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Abstract

A system of 13 ordinary differential equations with 42 parameters is presented
to model hormonal regulation of the menstrual cycle. The model’s fit to data is
improved by including a time delay for the effect of inhibin on the synthesis of
follicle stimulating hormone. Biological reasons for this improvement are discussed.
Bifurcations with respect to changes in three important parameters are examined.
One parameter represents the level of estradiol adequate for significant synthesis
of luteinizing hormone. Bifurcation diagrams with respect to this parameter reveal
an interval of parameter values for which a unique stable periodic solution exists
and this solution represents a menstrual cycle during which ovulation occurs. The
second parameter measures mass transfer between the first two stages of ovarian
development and is indicative of healthy follicular growth. The third parameter is
the time delay. Changes in the second parameter and the time delay affect the size
of the uniqueness interval defined with respect to the first parameter. Saddle-node,
transcritical and degenerate Hopf bifurcations are studied.
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1. Introduction.

Systems of ordinary and delayed differential equations have been used to model hor-

monal regulation of the human menstrual cycle, e.g., see Bogumil et al., 1972a, 1972b

[3, 4], McIntosh and McIntosh, 1980 [15], Plouffe and Luxenberg, 1992 [20], Selgrade and

Schlosser, 1999 [25], Schlosser and Selgrade, 2000 [22], Harris-Clark et al., 2003 [10], Rei-

necke and Deuflhard, 2007 [21], and Pasteur, 2008 [19]. Dual control of the menstrual

cycle depends on hormones produced by the hypothalamus and the pituitary glands in

the brain and by the ovaries. The pituitary secretes follicle stimulating hormone (FSH)

and luteinizing hormone (LH) which control ovarian development and ovulation, see

[11, 29, 30]. The ovaries produce estradiol (E2), progesterone (P4) and inhibin (Inh)

which affect the synthesis and release of FSH and LH, see [12, 14, 26]. Harris, Pasteur,

Schlosser and Selgrade [10, 19, 22, 25] have derived a 13-dimensional system of delayed dif-

ferential equations which captures these interacting mechanisms. Model parameters were

identified using two different clinical data sets for normally cycling women (McLachlan et

al., 1990 [16], and Welt et al., 1999 [27]). Model simulations with parameters from the

McLachlan data [16] revealed two stable periodic solutions [10] — one fitting the McLach-

lan data for normally cycling women and the other being non-ovulatory because of no LH

surge. The non-ovulatory cycle has similarities to an abnormal cycle of a woman with

polycystic ovarian syndrome (PCOS) [28], the leading cause of female infertility. However,

model simulations corresponding to the Welt parameters produced only one stable peri-

odic solution and it fits the Welt data for normally cycling women. Selgrade et al., 2009

[24], explained this apparent inconsistency by showing that a change in only one sensitive

parameter of the Welt system would result in the Welt model exhibiting bistability like

the McLachlan model.

Abnormal cycling and non-ovulatory cycling have serious health and reproductive con-

sequences. In fact, between 6% and 9% of adult women exhibit some symptoms of PCOS,

see Azziz et al., 2004 [2], and Alvarez-Blasco et al., 2006 [1]. Since cycle irregularities

are usually associated with abnormal hormone levels, mathematical models of hormonal

regulation may provide information about parameter variations which result in abnormal

cycling and may provide insights about possible hormonal therapies. In an effort to un-

derstand what parameter ranges result in normal and abnormal cycling, Selgrade [23] set

the time-delays to zero in the Welt model and used the software XPPAUT [7] to study

bifurcation diagrams with respect to two of the most sensitive parameters. Bifurcation

diagrams for the resulting autonomous system could be drawn with the features of AUTO

