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a b s t r a c t

A piecewise-smooth model of three degrees of freedom, which exhibits friction-induced
stick-slip oscillations, is considered. This model corresponds to a simplified torsional
lumped-parameter model of an oilwell drillstring. An alternative method to characterize
the stick-slip motion and other bit-sticking problems in such a drilling system is proposed.
This method is based on the study of the relationships between the different types of
system equilibria and the existing sliding motion when the bit velocity is zero. It is shown
that such a sliding motion plays a key role in the presence of nondesired bit oscillations
and transitions. Furthermore, a proportional-integral-type controller is designed in order
to drive the rotary velocities to a desired value. The ranges of the controller and the
system parameters which lead to a closed-loop system without bit-sticking phenomena
are identified.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Discontinuous elements define the behaviour of dynamical systems in different areas of Science and Engineering; for
instance, mechanical systems with friction, impacts, electronic power converters, or systems with sudden state changes.
Discontinuous dynamical systems present a wide variety of standard and nonstandard bifurcations. Due to this fact, the
analysis of nondesired transitions and bifurcations is a key issue in order to ensure good performance and quality in the
control design [1–3].
The bifurcation analysis of mechanical systems with friction-induced self-excited stick-slip oscillations has attracted

the attention of researchers in the last two decades [4–9]. These works usually treat systems of two degrees of freedom
(DOF). In addition, the existence of stick-slip periodic motion is studied from different viewpoints. In this paper, a 3-DOF
lumped-parameter piecewise-smooth (PWS) model is considered. It is the torsional model of a simplified conventional
vertical oilwell drillstring. This model is a particular case of the generic n-DOF model proposed in [10], and considers the
drill pipe dynamics. It ismore general than the torsional lumped-parametermodels of one and twoDOF previously proposed
[11–19].
Oilwell drillstrings exhibit a wide variety of complex phenomena and nondesired oscillations due to the presence of

different types of friction. These oscillations are a source of component failures, which reduce penetration rates and increase
drilling operation costs [13,17,19]. Special attention is paid to the effects of bit-rock friction and torsional mechanical
vibrations, mainly, stick-slip oscillations appearing at the bottom-hole assembly (BHA) and other bit-sticking phenomena
which cause the bit to remain motionless. Different control schemes have been proposed in order to suppress drillstring
stick-slip oscillations. For example, [11,14,20] proposed a vibration absorber at the top of the drillstring. A classical PID
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Fig. 1. Mechanical model describing the torsional behaviour of a simplified drillstring.

control structure at the surface is used in [15,19,21]. More sophisticated techniques are used in [17,16] where a linear
quadratic regulator and a linear H∞ control are used, respectively. In most of these works, no bifurcation analysis of the
system and the controller parameters is made, and the influence of the weight on the bit (WOB) is not analysed. The
importance of the WOB in drillstring dynamical behaviour was established previously in [22].
In this paper, following the results given in [10], an alternativemethod for analysing bit stick-slip oscillations and other bit

transitions is given. A sliding motion arises when the bit velocity is zero, and it is the main cause of bit stick-slip oscillations
and the permanent stuck bit. Such a sliding motion depends mainly on the WOB, the rotary speed at the top-rotary system
and the torque applied by the surface motor. Moreover, a linear proportional-integral (PI) action controller is designed in
the paper. The controller parameters are chosen so that nondesired system transitions cannot appear. The relationships
between the sliding motion and the different types of system equilibria are established for the open and closed-loop system
configurations.
The model and the controller structure were proposed in [23], however, in this paper, the analysis of the open-loop and

the closed-loop systems is extended.
The proposed controller has to be interpreted as an off-line safe-parameter selection method. The complexity of oilwell

drillstrings and drilling practices makes unfeasible the use of an automatic controlled system. The model and controller
proposed can help the driller to design, before starting the operation, the well drilling profile with reference values for the
torque at the top-rotary system (u), the WOB and desired rotary velocities (Ω). For a combination of (Wob,Ω), the torque u
would be calculated in order to avoid nondesired bit phenomena.

2. A torsional discontinuous model of the drillstring

Three main parts of a conventional vertical oilwell drillstring are considered: (1) the rotating mechanism at the surface,
(2) the set of drill pipes which are screwed one to each other to form a long pipeline, (3) the BHA, which consists of the
drill collars, the stabilizers, a heavy-weight drill pipe and the bit. The drill collars and pipe sections just above the bit are
stiffer than the drill pipes and the bit in order to prevent the drillstring from underbalancing. While the length of the BHA
remains constant, the total length of the pipeline increases as the drilling operation makes progress, that is the reason why
it is important to separate the drill pipes dynamics from the BHA dynamics. In this paper, the BHA will be also referred to
as bit.
Fig. 1 shows a simplified torsional model of a conventional vertical drillstring. Jr, Jp and Jb are the inertias of the top-

rotary system, the drill pipes and the BHA, respectively. The inertias are connected one to each other by linear springs with
torsional stiffness (kt, ktb) and torsional damping (ct, ctb). A viscous damping torque is considered at the top-drive system
(Tar ) and at the bit (Tab ). A dry friction torque (Tfb ) is considered at the bit. The equations of motion are:

