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Quantum phase transition in square- and triangular-lattice spin+ antiferromagnets
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We use the coupled-cluster method to study ground-state properties of anis&pobiantiferromagnets on
square and triangular lattices, with the inclusion of arbitrarily long-ranged two-spin correlations. We detect the
singularities of various quantities associated with the quantum phase transitions and also compute their critical
exponents. The two-spin correlation coefficients for the triangular lattice are found to exhibit an interesting
oscillatory behavior in their signs, knowledge of which could assist the implementation of quantum Monte
Carlo simulations.

The ground-state magnetic ordering of two-dimensionalwhere the correlation operat® is decomposed wholly in
guantum antiferromagnets with or without frustration has atterms of mutually commuting creation operators
tracted much theoretical interest. While various calculations{C,"}={(C, )"} for distinct multispin excitations with re-
including extensive quantum Monte Carlo simulatfons spect to the reference state), i.e.,(®|C, |®)=0. By tak-
strongly support the existence of a éleordering for the ing the inner product of the Schiimger equation in the form
square-latticeS= 3 Heisenberg antiferromagnet with a re- of e’SHeS|<D>=Eg|<I>>, with both the reference state itself
duced magnetic moment of about 68% of its classical valueand the set of multispin excitation states, i{&€,"|®)}, we
the three-sublattice ordering for the corresponding triangulathus obtain respectively the ground-state energy
case is much less clear. For example, the conventional spin-
wave results, variational wave function calculatiohsand Eg=(P|e He" D) 2
recent finite-cluster studigsupport a magnetically ordered . .

-~ . . . agd the coupled set of nonlinear equations
phase, whereas a high-order series expansion by Singh an
Hugés suggests 'Fhat the system may b_e at its pritical _point_for 0=(®|C[ e SHeSd), 3)
antiferromagnetism. One noticeable difficulty in dealing with
frustrated antiferromagnets is the unavailability of the Other-by which the correlation coefficien{s,} can be determined.
wise usually very accurate and decisive quantum Montgt can be seen that this parametrization leads to a workable
Carlo simulations, due to the “minus sign problem”inherent scheme since the similarity-transformed Hamiltonian,
in the unknown nodal surface of the ground-state wave funce=SHeS, which can be expressed as the nested commutator
tion. expansiorH +[H,S]+(1/2Y)[[H,S],S]+ - - -, terminates at

Recently, the so-called coupled-cluster metH@CM) 3 finite order due to the fact that the correlation oper&or
has been successfully applied to collinear magnets in order {gontains mutually commuting multiconfigurational creation
study the quantum phase transitidn$In this paper we ex- operators only, as long as is a finite-order multinomial of
tend these studies to include the triangular latBee; anti-  the elementary single-spin operators, as is the case for almost
ferromagnet, a noncollinear and frustrated magnet. By comall models of interest. All other ground-state quantities can
puting such ground-state properties as the energy, thalso be evaluated via a similar and elegant CCM parametri-
sublattice magnetization, and the anisotropy susceptibility agation of the ground bra stat.
functions of the anisotropy parameter, we are able to study We first consider the square lattice case illustrate the
possible quantum phase transitions in the anisotropic modeRpproximation scheme adopted throughout this paper and the
and compute the critical exponents, even if the critical animain features of the calculations. The Hamiltonian under
isotropy may lie outside the radius of convergence of seriegonsideration describes the so-callSe 3 XXZ antiferro-
expansion methods. Furthermore, the systematic and fulljhagnet:
microscopic parametrization of the ground-state wave func-
tion in terms of spin correlations in the CCM enables us to
probe its nodal structure by investigating the sign oscillations H=> |—ofo]— E(Ur o tai o)), (4)
of the spin-spin correlation coefficients. W

Since detailed descriptions of the fundamentals of thavhere the summation runs over all nearest-neighbor bonds
CCM are available in the literatur8,we only highlight the and\ denotes the anisotropy parameter. Note that we have
essential ingredients of its application in the present contexperformed a spin rotation on one of the two sublattices,