[5] in XPPAUT. This autonomous model gives an acceptable fit to the 28 day Welt data

set [27] except some hormone peaks are lower than the data and the period for the normal

cycle is only about 26 days, see Figure 1.
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Figure 1: LH and E2 simulations for 3 cycles of the Welt model with inhibin delay τ
of 1.5 days (green curves) and no delay (red curves) with data points (84 black dots)
corresponding to the 28 day data from Welt et al. [27] plotted 3 times. The vertical
dashed line indicates day 29, where the second cycle begins and where both solution
orbits are very close to one another.
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The two key parameters for analysis in [23] are KmLH and c2. KmLH represents

the level of E2 sufficient for significant LH synthesis and the LH surge and c2 indicates

the ovarian mass transfer rate between the first two stages of ovarian development. The

bifurcation diagram with respect to KmLH reveals an interval of KmLH parameter values

for which a unique stable periodic solution exists and this solution represents a menstrual

cycle with a LH surge adequate for ovulation. If KmLH lies outside this cycle uniqueness

interval then either no LH surge occurs or there are two stable cycles — one is ovulatory

and the other is non-ovulatory. Changes in c2 affect the size of this interval because of

the positions of Hopf, saddle-node and transcritical bifurcations as discussed in [23].

In this study, we carry out a bifurcation analysis for the system of delayed differential

equations using the DDEBIFTOOL [6], which is designed to handle the delay. The original

model [10] had three discrete time-delays (one corresponding to each ovarian hormone)

which represented the time interval between changes in ovarian hormone concentrations

and subsequent changes they cause in synthesis rates of the pituitary hormones. Here we

show that including only a delay of τ = 1.5 days for inhibin is needed to improve the fit to

the Welt data, see Figure 1. The other two delays were no more than a day and did not

contribute significant additional improvement. Also, the system with the inhibin delay

has larger uniqueness intervals than the model with no delay (see Table 2). In Section 3

we speculate about the biological reasons for this improvement in model behavior due to

inhibin delay. We examine bifurcation diagrams with respect to KmLH for the delayed

system and show that the cycle uniqueness interval is usually determined by two saddle-

node bifurcations. For the delay τ fixed at 1.5 days, we illustrate how this interval may

be enlarged by varying c2 due to the occurrence of two degenerate Hopf bifurcations.

Then for fixed c2, we increase the delay parameter τ from 0 to 1.5 to unfold transcritical

bifurcations and produce large cycle uniqueness intervals. Finally, we illustrate how loops

in the KmLH bifurcation diagrams may appear and disappear by varying the parameters

τ and c2.

2. Biological Background and Model Equations.

The menstrual cycle for an adult female consists of the follicular phase, ovulation, the

luteal phase and menstruation (e.g., see Odell [17] or Ojeda [18]). During the follicular

phase, FSH produced by the pituitary gland promotes the development of 6 to 12 follicles.

Typically one dominant follicle is selected to grow to maturity and to produce a large

amount of E2 which primes the pituitary for LH secretion. At mid-cycle, a surge of LH

over a period of 4 or 5 days results in ovulation. After releasing its egg, the dominant

follicle becomes the corpus luteum which produces hormones in preparation for pregnancy

and produces P4 and Inh which inhibit LH and FSH, respectively. If fertilization does

not occur, the corpus luteum atrophies, menstruation follows and a rise in FSH marks
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the beginning of the next cycle.

Harris, Pasteur, Schlosser and Selgrade [9, 10, 19, 22, 25] developed a model for this

endocrine control system based on 13 ordinary differential equations (S) with three aux-

iliary equations (A) and with discrete time-delays. Four of these differential equations

(S1-S4) describe the synthesis, release and clearance of LH and FSH. The state variables

RPLH and RPFSH represent the amounts of these hormones in the pituitary and LH and

FSH represent the blood concentrations of these hormones. The biological literature

(e.g., [12, 14, 29]) indicates that LH exhibits a biphasic response to E2. To capture this

our model assumes that the effect of E2 on LH synthesis is different than the effect on

LH release, i.e., E2 inhibits release (see the denominator of the second term in (S1))

but at high levels E2 promotes synthesis (see the Hill function in the numerator of the

first term of (S1)). On the other hand, P4 inhibits LH synthesis but promotes release.