ϕ̈r = −
ct
Jr
(ϕ̇r − ϕ̇p)−

kt
Jr
(ϕr − ϕp)+

Tm − Tar(ϕ̇r)
Jr

,

ϕ̈p =
ct
Jp
(ϕ̇r − ϕ̇p)+

kt
Jp
(ϕr − ϕp)−

ctb
Jp
(ϕ̇p − ϕ̇b)−

ktb
Jp
(ϕp − ϕb),

ϕ̈b =
ctb
Jb
(ϕ̇p − ϕ̇b)+

ktb
Jb
(ϕp − ϕb)−

Tb(ϕ̇b)
Jb

,

(1)

with ϕi, ϕ̇i (i ∈ {r, p, b}) the angular displacements and the angular velocities of the drillstring elements, respectively. Tm is
the torque applied by the electrical motor at the surface. The actuator dynamics is not considered, and Tm = u, with u the
control input. Tar = crϕ̇r, with cr the viscous damping coefficient. The system state vector x is defined as:

x = (ϕ̇r, ϕr − ϕp, ϕ̇p, ϕp − ϕb, ϕ̇b)T = (x1, x2, x3, x4, x5)T. (2)
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Finally, Tb(x5) = Tab(x5)+ Tfb(x5) is the torque on the bit, with Tab = cbx5 representing the influence of the mud drilling
on the bit behaviour. Tfb(x5) is the friction modelling the bit-rock contact, which is defined as:

Tfb(x5) = WobRbµb(x5)sign(x5), (3)

whereWob > 0 is the weight on the bit, Rb > 0 is the bit radius and µb(x5) is the bit dry friction coefficient considered as,

µb(x5) =
[
µcb + (µsb − µcb) exp

−
γb
vf
|x5|
]
, (4)

withµsb ,µcb ∈ (0, 1) the static and the Coulomb friction coefficients associatedwith Jb; 0 < γb < 1 and vf > 0. In addition,
the Coulomb and the static friction torques are Tcb and Tsb , respectively, with:

Tcb = WobRbµcb , Tsb = WobRbµsb . (5)

The exponential decaying behaviour of Tb coincides with experimental bit torque values and is inspired in the models given
in [13,15,21].
In Eq. (3), the sign function is considered as:

sign(x5) = x5/|x5| if x5 6= 0,
sign(x5) ∈ [−1, 1] if x5 = 0.

(6)

Thus, the function Tfb(x5) has the form:

Tfb(x5) =
{
T+fb (x5) if x5 > 0,
T−fb (x5) if x5 < 0,

Tfb(x5) ∈
[
−Tsb , Tsb

]
if x5 = 0,

(7)

with:

T+fb (x5) = WobRb
[
µcb + (µsb − µcb) exp

−
γb
vf
x5
]
,

T−fb (x5) = −WobRb
[
µcb + (µsb − µcb) exp

γb
vf
x5
]
.

(8)

In Section 3, an analysis of the different dynamical behaviours appearingwhen x5 = 0will be addressed. For this purpose,
an adequate mathematical model on the discontinuity surface x5 = 0 will be chosen.
Using (2), system (1) can be written as:

ẋ1 =
1
Jr
[−(ct + cr)x1 − ktx2 + ctx3 + u] , ẋ2 = x1 − x3,

ẋ3 =
1
Jp
[ctx1 + ktx2 − (ct + ctb)x3 − ktbx4 + ctbx5] , ẋ4 = x3 − x5,

ẋ5 =
1
Jb

[
ctbx3 + ktbx4 − (ctb + cb)x5 − Tfb(x5)

]
.

(9)

or in a compact form,

ẋ(t) = Ax(t)+ Bu(t)+ Tf(x(t)). (10)

In the following simulations, the data corresponding to a real drillstring design reported in [24] are used:

Jr = 2122 kg m2, Jb = 471.9698 kg m2, Jp = 750 kg m2,
kt = 698.06314N m/rad, ktb = 907.482089N m/rad, Rb = 0.155575m,
ct = 139.612629N m s/rad, ctb = 181.49641N m s/rad,
cr = 425N m s/rad, cb = 50N m s/rad,

µcb = 0.5µsb = 0.8,Dv = 10
−6, γb = 0.9, vf = 1.

