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Abstract

The formation and growth of a crack in a body subjected to stress driven material dissolution is studied. The rate of
material dissolution is proportional to strain energy and curvature of the body surface. The formation of a crack from a
plane surface is preceded by an evolving surface roughness. The continued dissolution enhances roughness amplitude
resulting in pit formation. As the pit grows deeper into the material, it assumes the shape of a crack. The sharpness of
the crack reaches its maximum during this transition from a pit to a crack. As the crack grows, a self-similar state is grad-
ually assumed. During this phase characteristic lengths of the crack shape scale with the crack length. In line with this the
crack progressively becomes blunt. The widest part of the crack when unloaded is in the vicinity of the crack tip. A con-
sequence of the model is that no criterion is needed for crack growth. Neither is a criterion needed for determination of the
crack path. It also follows that the crack growth rate is almost independent of the remote load. Further, spontaneous crack
branching is anticipated. A motivation for this is given.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During stress corrosion, loss of dissolved metal ions leads to pitting and formation of cracks. This is fol-
lowed by growth of one or several of the cracks. The dissolution process starts if bare metal is exposed to
aggressive environments. This can be a bulk aqueous environment surrounding the body or micro environ-
ment, such as in pits, crevices or under deposits, or even created by microbes that are active on the surface.
Often, an impermeable film of mainly metal oxides and hydroxides are formed by dissolved metal. Even
though the thickness of this film is typically not more than 1–4 nm, it reduces the rate of dissolution by several
orders of magnitude, cf. [(MacDonald, 1999)]. An adherent protective film increases the life of structural
members tremendously. However, the film may be damaged, e.g., as a result of cyclic loading, variations in
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the electro-chemical environment or, as is recently discovered, by microbiological activity where the substrate
material is involved in the metabolism of the microbial species (cf. ASME, 2003; Beech and Sunner, 2004).
Assuming that the protective film is either repeatedly damaged or is not able to heal, leads to a moving bound-
ary problem. In earlier studies by Jivkov, cf. Jivkov (2004), the dissolution is assumed to be a function only of
the stretching of the surface and a threshold strain is invoked to comply with the properties of the oxide film.

When a means of mass transportation such as dissolution or surface diffusion is present mechanical stress
has been observed to produce a surface waviness, which was first reported by Grinfeld (1986). The phenom-
enon when mass is transported through surface diffusion is theoretically explained by Asaro and Tiller (1972)
and Srolovitz (1989). Mass transportation through dissolution to a surrounding environment, such as an etch-
ant, is considered by Kim et al. (1999). The spectrum of the waves depends on the stress in the body surface
and the surface energy. In both cases the theory is based on the recognition of the surface energy and the elas-
tic strain energy providing driving forces for material dissolution. A large surface energy diminishes the wav-
iness and a large elastic strain energy increases the waviness. For long wavelengths the elastic strain energy
dominates and for short wavelengths the surface energy. The result is that waves with wave lengths longer
than a stress-dependent critical value grow, while waves with shorter wavelength decay with time. Experimen-
tal results by Kim et al. (1999) show that the typical spatial wavelength in aluminium is on the scale of a few
hundred nanometres when the stress is large and compare to the yield stress.

A linearized theory assuming that the amplitude of the height variation of the body surface is small leads to
symmetric growth in the sense that growth rate of peaks, as an average, is the same as the growth rate of
troughs (cf. Kim et al., 1999; Asaro and Tiller, 1972). Non-linear solutions show that, as the amplitude
increases, the troughs grow faster and the growth rate of peaks decay (Yang and Srolovitz, 1994; Chiu and
Gao, 1993; Spencer and Meiron, 1994; Kohlert et al., 2002). It was also observed that the process become
localized leading to corrosion pits. It was found that the pits seemingly approach a singular state where the
sharpest parts of the troughs assume the local geometry of an ideally sharp crack tip.