The release term appears in (S1) as a decay term and in (S2) as a growth term, where

it is divided by blood volume v. The equations (S3-S4) for FSH are similar except the

synthesis term has Inh inhibition which is delayed by time τ . The parameters in (S1-S4)

are named according to the traditional usage for chemical reactions, e.g., V1,LH denotes

the velocity of the reaction (see Keener and Sneyd, 2009, [13]).

The state variables in (S5-S13) represent tissue masses of 9 distinct stages of the

ovary during the follicular and luteal phases of the cycle. ReF , SeF and PrF denote

the recruited follicles, the secondary follicles and the preovulatory or dominant follicle,

respectively. Ov1 and Ov2 represent periovulatory stages and Luti, i = 1, ..., 4, denote four

luteal stages. LH and FSH promote tissue growth within a stage and the transformation

of tissue from one stage to the next. Since clearance from the blood of the ovarian

hormones is on a fast time scale, we assume that blood levels of E2, P4, and Inh are at

quasi-steady state [13] as did Bogumil et al. [3]. Hence, we take these concentrations to be

proportional to the tissue masses during the appropriate stages of the cycle giving the three

auxiliary equations (A1-A3) for the ovarian hormones. Here we study the 13-dimensional

system (S) with (A), which has one time-delay τ . The forty-two parameters are listed in

Table 1 and correspond to those which Selgrade [23] used to analyze bifurcation diagrams

for the Welt system with time-delay set to zero.

Auxiliary Equations (A)

E2 = e0 + e1 SeF + e2 PrF + e3 Lut4 (A1)

P4 = p0 + p1 Lut3 + p2 Lut4 (A2)

Inh =h0 + h1 PrF + h2 Lut2 + h3 Lut3 . (A3)
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System (S)

d

dt
RPLH =

V0,LH +
V1,LH E

8
2

Km8
LH + E8

2

1 + P4/KiLH,P
− kLH [1 + cLH,P P4] RPLH

1 + cLH,E E2

(S1)

d

dt
LH =

1

v

kLH [1 + cLH,P P4] RPLH
1 + cLH,E E2

− aLH LH (S2)

d

dt
RPFSH =

VFSH
1 + Inh(t− τ)/KiFSH,Inh

− kFSH [1 + cFSH,P P4] RPFSH
1 + cFSH,E E2

2

(S3)

d

dt
FSH =

1

v

kFSH [1 + cFSH,P P4] RPFSH
1 + cFSH,E E2

2

− aFSH FSH (S4)

d

dt
ReF = b FSH + [c1 FSH − c2 LHα] ReF (S5)

d

dt
SeF = c2 LH

αReF +
[
c3 LH

β − c4 LH
]
SeF (S6)

d

dt
PrF = c4 LH SeF − c5 LHγ PrF (S7)

d

dt
Ov1 = c5 LH

γ PrF − d1Ov1 (S8)

d

dt
Ov2 = d1Ov1 − d2Ov2 (S9)

d

dt
Lut1 = d2Ov2 − k1 Lut1 (S10)

d

dt
Lut2 = k1 Lut1 − k2 Lut2 (S11)

d

dt
Lut3 = k2 Lut2 − k3 Lut3 (S12)

d

dt
Lut4 = k3 Lut3 − k4 Lut4 . (S13)
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Table 1: Parameters and values for system (S) and auxiliary equations (A).