(11)

3. Open-loop system dynamical properties: Transitions and bifurcations

Twodynamical properties explain the existence of bit stick-slip oscillations and the permanent stuck bit: (1) the existence
of a sliding motion which gives rise to an asymptotically stable quasiequilibrium on the sliding surface, and (2) when
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velocities are greater than zero, the existence of a unique standard equilibrium point which can become unstable. These
phenomena depend on three key manipulable drilling parameters: (1) the WOB, (2) the steady rotary speed, and (3) the
torque applied by the surface motor (u). In this section, the two inputs WOB and uwill be considered constant.
The features of the open-loop system which will be key in the control design are:

(1) The sticking of the bit can be described by means of the conceptual sliding motion on the surface x5 = 0. This sliding
motion has the following characteristics:
• The dynamics on the sliding surface depends mainly on the parameter u.
• The sliding surface may alternate between being attractive or repulsive.
• The sliding surface contains an asymptotically stable quasiequilibrium.
• Different dynamical behaviours appear on the surface of discontinuity depending on the relative position of the
quasiequilibrium with respect to the boundary of the sliding region.
• The sliding surface, its region of attraction and the region of attraction of the quasiequilibrium change provided that
some system parameters change.

(2) The stability of the unique standard equilibrium point when x5 > 0 influences the bit behaviour. The desired situation
is when this equilibrium is stable, however:
• The standard equilibrium is locally asymptotically stable depending on the values ofWob, the torque u and the rotary
velocity at the equilibrium.
• The loss of stability of the standard equilibrium point is mainly due to the presence of Hopf bifurcations.

3.1. Sliding motion related to bit-sticking phenomena

The bit-sticking phenomenon is represented by setting ẋ5 = x5 = 0 in the last equation of (9). Under this condition, due
to Eq. (7), a slidingmotionmay appear. This regime can be stated bymeans of the discontinuity or switching surface,Σ , and
the sliding region Σ̃ ⊂ Σ , with:

σ(x) = x5, Σ := {x ∈ R5 : σ(x) = 0},

Σ̃ = {x ∈ Σ : |ktbx4 + ctbx3| < WobRbµsb}.
(12)

Σ̃ is the set where a sliding motion can take place. The complement of Σ̃ inΣ is usually referred to as crossing set [25] and
is the set of all x ∈ Σ at which the trajectory of the system crossesΣ without sliding. The boundaries of Σ̃ are denoted by
∂Σ̃+ and ∂Σ̃−, with:

∂Σ̃+ = {x ∈ Σ̃ : ktbx4 + ctbx3 = WobRbµsb},

∂Σ̃− = {x ∈ Σ̃ : ktbx4 + ctbx3 = −WobRbµsb}.

The system dynamics on Σ have the form ẋ = fs(x, u), where fs is the equivalent dynamics on Σ [26,27]. For velocities
x5 6= 0, the dynamics of system (9) are described by:

ẋ =
{
f+(x, µ) if x ∈ X+,
f−(x, µ) if x ∈ X−,

(13)

with µ = Wob × u ∈ R2 the parameter vector and,

f+(x, µ) = Ax+ Bu+ Tf(x)|Tfb=T+fb
,

f−(x, µ) = Ax+ Bu+ Tf(x)|Tfb=T−fb
,

X+ = {x ∈ R5 : x5 > 0}, X− = {x ∈ R5 : x5 < 0}.

(14)

Functions f+, f− are continuous and smooth and f+ 6= f− onΣ .

3.1.1. Properties of the sliding regime

Proposition 1. System (9) with (7) is considered and the following set is defined:

S :=
{
x ∈ R5 : |ctbx3 + ktbx4| < (ctb + cb)|x5| +WobRbµb(x5)

}
, (15)

with µb(x5) as defined in (4). If x ∈ S then the system trajectory enters a sliding motion on Σ̃ ⊂ Σ .

Proof. σ̇ denotes the derivative of σ along the trajectories of the system. First, it will be shown that ∀x ∈ S, σ(x)σ̇ (x) < 0,
that is, that a sliding mode can exist. From (9), it is obtained:

σ̇ =
1
Jb

[
ctbx3 + ktbx4 − (ctb + cb)x5 − Tfb(x5)

]
. (16)
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Two cases are considered:

• Case 1: σ < 0. Then x5 < 0 and Tfb = T
−

fb
. Consequently, σ̇ > 0 in the set,{

x ∈ R5 : |ctbx3 + ktbx4| < (ctb + cb)|x5| +
[
Tcb + (Tsb − Tcb) exp

γb
vf
x5
]}
. (17)

• Case 2: σ > 0. Then x5 > 0 and Tfb = T
+

fb
. Hence, σ̇ < 0 in the set,{

x ∈ R5 : |ctbx3 + ktbx4| < (ctb + cb)|x5| +
[
Tcb + (Tsb − Tcb) exp

−
γb
vf
x5
]}
. (18)

Combining both cases, σ σ̇ < 0 in the set S as defined in (15).
Tfbeq stands for the solution for Tfb of equation σ̇ = 0. Since σ σ̇ < 0 and T

