sign(x3) with:

fb(x3) = WobRb

[

µcb
+(µsb

− µcb
)exp

−
γb
vf
|x3|

]

, (5)

with Wob > 0 the weight on the bit (considered as a constant
input), Rb > 0 the bit radius; µsb

, µcb
∈ (0,1) the static and

Coulomb friction coefficients associated with Jb, 0 < γb < 1
and vf > 0. In addition, the Coulomb and static friction torque is
Tcb

and Tsb
, respectively, with Tcb

= WobRbµcb
, Tsb

= WobRbµsb
.

The sign function is considered as:

sign(x3) = x3/|x3| if x3 6= 0, sign(x3) ∈ [−1,1] if x3 = 0. (6)

The drillstring dynamics is given by:

ẋ1 =
1

Jr
[−(ct + cr)x1− ktx2 + ctx3 + u] , ẋ2 = x1− x3,

ẋ3 =
1

Jb

[

ct x1 + kt x2− (ct + cb)x3−Tfb
(x3)

]

,
(7)

or in a compact form, ẋ(t) = Ax(t)+ Bu(t)+ Tf(x(t)), where
A, B are constant matrices and Tf represents the torque on the
bit. The inputs of the system are u and Wob. The outputs are the
angular velocities x1 and x3.

For (7) with (5), s(x) = x3, the switching surface is S = {x ∈
R

3 : x3 = 0}, and the sliding set is Ss = {x ∈ S : |ct x1 +
kt x2| ≤ Tsb

}. Notice that Tfb
plays the role of the equivalent

control (Tfbeq), and Tfbeq is the solution for Tfb
of equation

ṡ = 0, that is, ueq = Tfbeq = ct x1 +kt x2− (ct +cb)x3. Moreover,
−Tsb

≤ Tfbeq ≤ Tsb
. For more details, the reader is invited to

read Navarro-López and Cortés (2007); Navarro-López and
Licéaga-Castro (2009a); Navarro-López (2009b).

The DDS hybrid automaton HDDS1
associated with system (7)-

(5) has the following vector fields and guard sets:

fq1(x,Wob,u) = Ax + Bu + Tf(x)|Tfb
=T+

fb

= f +(x),

fq2(x,Wob,u) = Ax + Bu + Tf(x)|Tfb
=T−fb

= f−(x),

fq3(x,u) =







1

Jr
[−(ct + cr)x1− ktx2 + u]

x1

0






= fs(x),

G(q1,q3) = G(q2,q3) = {x ∈ S : |ct x1 + kt x2| ≤ Tsb
},

G(q1,q2) = G(q3,q2) = {x ∈ S : ct x1 + kt x2 <−Tsb
},

G(q2,q1) = G(q3,q1) = {x ∈ S : ct x1 + kt x2 > Tsb
},

(8)

where T +
fb

and T−fb
are Tfb

(x3) for x3 > 0 and x3 < 0, respectively.

The directed graph associated with this DDS hybrid automaton
is shown in Fig. 1. The guards are close to the departure loca-
tions, and the reset functions are close to the arrival locations.

The 3-discrete-states hybrid automaton proposed here over-
comes some non-determinism problems encountered in other
hybrid formulations of discontinuous systems with sliding, for
example, like the one presented in Mattsson (1996) where an
object-oriented model with 3 discrete locations is used.

4. MODIFYING THE DDS HYBRID AUTOMATON

A new hybrid automaton with five discrete locations is pro-
posed. It will be called the extended DDS hybrid automaton
HDDS2

, and is inspired in the simulation-oriented friction mod-
els which include intermediate transitions when leaving the
discontinuity surface (stick-to-slip transition). This new model
is of general purpose, although it is only presented for systems
with discontinuous friction.