Eqs. (S1-S4)

τ 1.5 days
kLH 2.42 day−1

aLH 14.0 day−1

V0,LH 500 IU/day
V1,LH 4500 IU/day
KmLH 200 pg/mL
KiLH,P 12.2 ng/mL
cLH,E 0.004 mL/pg
cLH,P 0.26 mL/ng
VFSH 375 IU/day
aFSH 8.21 day−1

kFSH 1.90 day−1

cFSH,E 0.0018 mL2/pg2

KiFSH,Inh 3.5 IU/mL
cFSH,P 12.0 mL/ng
v 2.50 L

Eqs. (S5-S13)

b 0.05 L µg/(IU day)
c1 0.08 L/(IU day)
c2 0.07 (L/IU)α/day
c3 0.13 (L/IU)β/day
c4 0.027 L/(IU day)
c5 0.51 (L/IU)γ/day
d1 0.50 day−1

d2 0.56 day−1

k1 0.55 day−1

k2 0.69 day−1

k3 0.85 day−1

k4 0.85 day−1

α 0.79
β 0.16
γ 0.02

Eq. (A)

e0 30 pg/mL p2 0.048 kL−1

e1 0.11 L−1 h0 0.4 IU/mL
e2 0.21 L−1 h1 0.009 IU/(µg mL)
e3 0.45 L−1 h2 0.029 IU/(µg mL)
p0 0 ng/mL h3 0.018 IU/(µg mL)
p1 0.048 kL−1
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3. Effect of Inhibin Delay on Model Fit and Uniqueness Intervals.

System (A) and (S) with the inhibin delay is a better approximation to the 28 day Welt

data [27] than the model with no delay [23]. The delay model has an asymptotically stable

cycle of period 28 days instead of 26 days for the no-delay model. The LH data indicates a

14 day follicular phase and the position and height of the LH surge for the delay model is

consistent with that (see Figure 1). Also, the delay E2 follicular and luteal peaks are higher

then the no-delay. To understand why the inhibin delay is responsible for these differences

we examine hormone profiles and ovarian stages for both models over three carefully cho-

sen consecutive cycles. MATLAB simulations of both models were run with the following

initial conditions (rounded to two decimal places) given in the order of the 13 state vari-

ables in (S), {29.65, 6.86, 8.47, 6.15, 3.83, 11.51, 5.48, 19.27, 45.64, 100.73, 125.95, 135.84,

168.71}. The simulations were aligned so that both delay and no-delay periodic orbits

are as close to one another as possible at the beginning of their second cycle, indicated

by the vertical line at day 29 in Figures 1, 2 and 3. This was done so that the point of

our comparison would be the second cycle in these figures and the preceding cycle would

also be plotted because hormone profiles during the luteal phase of the preceding cycle

influence behavior in our comparison cycle.

The key feature to observe in Figure 2 is that the no-delay FSH (red curve) is higher

than the delay FSH from day 19 until day 34, which includes the first six days of the

follicular phase of our comparison cycle. Since FSH stimulates follicular development,

the no-delay ovarian stages of the second cycle increase sooner than the delay ovarian

stages and the no-delay cycle is advanced ahead of the delay cycle (see Figure 3). No-

delay FSH is higher because delay Inh has a greater inhibitory effect than no-delay Inh

on FSH synthesis (see (S3)) during that period. Delay Inh (green curve) is greater than

no-delay Inh from day 16 to day 24 where the curves cross and then both curves decrease

in parallel until day 34. These Inh curves are so close to one another (see Figure 2) from

day 24 to day 34 that the delay of 1.5 days results in delay Inh(t − 1.5) being greater

than no-delay Inh(t) for 24 ≤ t ≤ 34. Effectively, from day 17.5 to day 34 the synthesis

of delay FSH is suppressed more than the synthesis of no delay FSH. This causes the

no-delay follicles to develop sooner then the delay follicles with the consequence via (A1)

that no-delay E2 rises sooner (see Figure 1). Since E2 inhibits FSH release (see (S3-S4)),

this earlier rise in E2 tends to decrease no-delay FSH sooner than delay FSH with the

result that the no-delay follicular stages develop to a lesser extent than the delay stages