−

fb
< Tfbeq < T

+

fb
in the set S, a sliding motion

takes place when the system trajectory hits the surface σ = 0 at x ∈ S. The sliding region is Σ̃ ⊂ S.
In addition, any trajectory eventually hits the surface σ = 0 at an x within the set S. Consider that x ∈ S. Suppose that,

at a certain time, σ < 0, then the system is described by ẋ = f−(x,Wob, u) and σ̇ > 0. Hence, σ increases until it eventually
gets zero, hitting the surface σ = 0. On the other hand, if σ > 0, the system is described by ẋ = f+(x,Wob, u) and σ̇ < 0.
Consequently, at some time, σ starts decreasing until it eventually crosses zero and hits σ = 0. Therefore, any trajectory of
the systemwithin the set S enters a sliding regime on Σ̃ . Hereinafter, the set S will be referred to as the region of attraction
of Σ̃ . �

Remark 2. Proposition 1 does not assert that if the system trajectory goes into the sliding regime on the surfaceΣ then it
remains there. The trajectory may leave the sliding mode. However, if this happens, the trajectory may eventually return
to the surface. In addition, the trajectory intersects the surface σ = 0 entering in a sliding regime from the set X+34, with
X+34 = {x ∈ X+ : x3 > 0, x4 > 0}. This can be shown by contradiction. Suppose that x3 > 0 and x4 > 0 and the trajectory
hits the surface σ = 0 and no sliding motion is established, that is, the trajectory crosses the surface. Hence, at the crossing
point, it must be met that when passing from σ > 0 to σ < 0, σ̇ < 0 must be maintained. When σ < 0, σ̇ has the form,

σ̇ =
1
Jb

[
ctbx3 + ktbx4 − (ctb + cb)x5 − T−fb (x5)

]
. (19)

From (19), σ̇ is negative if either x3 < 0 or x4 < 0 (or both). This fact contradicts the supposition. Consequently, after a
certain time, the trajectory may enter a sliding regime from the setX+34.

Remark 3. Once the trajectory of the system is in a sliding regime, the sliding surface Σ̃ can change from being attractive
(stable) to be repulsive (unstable), and due to this fact the system trajectory can leave the sliding motion [25,27]. Σ̃ is
attractive ∀x ∈ S. From the form of S in (15), it can be appreciated thatWob is a key parameter determining the attractivity
of Σ̃ . The higher theWob is, the more likely is Σ̃ to be attractive, which is a nondesired situation in the drillstring.

3.1.2. System equilibria within and outside the switching surface
Two types of equilibria are identified. On the one hand, the equilibria on the switching surfaceΣ . On the other hand, the

standard equilibrium, outsideΣ , when the velocities are positive.
Threemain kinds of equilibria are identified onΣ: (1) a unique quasiequilibriumpoint for each u, (3) boundary equilibria,

(2) tangent points.

Definition 4 ([25,27]). System (13) with (14) is considered. x ∈ R5 is referred to as the standard equilibrium point of the
system if there exists (W ob, u) ∈ R2 such that f+(x,W ob, u) = 0 or f−(x,W ob, u) = 0. Let x̃ ∈ R5, ũ ∈ R be such that
fs(x̃, ũ) = 0 and σ(x̃) = 0. x̃ is said to be a real quasiequilibrium point if x̃ ∈ Σ̃ . If x̃ 6∈ Σ̃ , x̃ is referred to as virtual
quasiequilibrium point. xB ∈ Σ for which one of the vectors f+, f− vanishes is referred to as boundary equilibrium. xT ∈ Σ
for which the vectors f+, f− are nonzero but one of them is tangent toΣ is referred to as tangent point.

The quasiequilibrium point x̃ ∈ Σ has the form:

x̃1 = x̃3 = x̃5 = 0, x̃2 =
u
kt
, x̃4 =

u
ktb
. (20)

Proposition 5. The quasiequilibrium point x̃ ∈ Σ given by (20) is asymptotically stable.

Proof. The following Lyapunov function is considered, which corresponds to the sum of the kinetic and potential energy of
the system onΣ:

V (x, x̃) =
1
2

{
kt(x2 − x̃2)2 + ktb(x4 − x̃4)2 + Jrx21 + Jpx

2
3

}
. (21)
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The derivative of V along the trajectories of ẋ = fs(x, u) is:

V̇ (x) = −crx21 − ctbx
2
3 − ct(x1 − x3)

2. (22)

Consequently, V̇ (x) ≤ 0. Due to the fact that V̇ (x) = 0 only for x = x̃, by LaSalle’s invariance principle [28], the
quasiequilibrium x̃ is asymptotically stable.
Furthermore, let define the following set:A := {x ∈ R5 : V (x, x̃) < r}, where r is themaximum value for whichA ⊂ Σ .

It can be said that if the system trajectory intersects the surfaceΣ at some time inside the setA, the trajectory remains in
the surface and from that time it tends asymptotically towards x̃ [28]. �

Remark 6. If the trajectory intersects the sliding surface Σ̃ at a point which does not belong toA, the trajectory eventually
converges towards x̃. However, it may go out of the surface several times before reaching the set A. If x̃ is virtual and far
away enough from the boundary of Σ̃ , the trajectory is likely to leave the sliding motion. If the trajectory goes out of the
sliding regime, itmay eventually come back to the sliding surface depending on: (1) the attractivity of Σ̃ , and (2) the stability
characteristics of the standard equilibrium (see Section 3.2).