The CCM ansatz for the ground ket state is given by namely, the up-down transformation, in which tige=}
Pauli matrices on the rotated sublattice obey a simple trans-
formation as ¢*— —o¢*,0Y—0¢Y, and ¢*——o* Here

—_ a5 _ + ’ 3
(w)=es®), =2 s/, (1) o*(=0"*idY) are the corresponding creation and destruc-
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tion operators in the rotated spin coordinates. Such a trans-

formation not only makes transparent the physical meaning X [ ' ' N N,=|=400’ e
of the correlation operatd, but also facilitates later discus- o: Ny = 5002
sions on the Marshall-Peierls sign theorem. X * =600

The Hamiltonian in Eq(4) at A=0 describes the usual 257 : " 130
Ising antiferromagnet with a Né-ordered ground state or the LA
fully aligned ferromagnetic configuration in the rotated spin * * *ay, ZE (s)
coordinates, whereas=1 recovers the Heisenberg antifer- ar ¥ ¥ g 128
romagnet. We thus choose the éllestate as the reference oM Ve, ou
state. To implement the CCM in practice, tBeperator has Log10|37| *'«,“ TA_(SZ

to be truncated. Here we employ the so-called full SUB2  ad 15 20

Y
approximation schenffevhere all the two-spin correlations Lo |32_El ; ‘
are retained while higher-order correlations are set to zero. %80137 s L
This truncatedsS operator therefore has the following form: 1k ‘ '*.,' 115
*y,

L %,
+ i) *
S_>82= E Brr ’U':r Ory (5) Y (T) "t'“\*
rr’

05
where the correlation coefficied®,,, depends only on the

difference of its indices, i.eB,,,=B,_,,, due to the lattice "“\.,,‘
translational symmetries. Here the summations run over all 0 L ! L L

lattice sites such that the vectorr’ connects sites on dif- - -45 -4 =35 -3 25
ferent sublattices. This comes about because of the con- Logig(Ae = A)

servedz component of the total spin. With the prescription
given by Eqs(2) and(3), it is straightforward to compute the -
ground-state energy and the coupled set of nonlinear equa. ' 'C 1+ 109109 plots of the second derivative of the ground-
tions which, in turn, can be decoupled by performing a I:Ou_state energy and the first derivative of the sublattice magnetization
ier t f ! Wi ih btai with respect to the anisotropy parameter versus the deviation of the
rier transtorm. vve thus obtain anisotropy from the corresponding critical anisotropy, for both the

square-lattice §, right scal¢ and triangular-lattice T, left scale

% =—2(1+16\B;) (6) antiferromagnets.
and ing, it is clearly demonstrated in Ref. 7 that the terminating
point corresponds to the critical point of a phase transition.
N B, ) 1 ) The nature of this critical point can be elucidated by studying
eat j+2>\51 Yq— Z+4)‘Bl Byt A74B3=0, the singular behavior of various quantities. To this end, we

7) discretize the magnetic Brillouin zone in solving K@), and
use a large numbe, of points to obtain accurate numerical
where By(= & 24v4By) denotes the correlation coefficient values of various quantities near the critical point.
of a pair of nearest-neighbor spins. Here Specifically, we calculate the anisotropy susceptibility de-
Yq= % 2,exp(q-r,), with the sum running over all four fined as
nearest-neighbor lattice vectorg and g, a vector in the

2
momentum space, runs over the first magnetic Brillouin zone Ya= I(Eg/N) ®)
in the thermodynamic limiN—oo. N denotes the number of a IN?
spins.