(Figure 3). Also, because E2 promotes LH synthesis, the LH surge is earlier and smaller

for the no-delay model (Figure 1). The cumulative effect of these profile differences is a

shortening of the no-delay cycle length by 2 days and a reduction in no-delay hormone

peaks.
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Figure 2: FSH and Inh simulations for 3 consecutive cycles of the delay model (green
curves) and the no delay model (red curves) with 84 data points (Welt et al. [27]). The
vertical dashed line indicates day 29, the beginning of the second cycle. From day 17.5
to day 34 the synthesis of delay FSH is suppressed more than the synthesis of no delay
FSH because of inhibin differences.
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Figure 3: First 3 ovarian stages ReF , SeF and PrF for 3 consecutive cycles of the delay
model (green curves) and the no delay model (red curves).
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The parameters KmLH and c2 are two of the three most sensitive parameters when

sensitivity is measured with respect to the E2 follicular peak as system output [19,

24]. The parameter KmLH is the half-saturation constant in the Hill function in (S1),

(V1,LH E
8
2)/(Km8

LH + E8
2). This sigmoidal shaped function (see Figure 4) acts like a

threshold for the synthesis of LH in response to E2 blood levels. Once E2 concentration

reaches the value KmLH , half way up the sigmoid as indicated by the dashed line in

Figure 4, then the pituitary is synthesizing LH in large amounts, which is necessary for

ovulation. For larger values of KmLH , E2 must reach a higher level to produce the same

LH synthesis rate. Because higher follicular E2 levels may suggest a greater probability of

abnormal cycling [23, 24], we construct bifurcation diagrams where LH is plotted against

the parameter KmLH to determine the number of stable cycles for a given KmLH value

and to determine LH surge height along each cycle. When similar bifurcation diagrams

were drawn for the no-delay model [23], an interval of KmLH values was observed for

which a unique stable periodic solution existed and it represented an ovulatory cycle.

The length of this cycle uniqueness interval varied as the parameter c2 was changed [23].

The present study reveals that these uniqueness intervals are larger for the model with

inhibin delay, (A) and (S), as indicated in Table 2.
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Here, the software DDEBIFTOOL [6] is used to construct bifurcation diagrams where

the maximal LH value along a periodic solution or at a steady-state solution is plot-

ted against the parameter KmLH . Figure 5 displays this bifurcation diagram where the

remaining parameters are those in Table 1. Stable and unstable periodic orbits and equi-

libria are depicted. Saddle-node (SN) and Hopf (HB) bifurcations are labeled. The curve

along the lower portion of Figure 5 tracks an equilibrium, which undergoes a destabiliz-

ing Hopf bifurcation as KmLH increases through 64 and a stabilizing Hopf bifurcation

at KmLH = 248. The bifurcation at KmLH = 64 results in a small amplitude, stable,

periodic orbit which persists until KmLH = 73. Stable and unstable cycles appear to-

gether at KmLH = 68 via a saddle-node bifurcation of periodic orbits. The unstable

orbit coalesces with the stable Hopf orbit at KmLH = 73 and both disappear in another

saddle-node. The stable cycle appearing at KmLH = 68 grows in amplitude, continues

across the top portion of the diagram and disappears in a saddle-node at KmLH = 282.

This branch of periodic solutions represents the ovulatory cycles of the model (S) with

(A), where the ∗ indicates the cycle corresponding to the KmLH value of Table 1, 200

pg/ml. Analogous behavior occurs at the right side of the bifurcation diagram where the

hysteresis character of the curve of periodic orbits is evident. Clearly, for KmLH from

227 to 282 there is a stable, large amplitude ovulatory cycle and a stable, small amplitude

non-ovulatory cycle or stable equilibrium. For KmLH in the interval between the lower

SN’s in Figure 5 (73 < KmLH < 227), there is only one stable cycle and it is ovulatory.