The set of boundary equilibria xB is the set of quasiequilibria x̃ for which |u| = Tsb . By considering ẋ = 0 in (9), the
following set of equilibria is obtained:

X0 =

{
x ∈ R5 : x2 ∈

[
−
Tsb
kt
,
Tsb
kt

]
, x4 ∈

[
−
Tsb
ktb
,
Tsb
ktb

]
, x1 = x3 = x5 = 0

}
|u| ≤ Tsb .

Notice thatX0/ ∂X0 ⊂ Σ̃ and the boundary equilibria xB ∈ ∂X0. Finally, the tangent points, xT, belong to the boundary of
Σ̃ .
A quasiequilibrium x̃ collides with a boundary equilibriumwhen x̃ is at the boundary of Σ̃ . No other local bifurcation (in

the sense of [25]) of these points occurs onΣ .
The fact that the quasiequilibrium x̃ is asymptotically stable implies that if x̃ ∈ Σ̃ , the bit will be permanently stuck. On

the other hand, the bit will move with a constant positive velocity (convergence to the standard equilibrium) when x̃ 6∈ Σ̃
and is far away from the boundary of Σ̃ . Such a condition is accomplished when u is sufficiently larger than Tsb [10].
The standard equilibrium for x5 > 0, x ∈ R5, such that f+(x,Wob, u) = 0 is:

x1 = x3 = x5 > 0, u− T+fb (x5,Wob)
∣∣∣
x5=x5
− (cr + cb)x5 = 0,

x2 =
h(x5,Wob, u)

kt
, x4 =

h(x5,Wob, u)
ktb

,

(23)

with h(x5,Wob, u) =
[
cr T+fb (x5,Wob)

∣∣∣
x5=x5
+ cbu

]
/(cr + cb) and u > Tsb > 0.

The equilibrium x is locally asymptotically stable depending on Wob, u and x5. This will be studied in Section 3.2.
Furthermore, the distance between x and the boundary of S influences in the number of times the trajectory enters Σ̃
before converging to x.

3.1.3. Sliding-mode-related dynamical regimes
The characteristics of Σ̃ , x̃, S and x and the relationships among them define three dynamical regimes:
• Stick-slip at x5, that is, the trajectory enters and leaves repeatedly the slidingmode. In this case, x can be unstable or stable
with a small domain of attraction, Σ̃ alternates among being repulsive or attractive, x̃ is next to ∂Σ̃+. From simulations
by using parameters (11), it is obtained that x belongs to the boundary of S and that the sliding periodic orbit encircles x.
Hence, if the system trajectory is in the slidingmotion (Σ̃ is attractive), when the trajectory approaches x̃, it can leave the
sliding domain, and then, Σ̃ becomes repulsive (see Fig. 4) and the trajectory eventually moves towards x. If the domain
of attraction of x is not big enough or the equilibrium is unstable, the trajectory may not reach it. Moreover, when the
bit velocity increases and gets its maximum value, Σ̃ becomes attractive, and the trajectory falls again into the sliding
domain. This is repeated continuously.
• Permanent stuck bit, i.e., x(t) ∈ Σ̃ after certain time. In this case, x can be unstable or stable with a small domain
of attraction, after certain time Σ̃ is attractive, x̃ ∈ Σ̃ and x̃ is far away enough from ∂Σ̃+. If the system is in the
sliding motion then the system trajectories tend asymptotically to x̃. Depending on the distance between x̃ and ∂Σ+,
the trajectories may enter and leave Σ̃ several times before remaining on it, each time the trajectory enters Σ̃ , it will be
closer toA, which is the domain of attraction of x̃.
• After certain time, x(t) converges to x. In this case, x is locally asymptotically stable, Σ̃ becomes repulsive after certain
time, x̃ 6∈ Σ̃ and x̃ is far away enough from ∂Σ̃+ (u is sufficiently larger than Tsb ). If the system is in the slidingmotion and
the trajectories move towards x̃, they can leave the sliding domain and fall into the domain of attraction of x. Depending
on the distance between x̃ and ∂Σ+, and on the distance between x and the boundary of S, the trajectories may enter
and leave Σ̃ several times before converging to x.
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Fig. 2. Bit-sticking phenomena in system (9): (i), (ii) stick-slip situation; (iii), (iv) permanent stuck bit. xin (•) and xout (�) are the points at which the
system trajectory enters and goes out of the sliding region. � standard equilibrium (x).F quasiequilibrium point (x̃), Σ̃ (shadowed region).

Fig. 3. Convergence to the standard equilibrium point x for positive velocities. •xin , �xout , � standard equilibrium (x), F quasiequilibrium point (x̃), Σ̃
(shadowed region).

