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We use the coupled-cluster method to study ground-state properties of anisotropicS5
1
2 antiferromagnets on

square and triangular lattices, with the inclusion of arbitrarily long-ranged two-spin correlations. We detect the
singularities of various quantities associated with the quantum phase transitions and also compute their critical
exponents. The two-spin correlation coefficients for the triangular lattice are found to exhibit an interesting
oscillatory behavior in their signs, knowledge of which could assist the implementation of quantum Monte
Carlo simulations.

The ground-state magnetic ordering of two-dimensional
quantum antiferromagnets with or without frustration has at-
tracted much theoretical interest. While various calculations1

including extensive quantum Monte Carlo simulations2

strongly support the existence of a Ne´el ordering for the

square-latticeS5 1
2 Heisenberg antiferromagnet with a re-

duced magnetic moment of about 68% of its classical value,
the three-sublattice ordering for the corresponding triangular
case is much less clear. For example, the conventional spin-
wave results,3 variational wave function calculations4 and
recent finite-cluster studies5 support a magnetically ordered
phase, whereas a high-order series expansion by Singh and
Huse6 suggests that the system may be at its critical point for
antiferromagnetism. One noticeable difficulty in dealing with
frustrated antiferromagnets is the unavailability of the other-
wise usually very accurate and decisive quantum Monte
Carlo simulations, due to the ‘‘minus sign problem’’ inherent
in the unknown nodal surface of the ground-state wave func-
tion.

Recently, the so-called coupled-cluster method~CCM!
has been successfully applied to collinear magnets in order to
study the quantum phase transitions.7–9 In this paper we ex-

tend these studies to include the triangular latticeS5 1
2 anti-

ferromagnet, a noncollinear and frustrated magnet. By com-
puting such ground-state properties as the energy, the
sublattice magnetization, and the anisotropy susceptibility as
functions of the anisotropy parameter, we are able to study
possible quantum phase transitions in the anisotropic models
and compute the critical exponents, even if the critical an-
isotropy may lie outside the radius of convergence of series
expansion methods. Furthermore, the systematic and fully
microscopic parametrization of the ground-state wave func-
tion in terms of spin correlations in the CCM enables us to
probe its nodal structure by investigating the sign oscillations
of the spin-spin correlation coefficients.

Since detailed descriptions of the fundamentals of the
CCM are available in the literature,10 we only highlight the
essential ingredients of its application in the present context.
The CCM ansatz for the ground ket state is given by

uC&5eSuF&, S5( sICI
1 , ~1!

where the correlation operatorS is decomposed wholly in
terms of mutually commuting creation operators
$CI

1%[$(CI
2)†% for distinct multispin excitations with re-

spect to the reference stateuF&, i.e., ^FuCI
2uF&50. By tak-

ing the inner product of the Schro¨dinger equation in the form
of e2SHeSuF&5EguF&, with both the reference state itself
and the set of multispin excitation states, i.e.,$CI

1uF&%, we
thus obtain respectively the ground-state energy

Eg5^Fue2SHeSuF& ~2!

and the coupled set of nonlinear equations

05^FuCI
2e2SHeSuF&, ~3!

by which the correlation coefficients$sI% can be determined.
It can be seen that this parametrization leads to a workable
scheme since the similarity-transformed Hamiltonian,
e2SHeS, which can be expressed as the nested commutator
expansionH1@H,S#1(1/2!)†@H,S#,S‡1•••, terminates at
a finite order due to the fact that the correlation operatorS
contains mutually commuting multiconfigurational creation
operators only, as long asH is a finite-order multinomial of
the elementary single-spin operators, as is the case for almost
all models of interest. All other ground-state quantities can
also be evaluated via a similar and elegant CCM parametri-
zation of the ground bra state.10

We first consider the square lattice case8 to illustrate the
approximation scheme adopted throughout this paper and the
main features of the calculations. The Hamiltonian under

consideration describes the so-calledS5 1
2 XXZ antiferro-

magnet:

H5(
~ i j !