Selgrade [23] referred to this KmLH interval as the cycle uniqueness interval. In the

context of this cycle regulation model, a woman’s KmLH parameter must fall within her

cycle uniqueness interval for her to be assured of only a normal cycle. From Figure 5, we

observe that decreasing KmLH from 200 pg/mL keeps it within the interval and increases

the height of the LH surge. However, increasing KmLH to 227 moves KmLH to a region

of multiple stable cycles and possible non-ovulation. For c2 = 0.07, the diameter of this

cycle uniqueness interval is 154 for the delay model and only 114 for the no-delay model

(see Table 2).
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Figure 5: In this bifurcation diagram the maximal LH value along a periodic solution
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Table 2: Size of cycle uniqueness interval for inhibin delay τ = 0 (column 2) and τ = 1.5
days (column 4) for increasing values of c2. c2 = 0.07 and KmLH = 200 pg/mL give the
best fit to data.

c2 size (τ = 0) KmLH bounds (τ = 0) size (τ = 1.5) KmLH bounds (τ = 1.5)

0.03 126 147 < KmLH < 273 271 40 < KmLH < 311
0.04 50 181 < KmLH < 231 226 44 < KmLH < 270
0.05 81 153 < KmLH < 234 173 85 < KmLH < 258
0.06 118 122 < KmLH < 230 167 80 < KmLH < 247
0.07 114 98 < KmLH < 212 154 73 < KmLH < 227
0.08 102 84 < KmLH < 186 141 63 < KmLH < 204

For the no-delay model, Selgrade [23] investigated how variations in the ovarian trans-

fer parameter c2 changed the size of the cycle uniqueness interval. Increasing c2 from

c2 = 0.07 causes an increased transfer of mass from the first follicular stage ReF to the

second stage SeF which diminishes the development of not only ReF but of all subse-

quent ovarian stages. Effectively, ovarian hormone production is reduced and the cycle

uniqueness interval is decreased for both delay and no-delay models. Table 2 lists the

cycle uniqueness intervals for various values of c2 which we compute for the delay model

(τ = 1.5) and which were reported in [23] for the no-delay model (τ = 0). Decreasing c2
from 0.07 in increments of 0.01 widens the cycle uniqueness interval for the delay model

but shrinks it for the no-delay model until c2 = 0.03. For the no-delay model as c2 de-

creases, the hysteresis curves enlarge and the Hopf points move closer together resulting

in a narrowing of the gap between the lower two saddle-nodes. Then, as described in [23],

an unfolding of a transcritical bifurcation of periodic solutions as c2 decreases through

0.0305 leads to the disappearance of the left hysteresis curve and a rapid expansion of the

cycle uniqueness interval. In contrast, for the delay model, decreasing c2 from 0.07 causes

the hysteresis curves to enlarge only slightly (see Figure 6), the Hopf points to move

apart and the left hysteresis curve to disappear due to two degenerate Hopf bifurcations

described below. The uniqueness interval for τ = 1.5 when c2 = 0.03 (Figure 7) is over

twice as large as that for the no-delay model.
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The broad expansion of the cycle uniqueness interval for c2 less than 0.05 is due to two

different unfoldings of degenerate Hopf bifurcations which occur for c2 near 0.05. Each

Hopf bifurcation is degenerate because the real part of the eigenvalue pair crossing the

imaginary axis has a zero derivative with respect to the parameter at crossing. One of these

degeneracy occurs when two Hopf points coalesce at c2 = 0.05147 and KmLH = 69.8458.