For the example of Section 3, the discontinuous element is the
friction, which is now considered as a combination of the switch
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xç = fs(x)

q1= slip+

q3 = stick

xç = f+(x)

xç = f (x)

q2= slip 

x3 := 0

x := x

x := x

x3 := 0

a

a

b
b

c

c

(s(x) = 0)

( ueq(x) <= Tsb)

 

(s(x) = 0)

( ueq(x) <= T sb)

 

(s(x) = 0)

(ueq(x) <  Tsb)

 

(s(x) = 0)

(ueq(x) <  Tsb)
 

(s(x) = 0)

(ueq(x) > Tsb)
 

(s(x) = 0) (ueq(x) > Tsb)

s(x) = 0

s(x) > 0

s(x) < 0

Init

Fig. 1. Directed graph associated with the DDS hybrid automa-
ton HDDS1

for the drillstring with x0 = (x1,x2,0)T.

model Leine et al. (1998) and the Karnopp’s model, in which a
zero velocity band is introduced Karnopp (1985). Thus,

Tfb
(x) =















Teb
(x) if |x3| ≤ δ , |Teb

| ≤ Tsb
(stick),

Tsb
sign(Teb

(x)) if |x3| ≤ δ , |Teb
|> Tsb

(stick-to-slip transition),

fb(x3)sign(x3) if |x3|> δ (sliding),
(9)

where δ > 0, and Teb
is the reaction torque, which coincides

with the equivalent control. Then the DDS hybrid automaton
HDDS1

is modified in such a manner to obtain the extended
DDS hybrid automaton HDDS2

. For limited space reasons, the
discrete states, transitions, guard and location domain sets, and
reset functions are only shown in the graphical representation
of the hybrid dynamical system of Fig. 2. ṡ denotes the time
derivative of function s along the system trajectories.

xç = fs(x)

q1= slip+

q3 = stick

xç = f+(x)xç = f (x)

q2= slip 

x3 := 0

x := x

x := x

x3 := 0

a

e
b

b
c

c

(ueq <  Tsb)
 

(u eq > T sb)
 

 ueq <= Tsb

s > î
s < î

q5 = trans+

xç = f+s (x)

d

q4 = trans 

xç = f s (x)

a

 s <= î

x := x

x := x

x := x

x := x

(s < î)

(sç < î)
 

(s > î)

(sç > î)
 

 ( ueq <= Tsb)( s <= î) ( ueq <= Tsb)( s <= î)

( s <= î) ( s <= î)

(s > î)

(sç > î)
 

(s < î)

(sç < î)
 

 s <= î
 sç <= î

 s <= î
 sç <= î

Init

Fig. 2. Directed graph associated with the extended DDS hybrid
automaton HDDS2

for the drillstring with x0 = (x1,x2,0)T.

HDDS1
has been modified in order to include two intermediate

states before motion (one for positive velocities, another for
negative velocities), such as: q5 = {trans+} and q4 = {trans−}.
Indeed, what we are doing is splitting the stick state into two
parts: first, when the trajectories are within the sliding set (q3),

second, when the trajectories are within the crossing set on the
discontinuity surface (q4 or q5). The necessity of these states for
simulation purposes is well-known, see for example Elmqvist
et al. (1993) and Mattsson (1996). The extended DDS hybrid
automaton HDDS2

is also inspired in the state-transition diagram
of a friction model presented in Elmqvist et al. (1993). The
vector fields associated with q4 ( f−s (x)) and q5 ( f +

s (x)) have to
be different than the vector field within q3. They are obtained
by considering in (7), x3 = 0 and:

Tfb
= max(ueq)sign(ueq) = Tsb

sign(Teb
).

Furthermore, there is no direct switching between slip+ and
slip− or viceversa. For example, if a transition slip+ → slip−

should be carried out, if the system is in state slip+ and s
becomes zero, the system switches to stick before checking the
conditions for switching to slip−. Moreover, if the system is
in location trans+ and the velocity is reversed before starting
to move, the system switches to state stick before going to
slip−. This is a way to avoid the non-determinism discussed
in Mattsson (1996).

5. SIMULATION OF THE HYBRID AUTOMATA

Stateflow R© under Simulink R© in MATLAB R© The Math-
Works, Inc. (1999–2003) is the software package used to simu-
late the two DDS hybrid automata.

Although the translation of the hybrid automata HDDS1
and

HDDS2
into Stateflow charts is almost immediate, some impor-

tant aspects have to be pointed out:

• The location domain sets in each discrete state are trans-
lated into self-loop transitions in the Stateflow chart. This
becomes more critical in HDDS2

, since more variables and
conditions are associated with the transitions or events. In
HDDS1

, the same result is obtained whether or not self-loop
transitions are included, due to the fact that the guard sets
uniquely define the switchings between discrete states.

• Due to the difficulty in detecting the zero-crossing of
the functions involved, in HDDS1

, s = 0 is checked by
means of the condition s_zero == 1. The boolean variable
s_zero is obtained by passing s = x3 through the Threshold
Simulink block, and it is an external input to the Stateflow
chart.