Clearly Eq.(7) imposes a quantitative self-consistency Because Ea(7) is explicitly given, the correlation coeffi-
condition on the solution. This is in contrast to the conven-Ci€nts and their derivatives with respect to the anisotropy
tional spin-wave theory or largB-expansion, where the con- paramete_m can be readlly.computed b_y taking derIV?.tIVBS
sistency of the assumption of an ordered phase can only R Poth sides of the equation and solving the equations so
ascertained qualitatively. It has been shéwhat the full ~ Obtained. In Fig. 1 we show the log-log plot of the anisotropy
SUB2 approximation yields- 2.603 for the ground-state en- susceptlblllty versus the deviation Of. the amsptropy away
ergy per spin at the isotropic Heisenberg point1) with a from the crmpa! vallue)\cf}.\. Clearly, in the region where
sublattice magnetization of about 83% of its classical valuePOth the deviation is sufficiently small and the convergence
This energy should be compared with the correspondind!@S been achieved by increasiNg, x, shows a power-law
classical energy of-2.0 and the quantum Monte Carlo Singularity of the form:y,~(Ac—\)* ash—A.. The slope
resulf of —2.677. Perhaps the most interesting feature irreadily yields the critical exponent=—3. Equivalently,
this approximation is the appearance of a terminating pointhe ground-state energy has 3apower-law singularity at
A~1.252, beyond which no physical solution can be ob-A.. In the same figure, we also present similar numerical
tained. Although the CCM based on thédlleeference state results for the first derivative of the sublattice magnetization
is bound to break down in the region of the anisotropy pa-M with respect to the anisotropy. These clearly revedl a
rameter space where the true ground-state wave functiopower-law singularity atA,, M~M+k(A;—N)Y2 It
possesses a different symmetry from that of thelNdeder-  should be noted that while these singularities can also be
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proved analytically, since the quadratic E@) can be solved ground-state energy and sublattice magnetization have, re-
explicitly, it is useful to be able also to determine these criti-spectively,3 and 3 power-law singularities, which are iden-
cal exponents numerically because an analytic solution is ngical to those of the square-lattice case. This strongly indi-
longer available for the triangular lattice case discussed bezates that both phase transitions belong to the same
low. universality class, and further supports the existence of three-
We now describe our results for the triangular-lattice casesublattice ordering in the frustrated triangular antiferromag-
Following Singh and Hus®we write the Hamiltonian as net. This is fully consistent with the result of the sublattice
magnetization computed within the full SUB2 approxima-

_ 1 ,, N tion, which we find to be around 85% of its classical value in
H _z‘j ~ oo loioi—20l0}) the Heisenberg case.
Finally, we turn our discussion to the structure of the
V3 2 x X z ground-state wave functions of both systems in connection
+T(‘Ti o= 0ioj) |, ©  with the possibility of performing quantum Monte Carlo

simulations. For the nonfrustrated antiferromagnets, the es-
where{o],0?,07}, the S= ; Pauli matrices at sité, are  sential ingredient is provided by the Marshall-Peierls sign
defined with respect to their local quantization axis, which istheorem which concerns the phase relations of the projection
chosen to orient along the spin direction at sitef the clas-  coefficients of the ground-state wave function onto a com-
sical ground state. Such a configuration, in the global spirplete set of spin configuratiot$This theorem, when applied
coordinates, has three sublattices with spins on sublaitice to the square Heisenberg antiferromagnet in particular, states
pointing along the direction, and spins on sublatticBsand  that all of the coefficients, when expressed in the spin-rotated
C being, respectively, rotateet 120° and 120° away from coordinates introduced in E¢4), are positive. Equivalently,
the z axis in thexz plane. It is easy to show that the Hamil- the ground-state wave function has only one nodal region, a
tonian withh\ =1 describes the conventional Heisenberg an-connected region via the Hamiltonian in the spin configura-
tiferromagnet, whereas the case=0 has as its ground state tion space where the wave function has the same sign. This
the fully aligned ferromagnetic configuration in the abovefeature is at the heart of straightforward applications of quan-
local spin coordinates. We choose this configuration as ouium Monte Carlo simulation$.
reference state in applying the CCM. Note that the summa- Let us now consider the CCM parametrization of the
tion in the Hamiltonian runs over all nearest-neighbor bondground ket state. By expanding the exponential operator in
but with directionality indicated by—j which goes from Eg. (1), we can easily show that each spin-spin correlation
AtoB, BtoC, andC to A. coefficient is a projection coefficient of the ground-state