F2s i
zs j

z2
l

2
~s i

1s j
11s i

2s j
2!G , ~4!

where the summation runs over all nearest-neighbor bonds
andl denotes the anisotropy parameter. Note that we have
performed a spin rotation on one of the two sublattices,

namely, the up-down transformation, in which theS5 1
2

Pauli matrices on the rotated sublattice obey a simple trans-
formation as sx→2sx,sy→sy, and sz→2sz. Here
s6([sx6 isy) are the corresponding creation and destruc-
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tion operators in the rotated spin coordinates. Such a trans-
formation not only makes transparent the physical meaning
of the correlation operatorS, but also facilitates later discus-
sions on the Marshall-Peierls sign theorem.

The Hamiltonian in Eq.~4! at l50 describes the usual
Ising antiferromagnet with a Ne´el-ordered ground state or the
fully aligned ferromagnetic configuration in the rotated spin
coordinates, whereasl51 recovers the Heisenberg antifer-
romagnet. We thus choose the Ne´el state as the reference
state. To implement the CCM in practice, theS operator has
to be truncated. Here we employ the so-called full SUB2
approximation scheme8 where all the two-spin correlations
are retained while higher-order correlations are set to zero.
This truncatedS operator therefore has the following form:

S→S25(
rr 8

Brr 8s r
1s r8

1 , ~5!

where the correlation coefficientBrr 8 depends only on the
difference of its indices, i.e.,Brr 85Br2r8, due to the lattice
translational symmetries. Here the summations run over all
lattice sites such that the vectorr2r 8 connects sites on dif-
ferent sublattices. This comes about because of the con-
servedz component of the total spin. With the prescription
given by Eqs.~2! and~3!, it is straightforward to compute the
ground-state energy and the coupled set of nonlinear equa-
tions which, in turn, can be decoupled by performing a Fou-
rier transform. We thus obtain

Eg

N
522~1116lB1! ~6!

and

S l

64
1
B1

4
12lB1

2Dgq2S 1414lB1DBq1lgqBq
250,

~7!

whereB1([
2
N (qgqBq) denotes the correlation coefficient

of a pair of nearest-neighbor spins. Here

gq5
1
4 (rexp(iq•rr), with the sum running over all four

nearest-neighbor lattice vectorsrr and q, a vector in the
momentum space, runs over the first magnetic Brillouin zone
in the thermodynamic limitN→`. N denotes the number of
spins.

Clearly Eq. ~7! imposes a quantitative self-consistency
condition on the solution. This is in contrast to the conven-
tional spin-wave theory or large-S expansion, where the con-
sistency of the assumption of an ordered phase can only be
ascertained qualitatively. It has been shown7 that the full
SUB2 approximation yields22.603 for the ground-state en-
ergy per spin at the isotropic Heisenberg point (l51) with a
sublattice magnetization of about 83% of its classical value.
This energy should be compared with the corresponding
classical energy of22.0 and the quantum Monte Carlo
result2 of 22.677. Perhaps the most interesting feature in
this approximation is the appearance of a terminating point
lc'1.252, beyond which no physical solution can be ob-
tained. Although the CCM based on the Ne´el reference state
is bound to break down in the region of the anisotropy pa-
rameter space where the true ground-state wave function
possesses a different symmetry from that of the Ne´el order-

ing, it is clearly demonstrated in Ref. 7 that the terminating
point corresponds to the critical point of a phase transition.
The nature of this critical point can be elucidated by studying
the singular behavior of various quantities. To this end, we
discretize the magnetic Brillouin zone in solving Eq.~7!, and
use a large numberNk of points to obtain accurate numerical
values of various quantities near the critical point.

Specifically, we calculate the anisotropy susceptibility de-
fined as

xa[
]2~Eg /N!

]l2 . ~8!