The two sticking bit situations are shown in Fig. 2. In Fig. 3, the situation of the convergence of the trajectory to x is
depicted. Parameters (11) are used, as well as, u = 8138 Nm,Wob = 74 386N for the stick-slip case,Wob = 82 000N for the
stuck-bit case, andWob = 70 389N for the convergence to x. In the simulations, x is obtained by using the Newton–Raphson
method.
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Fig. 4. Change of the attractivity of Σ̃ when the bit is in stick-slip motion. When φ(x) > 0, Σ̃ is attractive. Otherwise, Σ̃ is repulsive. φ(x) =
(ctb + cb)|x5| +WobRbµb(x5)− |ctb x3 + ktbx4|.

Fig. 5. Local stability of x: (i) (x5,Wob) for which there are no two pairs of complex conjugate eigenvalues crossing the imaginary axis; these (x5,Wob) are
also those for which some of the conditions (25) are satisfied (wide-lined region), (ii) evaluation of∆4 for parameters (11) for varying (x5,Wob).

3.2. Stability analysis for velocities greater than zero

The standard equilibrium x is locally asymptotically stable depending onWob, u and x5. The loss of stability of x is mainly
due to the presence ofHopf bifurcations (HB). In particular,multiple subcritical HB′s give rise to branches of unstable periodic
orbits.
The characteristic polynomial of the Jacobian matrix of system (10) at the standard equilibrium x (23) is considered as:

λ5 + a4λ4 + a3λ3 + a2λ2 + a1λ+ a0 = 0, (24)

with ai, i = 0, . . . , 4, depending on system physical parameters, x5 and Wob. The local asymptotic stability of x can be
ensured by means of the Liénard–Chipart criterion [29], that is, when:

a0 > 0, a1 > 0, a3 > 0,∆2 = a1a2 − a0a3 > 0,

∆4 = ∆2(a3a4 − a2)− (a0 − a1a4)2 > 0.
(25)

From (25), safe ranges of the Wob and velocities at the equilibrium (x5) can be identified (see Fig. 5.(i) and 5.(ii)). For the
3-DOF system, the Hurwitz determinant ∆4 is numerically evaluated for varying (x5,Wob). It is concluded that for enough
high values of x5 (x5 > x∗5) and low enough values ofWob, x is locally asymptotically stable.
Different types of HB′s can be detected.We focus on simple and double HB′s [30]. A simple HB is presentedwhen a pair of

complex conjugate eigenvalues of the Jacobian matrix crosses the imaginary axis while all other eigenvalues have negative
real parts. Otherwise, a double HB arises when two pairs of complex conjugate eigenvalues cross the imaginary axis.
The presence of a simple HB is determined by the condition∆4 = 0 [30], i.e., when a3a4 − a2 = 0 and a0 − a1a4 = 0, or

when∆2 = 0 and a0 − a1a4 = 0. Although they are not the only conditions to accomplish, these conditions could guide us
to establish an estimation of theWob and the rotary velocities for which xmight not undergo a simple HB. Furthermore, a
double HB may appear when the solutions of (24) are of the form λ = ±iωj, λ = α ∈ R, with j = 1, 2. This is accomplished
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Fig. 6. Bifurcation diagrams: (i) (Wob, x5) for a fixed u = 8138N m, (ii) (u, x5) for a fixedWob = 74 386 N.

Fig. 7. Values (Wob, u) at which a HB can appear.

when a3a4 − a2 = 0 and a0 − a1a4 = 0. In conclusion, the stability region of x corresponds to low values ofWob and high
enough values of the rotary velocities. This can be appreciated in Fig. 5.(i) and 5.(ii).
The torque u is the third parameter which can be analysed in order to establish the stability of x. The bifurcation diagram

of (Wob, x5) for a fixed u is shown in Fig. 6.(i). For each value of u, a different bifurcation diagram is obtained. The bifurcation
diagram of (u, x5) and a fixedWob is depicted in Fig. 6.(ii). The stable branches represent the values of (Wob, x5) and (u, x5)
for which x is stable. The unstable branches represent the values of the parameters for which x is unstable. To concludewith,
the equilibrium x is stable when: (1) for a fixed u, theWob is small enough, (2) for a fixedWob, the torque u is large enough.
For such ranges of parameters, bit-sticking problems are avoided.
The values (Wob, u) for which a HB point appear can be also obtained. In Fig. 7, two branches of HB points are depicted,

one for HB1 and another for HB2 (Fig. 6). These branches are the origin of oscillations in the system. For each pair of (Wob, u)
a different set of periodic orbits can be obtained. The bifurcation diagrams have been obtained with XPPAUT [31].