At c2 = 0.05, the left side of Figure 6 displays a branch of stable cycles lying just above

a branch of unstable equilibria. Figure 8(a) blows these curves up at c2 = 0.051. They

touch when c2 = 0.05147 producing a degenerate Hopf point. Then as c2 increases, the

degenerate Hopf point separates into two nondegenerate, supercritical Hopf points with

stable equilibria in between them pictured at c2 = 0.0516 in Figure 8(b). As discussed in

Golubitsky and Schaeffer [8], p. 375, the unfolding of this bifurcation may be described

roughly by the equation

−x3 + (KmLH − 69.8458)2 x+ (0.05147− c2)x = 0 (DegHB1)

where x represents the state variable LH and the line {x = 0} represents the curve of

equilibria. As c2 continues to increase above 0.052, the two Hopf points on the left in

Figure 9(a) coalesce in a second degenerate Hopf point at c2 = 0.05209 and KmLH =

61.0174 and that Hopf point disappears for c2 > 0.05209. The unfolding of this bifurcation

may be represented by the equation (see [8])

x3 + (KmLH − 61.0174)2 x+ (c2 − 0.05209)x = 0 . (DegHB2)

As c2 increases above 0.05209, the saddle-nodes which determine the cycle uniqueness

interval move closer together causing the interval to shrink and move to the left, see

Table 2. As c2 increases from 0.04 to 0.045, the left hysteresis curve forms because of

the appearance of a kink and two saddle-nodes along the left edge of the large loop of

periodic solutions (Figure 10). This kink and the two unfoldings (DegHB1 and DegHB2)

are embedded in the continuous display of bifurcation diagrams as c2 increases from 0.04

to 0.055, see Figure 10.
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Figure 10: Bifurcation diagrams with respect to KmLH for τ = 1.5 as c2 increases from
0.04 to 0.055 by increments of 0.5. A kink appears in the large loop at the left and bends
to touch the curve of equilibria causing a degenerate Hopf bifurcation. s indicates stable
and u indicates unstable. [CLICK HERE] for an animated display of bifurcation diagrams
as c2 increases from 0.04 to 0.055 in increments of 0.001.
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4. Comparing Bifurcation Diagrams as Delay τ Varies.

For all c2 values in Table 2, the delay model has a larger cycle uniqueness interval

than the no-delay model. As discussed previously, when KmLH = 200 and c2 = 0.07 the

delay in the effect of inhibin on FSH results in more vigorous growth of ovarian stages, a

longer cycle and higher hormone peaks. Numerical simulations indicate that this is also

true after reasonable variations in both model parameters, KmLH and c2. It is conceivable

that the more robust ovarian development of the delay model permits a broader range of

half-saturation constants KmLH for the successful surge response of LH to E2 priming

and, hence, a larger cycle uniqueness interval.

First we fix c2 = 0.07, which is the parameter value fitting the data best (see Table

1). Then we draw bifurcation diagrams with respect to KmLH to study how the cycle

uniqueness interval opens up as the delay τ increase from 0 to 1.5. Figure 11 illustrates

these diagrams for τ values increasing from τ = 0 to τ = 1.5 by increments of 0.5. As τ

increases the Hopf points (HB) along the curve of equilibria spread apart as do the saddle-

nodes (SN), which determine the cycle uniqueness interval. The qualitative features of

these diagrams are similar. In particular, there are hysteresis curves on both the left and

right edges of a large loop of periodic solutions. The hysteresis curves give rise to two

regions of periodic bistability.

For other values of c2, these two hysteresis curves do not persist for all values of τ . For

instance, if c2 = 0.04 then the hysteresis curve on the left disappears as τ increases. The

cycle uniqueness interval enlarges from 50 when τ = 0 to 226 when τ = 1.5. The primary

reason for this drastic increase is a sequence of bifurcations that occur as τ increases from