Because Eq.~7! is explicitly given, the correlation coeffi-
cients and their derivatives with respect to the anisotropy
parameterl can be readily computed by taking derivatives
of both sides of the equation and solving the equations so
obtained. In Fig. 1 we show the log-log plot of the anisotropy
susceptibility versus the deviation of the anisotropy away
from the critical value,lc2l. Clearly, in the region where
both the deviation is sufficiently small and the convergence
has been achieved by increasingNk , xa shows a power-law
singularity of the form:xa;(lc2l)m asl→lc . The slope

readily yields the critical exponentm52 1
2 . Equivalently,

the ground-state energy has a32 power-law singularity at
lc . In the same figure, we also present similar numerical
results for the first derivative of the sublattice magnetization
M with respect to the anisotropy. These clearly reveal a1

2

power-law singularity at lc , M;Mc1k(lc2l)1/2. It
should be noted that while these singularities can also be

FIG. 1. Log-log plots of the second derivative of the ground-
state energy and the first derivative of the sublattice magnetization
with respect to the anisotropy parameter versus the deviation of the
anisotropy from the corresponding critical anisotropy, for both the
square-lattice (S, right scale! and triangular-lattice (T, left scale!
antiferromagnets.
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proved analytically, since the quadratic Eq.~7! can be solved
explicitly, it is useful to be able also to determine these criti-
cal exponents numerically because an analytic solution is no
longer available for the triangular lattice case discussed be-
low.

We now describe our results for the triangular-lattice case.
Following Singh and Huse,6 we write the Hamiltonian as

H5(
i→ j

F2
1

2
s i
zs j

z2
l

2
~s i

xs j
x22s i

ys j
y!

1
A3l

2
~s i

zs j
x2s i

xs j
z!G , ~9!

where $s i
x ,s i

y ,s i
z%, the S5 1

2 Pauli matrices at sitei , are
defined with respect to their local quantization axis, which is
chosen to orient along the spin direction at sitei of the clas-
sical ground state. Such a configuration, in the global spin
coordinates, has three sublattices with spins on sublatticeA
pointing along thez direction, and spins on sublatticesB and
C being, respectively, rotated2120° and 120° away from
thez axis in thexz plane. It is easy to show that the Hamil-
tonian withl51 describes the conventional Heisenberg an-
tiferromagnet, whereas the casel50 has as its ground state
the fully aligned ferromagnetic configuration in the above
local spin coordinates. We choose this configuration as our
reference state in applying the CCM. Note that the summa-
tion in the Hamiltonian runs over all nearest-neighbor bonds
but with directionality indicated byi→ j which goes from
A to B, B to C, andC to A.

We still restrict ourselves to the full SUB2 approximation
S→S11S2 , where the two-spin correlation operatorS2 re-
tains the form given in Eq.~5! with the only difference being
that nowr2r 8 can connect sites on the same sublattice be-
cause the reference state is no longer an eigenstate of thez
component of the total spin, and for the same reason we must
also include a single spin-flip operatorS1 . We have, after
considerable algebra, obtained the coupled set of equations
analogous to Eq.~7! for the square-lattice case. We only
report our findings here, and the details of the calculations
will be presented elsewhere. Although the SUB2 equations
may permit other solutions, we restrict ourselves henceforth
to the so-called symmetric and coplanar solution in which
S150, and the two-spin correlation coefficientsBrr 8 for a
given separationr2r 8 depend only on whether the two spins
are on the same or different triangular sublatticesA, B, and
C.

At the isotropic Heisenberg point, the SUB2 ground-state
energy per spin is22.015 which should be compared with
the classical energy of21.5 and22.2160.01 obtained by
Singh and Huse from a series expansion. We note that the
full SUB2 approximation for the triangular lattice captures
fewer quantum corrections to the classical energy than for
the square lattice. This essentially reflects the significance of
three-spin correlations not retained in the SUB2 approxima-
tion which are only present in the triangular lattice. As in the
square lattice, we also observe a terminating point, now at a
value lc51.335 25. In Fig. 1 we also show our numerical
results for the critical exponents for the anisotropy suscepti-
bility and the first derivative of the sublattice magnetization.
Clearly, at the level of the full SUB2 approximation, the

ground-state energy and sublattice magnetization have, re-
spectively,32 and

1
2 power-law singularities, which are iden-

tical to those of the square-lattice case. This strongly indi-
cates that both phase transitions belong to the same
universality class, and further supports the existence of three-
sublattice ordering in the frustrated triangular antiferromag-
net. This is fully consistent with the result of the sublattice
magnetization computed within the full SUB2 approxima-
tion, which we find to be around 85% of its classical value in
the Heisenberg case.