The Stateflow charts designed are not included for limited
space reasons, and they look exactly the same (for HDDS2

, with
additional self-loop discrete-state transitions) as the directed
graphs associated with HDDS1

and HDDS2
given in Figs. 1 and

2.

The simulation results for the two hybrid automata are shown
in Figs. 3, 4, 5, 6 and 7. The hybrid systems simulation under
Stateflow R© is compared with the simulation of the discon-
tinuous system (7) with the friction model (9) (in this case,
the integration function used is ode45 of MATLAB R©). The
parameters used for the simulations are:

Jr = 2122kgm2, Jb = 471.9698kgm2, Rb = 0.155575m,

kt = 698.063N m/rad, ct = 139,6126N ms/rad,

cr = 425N ms/rad, cb = 50N ms/rad, µcb
= 0.5,

µsb
= 0.8, δ = 10−3, γb = 0.9, v f = 1.

From the figures, it can be seen how the hybrid automata
reproduce the three main types of bit dynamical behaviours,
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such as: 1) stick-slip at x3, that is, the trajectory enters and
leaves repeatedly the sliding mode; 2) permanent stuck bit, i.e.,
x(t)∈ S, ∀t > ts, for some ts > 0; 3) the bit moves with a positive
constant velocity.

Several features are observed from the simulations. First of all,
the importance of the step size of the numerical integration
method. For simulating the hybrid models, the function ode45
of MATLAB R© is used with a variable-step size integration
method. The maximum step size is changed in order to appre-
ciate its effect on the system solutions obtained.

In Figs. 3, 4 and 5, the maximum step size is h = 0.001sec.
With this h, the trajectories of the three systems coincide for
the three dynamical behaviours. Differences in the dynamics
appear when h is not small enough. In addition, the bigger the
number of entries into the discontinuity surface is, that is, the
bigger the number of transitions between discrete locations is,
the bigger the difference between the two hybrid trajectories
given by HDDS1

and HDDS2
is, and the bigger the difference

between the hybrid trajectories and the trajectory of system (7)-
(9) is. See Figs. 6 and 7, where a maximum h = 2sec was used.
This fact is specially visible in Fig. 6.(1) and 7.

Hence, the number of discrete locations and transitions in a
hybrid automaton can change the system behaviour. This is,
mainly, because there are two phenomena associated with every
event (E). There is an instantaneous transition in the discrete
state and another in the continuous part of the state, that is: a
switch (transition, guard) and a jump (reset). It has to be also
pointed out that in the evolution of q in HDDS2

, the change from
q = 3 to q = 5 is of impulsive type. The reason is of numerical
type. When q = 3 and ueq becomes greater than Tsb

, there is a
delay so that this change in ueq can be detected.

To conclude with, there are changes introduced in the system
dynamical behaviour by the hybrid-automaton representation.
Numerical aspects have to be also taken into account.
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Fig. 3. Convergence to the equilibrium entering several times
the switching surface for the three systems: u = 6kNm,
Wob = 51408N. A small enough step size is used.

6. CONCLUSION

Two hybrid-automaton-based models have been compared for
the specification of discontinuous systems exhibiting sliding-
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Fig. 4. Permanent stuck bit for the three systems: u = 6kNm,
Wob = 60kN. A small enough step size is used.
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Fig. 5. Stick-slip situation for the three systems: u = 6kNm,
Wob = 53018N. A small enough step size is used.
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Fig. 6. Use of a bigger step size in the numerical integration
method: (1) Convergence to the equilibrium: u = 6kNm,
Wob = 51408kN, (2) permanent stuck bit: u = 6kNm,
Wob = 60kN.

mode behaviour. An example has been used to illustrate the
models. It is a simplified torsional model of a drillstring with
discontinuous friction and stick-slip. Under the framework pro-
posed, the complex behaviours associated with discontinuous
dynamical systems can be reinterpreted and redefined from
a computational viewpoint. However, this paper poses more
questions than answers, which must be taken into account when
hybrid models are considered for modelling physical systems.
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53018N. – ϕ̇b obtained with HDDS1

, - - ϕ̇b obtained with
HDDS2

, – ϕ̇b of system (7)-(9), · · · ϕ̇r.
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