We still restrict ourselves to the full SUB2 approximation Wave function onto the corresponding elementary excitation
S—-S5,+S,, where the tWO-spin correlation operaisy re- configuration which ﬂlpS a pair of Spins with respect to the
tains the form given in Eq5) with the only difference being
that nowr—r’ can connect sites on the same sublattice be-
cause the reference state is no longer an eigenstate af the
component of the total spin, and for the same reason we must 0
also include a single spin-flip operat8;. We have, after 0001 - Ny= 600" and A= 10 1
considerable algebra, obtained the coupled set of equations 0: Square Lattice
analogous to Eq(7) for the square-lattice case. We only #: Triangular Lattice
report our findings here, and the details of the calculations 0.0005 .
will be presented elsewhere. Although the SUB2 equations '
may permit other solutions, we restrict ourselves henceforth
to the so-called symmetric and coplanar solution in which " 0
S,=0, and the two-spin correlation coefficierss, . for a Ba 0 ¢ o %0 e wececwE-ee
given separation—r’ depend only on whether the two spins
are on the same or different triangular sublattiéedB, and
C.

At the isotropic Heisenberg point, the SUB2 ground-state ~0.0005
energy per spin is-2.015 which should be compared with
the classical energy of 1.5 and—2.21+0.01 obtained by
Singh and Huse from a series expansion. We note that the
full SUB2 approximation for the triangular lattice captures
fewer quantum corrections to the classical energy than for
the square lattice. This essentially reflects the significance of
three-spin correlations not retained in the SUB2 approxima- R
tion which are only present in the triangular lattice. As in the
square lattice, we also observe a terminating point, now at a |G, 2. Spin-spin correlation coefficieBi as a function of the
value A;=1.335 25. In Fig. 1 we also show our numerical |attice distanceR for both the square- and triangular-lattice Heisen-
results for the critical exponents for the anisotropy susceptiberg antiferromagnetsh(=1). Note that we have omitted the
bility and the first derivative of the sublattice magnetization.nearest-neighbor correlation coefficiéy to enlarge the small os-
Clearly, at the level of the full SUB2 approximation, the cillatory behavior.
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Neel state. Although it is not obvious that the CCM in SUB2  To summarize, in this paper we have extended the domain
approximation will satisfy the Marshall sign theorem for the of application of the CCM to include frustrated antiferro-
square lattice, the numerical values of these coefficients anagnets. We study the magnetic order-disorder phase transi-
the isotropic Heisenberg point plotted in Fig. 2 clearly showtions of both square- and triangular-lattice antiferromagnets
that this is the case. By contrast, the corresponding coeffity employing the full SUB2 approximation, and find that at
cients for the frustrated triangular Heisenberg antiferromagthis level the criticalities of the phase transitions in both
net are found to have an oscillatory behavior in their signsSystems fall into the same universality class, although the
as is also shown in Fig. 2. There has been some receRf€cise nature of the phase transitions and more realistic es-
work!2 in which it is argued that the Marshall sign theorem timates of the critical anisotropies need to be further inves-
may survive weak frustrations in certain models. Howeverligated beyond the current level of approximation by incor-

our present finding is in favor of the breakdown of the Mar- porating higher-order spin correlations. There already exists,

shall sign theorem for the triangular Heisenberg antiferro-however’ a marked difference in the structure of their

magnet. More interestingly, perhaps, we note that the ﬁxedground-state wave funqtlons In terms .Of the_ respective ab-
d M. te Carl thadl ' dit t i for attacki sence or presence of sign oscnlatlo.ns in their spin-spin cor-
node Monte L.arlo methodand Its extensioft or atacking - e|ation coefficients. Such a comparison may shed some light
both continuum and lattice fermion problems require a reli-p, the hitherto hidden rule that governs the nodal surface of
able trial wave function in terms of which the true wave the ground-state wave function of the triangular antiferro-

function can be well approximated, especially in terms of itsmagnet, and thus help to circumvent the minus sign problem
nodal structure. The oscillatory behavior observed here in thgnich bedevils Monte Carlo simulations for this system.

full SUB2 approximation for the frustrated triangular

Heisenberg antiferromagnet may represent a reasonable de-We acknowledge many useful discussions with J.B. Par-
scription of the nodal structure of the exact wave function kinson and Y. Xian. One of u&C.Z.) is grateful to C. Henley
since we expect corrections from higher-order spin correlafor many valuable suggestions. This work was supported by
tions to be small. EPSRC Research Grant No. GR-H94986.
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