0.7 to 1.2. A degenerate Hopf bifurcation similar to that described by (DegHB2) occurs

at τ = 0.73 resulting in a bump of stable cycles to the left of the large loop of periodic

solutions as pictured in Figure 12. This Hopf bump of stable solutions is just below the

branch of unstable cycles in the left hysteresis curve and, as τ increases, this bump grows

and touches the curve of cycles above producing a transcritical bifurcation of periodic

solutions in the parameter KmLH when τ = 1.06. The unfolding of this transcritical

bifurcation is analogous to that discussed in [23] except here the second parameter is τ

instead of c2. For τ values just above 1.06 the bump of stable cycles appears on the other

side of the large loop of cycles (see Figure 12) and disappears via the following sequence

of bifurcations. At τ = 1.11 a degenerate Hopf bifurcation like (DegHB1) causes the Hopf

bump to separate from the curve of equilibria producing a small closed loop of periodic

solutions (Figure 13). Then this loop shrinks and disappears because the two saddle-nodes

at each end of the loop coalesce and annihilate one another at τ = 1.173. The unfolding

of these bifurcations as τ increases from 0.7 to 1.2 is animated in Figure 12 .
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Figure 11: Bifurcation diagrams with respect to KmLH for c2 = 0.07 as τ increases from
τ = 0 to τ = 1.5 by increments of 0.5. The cycle uniqueness interval enlarges from 114
to 154. HB and SN denote Hopf and saddle-node bifurcations. s indicates a stable and
u, an unstable cycle or equilibrium.
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bifurcations. s indicates a stable and u, an unstable cycle or equilibrium. [CLICK HERE]
for an animated display of transcritical and degenerate Hopf bifurcations as τ increasing
from 0.7 to 1.2 in increments of 0.02.
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5. Summary and Conclusion.

The half-satuation parameter KmLH in the Hill function in (S1) indicates the level of

E2 sufficient for significant LH synthesis. We study bifurcation diagrams where maximum

LH along a periodic or equilibrium solution is graphed against KmLH . We observe an

interval of KmLH values for which the model admits a unique stable periodic solution and

this solution represents an ovulatory cycle. A large cycle uniqueness interval signifies a

wide range of follicular E2 levels which promote a LH surge sufficient for ovulation. This

cycle uniqueness interval is usually determined by two saddle-nodes bifurcations which lie

on hysteresis curves at the left and right sides of the bifurcation diagram.

The parameter τ is the time delay for the inhibition of FSH synthesis caused by

inhibin. We explain why a delay up to 1.5 days (the value of τ fitting the data best)

permits increased ovarian development and a larger interval of KmLH values which result

in a unique cycle. The ovarian growth parameter c2 promotes mass transfer between the

first two stages of ovarian development and is indicative of healthy follicular growth. For

various values of c2, we illustrate how the cycle uniqueness interval grows as τ increases

due to the occurrences of transcritical and degenerate Hopf bifurcations, e.g., see Figure

12. Also, for delay τ near 1.5 days, the cycle uniqueness interval increases as c2 decreases

because of additional growth of the first follicular stage as discussed in Section 3.

The transcritical bifurcation is a prominent feature of the left side of the bifurcation

diagrams for smaller values of τ . When this bifurcation is present in the diagram, the

cycle uniqueness interval has reduced length, e.g., only 125 for the first frame of Figure

14. The transcritical bifurcation persists for the parameter pairings in Figure 14 until

bifurcation point coalesces with a saddle-node for τ ≈ 1.45. As τ increases, the cycle

uniqueness interval grows although c2 is also increasing (see the animation for Figure 14).

Hence, a larger delay in the effect of inhibin may compensate for an apparent reduction in

growth of the first follicular stage of a cycle. In fact, an increase in FSH inhibition during

the luteal phase of the previous cycle due to the delay in inhibin results in greater early

follicular development during the next cycle (see the middle cycle in Figure 3). Also, as

the delay increases to 1.5 days, the model describes the data in the biological literature

[27] better.
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Figure 14: Bifurcation diagrams with respect to KmLH as τ increases from 0.048 to 1.5
and c2 increases from 0.031 to 0.044. HB, SN and T denote Hopf, saddle-node and trans-
critical bifurcations. s indicates a stable and u, an unstable cycle or equilibrium. [CLICK
HERE] for an animated display of a sequence of transcritical bifurcations revealing the
creation of a loop and the broadening of the cycle uniqueness interval as τ and c2 increase.
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