4. Linear PI-type control to eliminate nondesired transitions

The control goals are to eliminate bit-sticking phenomena and to drive the bit velocity to a desired value. This is
accomplished by means of the following control with an adequate selection of controller parameters:

u = K1x6 + K2(Ω − x1)+ K3(x1 − x5)+ u∗,

x6 =
∫ t

0
[Ω − x1(τ )]dτ , ẋ6 = Ω − x1,

(26)

withΩ > 0 the desired velocity value, Ki, i = 1, 2, 3, positive constants and u∗ > 0 is a constant value obtained from the
sliding motion characteristics in the open-loop system. u∗ = WobRbµsb = Tsb is the minimum value of u for the system
trajectory to cross the boundary ∂Σ̃+ and leave Σ̃ . This value of u∗ prevents the bit from sticking when control (26) is
initially switched on.
The closed-loop system state vector xc is defined as,

xc = (ϕ̇r, ϕr − ϕp, ϕ̇p, ϕp − ϕb, ϕ̇b, x6)T = (xc,1, xc,2, xc,3, xc,4, xc,5, xc,6)T. (27)
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By substituting (26) in (9), the closed-loop system is obtained as,

ẋc(t) = Acxc(t)+ Tfc(xc(t)). (28)

The dynamical changes introduced by control (26) in the open-loop system are, mainly: (1) the closed-loop standard
equilibrium point (xc) has the angular velocities equal toΩ; (2) there is no quasiequilibrium point on the switching surface
Σ (x̃ disappears), consequently, the permanent stuck-bit situation is eliminated; (3) periodic orbits may still arise in the
system, due to the loss of stability of xc, basically depending on the values of K2, K3, Wob and Ω; (4) xc belongs to the
boundary of S.
As was established in Section 3, ensuring the local stability of the standard equilibrium point is essential in order not

to have stick-slip oscillations. Moreover, the properties of the existing sliding regime are key issues to fully understand the
closed-loop system response.

4.1. Sliding motion and equilibrium characteristics

In the closed-loop system, the sliding region Σ̃ ismaintained and the parameterWobwill play a key role on the attractivity
of Σ̃ . The dynamics of system (28) while evolving onΣ are obtained bymeans of the Utkin’s equivalent control method [26,
27] and has the form,

fsc(xc, K1, K2, K3) = Acxc + Tfc(xc)|Tfb=Tfbeq , (29)

where

Tfbeq(xc) = ctbxc,3 + ktbxc,4 − (ctb + cb)xc,5. (30)

Now, there is no quasiequilibrium x̃c such that fsc(x̃c, K1, K2, K3) = 0. Therefore, the permanent stuck-bit situation is
avoided.
Stick-slip oscillations may appear in the closed-loop system due to the existence of the sliding region Σ̃ which can

become locally attractive, in addition to the existence of a standard equilibrium which can become unstable or whose
domain of attraction can be reduced due to the variation of some parameters. The closed-loop system has a unique standard
equilibrium point for x5 > 0, xc ∈ R6, with:

xc,1 = xc,3 = xc,5 = Ω,

xc,2 =
h(Ω,Wob)

kt
, xc,4 =

h(Ω,Wob)
ktb

, h(Ω,Wob) =
[
cbΩ + T+fb (x5,Wob)

∣∣∣
x5=Ω

]
,

xc,6 =
1
K1

[
(cr + cb)Ω + T+fb (x5,Wob)

∣∣∣
x5=Ω
− u∗

]
,

(31)

with T+fb as defined in (8).
Two dynamical regimes are highlighted:

• Stick-slip periodicmotion. If the system trajectory is in the sliding region, it can approach its boundary and leave the sliding
domain, due to the loss of attractivity of Σ̃ . Then, it eventually tends to the standard equilibrium point xc. If the domain
of attraction of xc is not big enough or the equilibrium is unstable, the trajectory may not reach it and fall again into the
sliding domain due to the fact that Σ̃ becomes attractive with increasing velocities (Fig. 8). This is repeated continuously,
and it gives rise to the stick-slip motion (Fig. 8).
• The angular velocities are equal to Ω . xc is locally asymptotically stable. If the system trajectory is in the sliding region,
it can eventually leave the sliding region Σ̃ , which becomes repulsive due to the increase of xc,3 and xc,4 along Σ , and
can fall into the domain of attraction of the equilibrium xc provided that this domain is big enough. Depending on the
relationships between the domain of attraction of xc and the set S, the trajectory may enter and leave Σ̃ several times
before converging to xc. In Fig. 9, the influence of the value u∗ in the control is appreciated. If u∗ were not considered, an
initial stuck-bit region would appear. When the rotary velocities reach the valueΩ , the control u is greater than u∗.

The changes in the stability properties of xc are determined by the changes in the parameters K2, K3,Ω andWob. This will
be analysed in the next section.

4.2. Stability analysis and controller parameter selection

The stability properties of xc can be studied locally by means of the linearized controlled system around it. The
characteristic polynomial of the Jacobian matrix of system (28) at xc has the following form:

λ6 + b5λ5 + b4λ4 + b3λ3 + b2λ2 + b1λ+ b0 = 0, (32)
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Fig. 8. Stick-slip oscillations may arise in the closed-loop system: (i) angular velocities, (ii) projection of the system trajectory in the phase space. K1 = 15,
K2 = 20, K3 = 600,Wob = 74 386N,Ω = 12 rad/s.