Finally, we turn our discussion to the structure of the
ground-state wave functions of both systems in connection
with the possibility of performing quantum Monte Carlo
simulations. For the nonfrustrated antiferromagnets, the es-
sential ingredient is provided by the Marshall-Peierls sign
theorem which concerns the phase relations of the projection
coefficients of the ground-state wave function onto a com-
plete set of spin configurations.11 This theorem, when applied
to the square Heisenberg antiferromagnet in particular, states
that all of the coefficients, when expressed in the spin-rotated
coordinates introduced in Eq.~4!, are positive. Equivalently,
the ground-state wave function has only one nodal region, a
connected region via the Hamiltonian in the spin configura-
tion space where the wave function has the same sign. This
feature is at the heart of straightforward applications of quan-
tum Monte Carlo simulations.2

Let us now consider the CCM parametrization of the
ground ket state. By expanding the exponential operator in
Eq. ~1!, we can easily show that each spin-spin correlation
coefficient is a projection coefficient of the ground-state
wave function onto the corresponding elementary excitation
configuration which flips a pair of spins with respect to the

FIG. 2. Spin-spin correlation coefficientBR as a function of the
lattice distanceR for both the square- and triangular-lattice Heisen-
berg antiferromagnets (l51). Note that we have omitted the
nearest-neighbor correlation coefficientB1 to enlarge the small os-
cillatory behavior.
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Néel state. Although it is not obvious that the CCM in SUB2
approximation will satisfy the Marshall sign theorem for the
square lattice, the numerical values of these coefficients at
the isotropic Heisenberg point plotted in Fig. 2 clearly show
that this is the case. By contrast, the corresponding coeffi-
cients for the frustrated triangular Heisenberg antiferromag-
net are found to have an oscillatory behavior in their signs,
as is also shown in Fig. 2. There has been some recent
work12 in which it is argued that the Marshall sign theorem
may survive weak frustrations in certain models. However,
our present finding is in favor of the breakdown of the Mar-
shall sign theorem for the triangular Heisenberg antiferro-
magnet. More interestingly, perhaps, we note that the fixed-
node Monte Carlo method13 and its extension14 for attacking
both continuum and lattice fermion problems require a reli-
able trial wave function in terms of which the true wave
function can be well approximated, especially in terms of its
nodal structure. The oscillatory behavior observed here in the
full SUB2 approximation for the frustrated triangular
Heisenberg antiferromagnet may represent a reasonable de-
scription of the nodal structure of the exact wave function,
since we expect corrections from higher-order spin correla-
tions to be small.

To summarize, in this paper we have extended the domain
of application of the CCM to include frustrated antiferro-
magnets. We study the magnetic order-disorder phase transi-
tions of both square- and triangular-lattice antiferromagnets
by employing the full SUB2 approximation, and find that at
this level the criticalities of the phase transitions in both
systems fall into the same universality class, although the
precise nature of the phase transitions and more realistic es-
timates of the critical anisotropies need to be further inves-
tigated beyond the current level of approximation by incor-
porating higher-order spin correlations. There already exists,
however, a marked difference in the structure of their
ground-state wave functions in terms of the respective ab-
sence or presence of sign oscillations in their spin-spin cor-
relation coefficients. Such a comparison may shed some light
on the hitherto hidden rule that governs the nodal surface of
the ground-state wave function of the triangular antiferro-
magnet, and thus help to circumvent the minus sign problem
which bedevils Monte Carlo simulations for this system.
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