Fig. 9. The control goal is achieved: (i) velocities, (ii) control u. K1 = 15, K2 = 20, K3 = 30,Wob = 74 386N,Ω = 12 rad/s.

with bi, i = 0, . . . , 5, depending on physical parameters, K1, K2, K3,Ω andWob. The local asymptotic stability of xc can be
ensured by means of the Liénard–Chipart criterion [29], i.e., when:

b0 > 0, b1 > 0, b3 > 0, b5 > 0,∆3 = b3(b1b2 − b0b3)+ b1(b0b5 − b1b4) > 0,∆5 > 0, (33)

with∆5 the Hurwitz determinant of 5th order. The goal is choosing the controller parameters K1, K2, K3,Ω andWob so that
stability conditions (33) are met.
In the first place, K1 > 0 is established. The value of K1 influences the transient system response, however, it does not

significantly influence the stability properties of xc. The higher K1 is, the higher the overshooting in the velocities is, that
is why it is convenient to maintain K1 low enough. A convenient value of K1 for the closed-loop system (28) and typical
system parameters as in (11) is K1 = 15. Low values of K2 are also convenient for the transient system response not to be
too oscillating. Now, K3 will be selected.
An estimation of safe Ω and Wob can be obtained by evaluating conditions (33). Due to the high order of the system,

the condition ∆5 > 0 is evaluated numerically. See the graphics in Fig. 10.(i). Parameters (11) and fixed Ki are used. The
wide-lined region is the region where conditions (33) are met. The curve corresponding to b1 = 0, b3 = 0, b1b2− b0b3 = 0,
b0b5 − b1b4 = 0 delimits this safe-parameter region. It can be noticed that for the cases in which xc is stable, this curve is
the safe-region limit in spite of K1, K2 and K3 variations (provided that K3 is maintained low enough). The importance of the
controller parameter K3 can be appreciated from Fig. 10.(ii). Here, it can be seen that the higher K3 is, the more reduced the
safe-parameter region is, and the higher values ofΩ are needed so that xc can be asymptotically stable.
These statements get clearer when looking at the bifurcation diagrams depicted in Fig. 11, obtained for a fixed K1 = 15

andparameters (11). From these bifurcations diagrams, the conclusions achieved through the examination of conditions (33)
are supported. Fig. 11.(i) depicts the variation of the steady velocity with respect toΩ , for fixedWob = 74 386 N, K2 = 10,
K3 = 300. Two Hopf bifurcations appear, they give rise to two branches of unstable periodic orbits. These Hopf bifurcations
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Fig. 10. Local stability of x, (Ω,Wob) for which some of the conditions (33) are satisfied: (i) K1 = 15, K2 = 20, K3 = 30, (ii) K1 = 15, K2 = 20, K3 = 600.
The wide-lined region corresponds to parameter values for which the stability conditions (33) are met.

Fig. 11. Bifurcation diagrams for system (28) for parametersΩ,Wob, K2 and K3 . Graphics have been obtained with XPPAUT [31].

points vary as long asWob, K2 and K3 vary, and different sets of periodic orbits can be obtained. The two Hopf-bifurcation
branches for varying (Ω,Wob) with fixed K3, K2, for varying (Ω, K3) with fixedWob, K2, and for varying (Ω, K2) with fixed
Wob, K3 are depicted in Fig. 11.(ii), 11.(iii) and 11.(iv), respectively.
To conclude with, in order to achieve the control goal of driving the rotary velocities of drillstring components to a

constant positive value, it is necessary that:

• Ω is high enough. See Figs. 10 and 11.(i) and 11.(ii). For typical drilling operation values of Ω , 10 ≤ Ω ≤ 14 rad/s, we
will be in the safe-parameter region for appropriate Ki values.
• For high enough values ofΩ , the parameterWob must be low enough. See Figs. 10 and 11.(ii).
• With independence of the value of the other parameters, K3 must be low enough, K3 < K ∗3 . This is clearly appreciated
on Fig. 11.(iii). A branch of Hopf bifurcation points giving rise to nondesired periodic orbits is present for all the values
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ofΩ and a fixed value of K3. For parameters (11), this value is K3 = 503. K3 around this value must be avoided. For the
example, by means of extensive simulations, it is concluded that the control goal is achieved with K3 < K ∗3 = 385.
• With high enough values ofΩ , the parameter K2 is not a problem (Fig. 11.(iv)).

5. Conclusions

A3-degree-of-freedompiecewise-smooth systemmodelling a conventional vertical oilwell drillstring has beenproposed.
An alternative method to describe bit-sticking phenomena in such a system has been presented. It is based on the
characteristics of the system slidingmotion and the equilibria. The slidingmotion is due to the dry friction consideredwhich
models the bit-rock contact. Moreover, a linear state feedback control has been used to eliminate stick-slip oscillations. In
the closed-loop system, the rotary velocities are driven to a desired value despite the presence of the sliding motion. The
controller parameter design is made by analysing the bifurcations and transitions present at the system.
The analysis proposed can be successfully applied to other mechanical systems with multiple degrees of freedom

exhibiting stick-slip oscillations and dry friction.
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