In the present article, it is demonstrated how a pit becomes a crack. In a strict sense it is a deep notch with a
relatively sharp tip. Fig. 1 shows a real stress corrosion crack in a nuclear pressure vessel. This real crack has
many features in common with the present results. The crack tip always preserves a finite radius, and, as
opposed to the previous investigators, the present authors believe that there is a minimum crack width that
depends on the crack tip driving force. It is explained in Section 4 how the crack becomes very thin and
why then the growth assumes a local steady state. In Section 5 the steady-state conditions are examined. These
conditions are the key to why the pit does not develop a cusp. Instead growth continues and a blunted crack is
formed. The implications for a solitary crack are discussed in Section 6. The solitary growing crack enters a
self-similar state in the sense that the width increases with the crack length for a fixed remote load. In this
section also probable crack branching is discussed even though convergence problems put an end to the cal-
culations before that happened.
Fig. 1. Corrosion crack in a pressure vessel steel of type SA533C11. Note that the widest part of the crack is at the crack–tip. Crack length
is 7 mm and notch width is around 10 lm. Reproduced with permission from Vattenfall AB, Sweden.
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2. The model

In this paper two forms of energy that affect the rate of material dissolution are considered, i.e., elastic
strain energy, we, and surface energy, ws. The variations of these energies are assumed to be the only driving
forces evolving the surface morphology. The material is assumed to be elastic with a modulus of elasticity E

and Poisson’s ratio m. A plane stress state is studied. The result for plane strain can be obtained by simply
replacing E with E/(1 � m2). Strains �ij are assumed to be small. Stresses rij and strains are related through
Hooke’s law rij = (E/(1 + m))�ij + dij(mE/(1 + m))�kk. Indices i, j and k assume the values 1 and 2. The elastic
strain energy density is given by the stresses and the strains as follows:
Fig. 2.
be una
we ¼
1

2
�ijrij ¼

1

2E
rijrij: ð1Þ
Einstein’s summation convention applies. The surface energy density is given as follows:
ws ¼ g0 þ cj; ð2Þ
where g0 is the surface energy density of a flat solid surface, c is the interfacial energy per unit of area and j is
the curvature of the surface (Kim et al., 1999). The curvature is defined positive if the surface is convex, i.e. if
the centre of the curvature is towards the interior of the body. Here the mass removal rate is manifested as
advance of the body surface in the inward direction. The environment serves as an inexhaustible absorber
or provider of metal ions. Fig. 2 sketches how material is removed from or deposited to the surface making
the boundary between the body and the environment move to accommodate the volume change. The advance
rate of the body surface is assumed to depend on the densities of strain energy and surface energy as follows:
vi ¼ Mðws þ weÞni ¼ M
1

2E
rklrkl þ g0 þ cj

� �
ni; ð3Þ
where M is assumed to be a constant that depends only on the environment. The vector ni is the inward normal
of the body surface, see Fig. 2.

Consider a large body with a straight traction free edge. The body initially occupies the region x1 P 0. At
large distances a uniaxial stress, r0, is applied parallel with the edge, i.e. along the x2-direction. Therefore, the
boundary conditions are:
r11 ¼ 0; r22 ¼ r0 and r12 ¼ 0; ð4Þ
and along the traction free edge, initially at x1 = 0
r11 ¼ r12 ¼ 0: ð5Þ
As the boundary evolves during material dissolution, the edge no longer coincides with x1 = 0. Assuming that
the modified edge has the normal ni, the boundary conditions (5) are replaced with the following:
ri1ni ¼ ri2ni ¼ 0; ð6Þ
along the edge. The stresses are assumed to be in a quasi-static equilibrium. Equilibrium and compatibility of
strains may be represented by the equations
Metal ions are immediately absorbed by the environment as they are detached from the body. Chemical conditions are assumed to
ffected and the fluid plays the role of an inexhaustible buffer.
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rij;j ¼ 0 and rii;jj ¼ 0: ð7Þ
In addition to this, material is removed from the edge, with a rate vi given by (3). The evolving surface is as-
sumed to remain traction free in agreement with (6). A non-dimensional form for (3) reads
v̂i ¼ � ĝ0 þ
1

2
r̂klr̂kl þ ĵ

� �
ni; ð8Þ
where v̂i ¼ Evi=Mr2
0 and ĝ0 ¼ Eg0=r

2
0, r̂kl ¼ rkl=r0 and ĵ ¼ Ecj=r2

0. Eqs. (4)–(7) are readily put in non-dimen-
sional form after division by r0.

The constant ĝ0 is assumed to be insignificant in the remaining part of the work. Initially when the waves
forming on the surface are shallow the effect of ĝ0 is a translation of the surface. During the evolution of pits
and cracks the remaining terms of (8) are assumed to dominate due to relatively large stress and curvature that
follows with the development of a pit or a crack.

A consequence of the scaling of (8) is that all the lengths scale with Ec=r2
0 and the time scales with

E2c=ðMr4
0Þ. Both length scale and time scale are relevant to the present study. A length parameter may be

defined as
k ¼ 4pEc
r2

0

; ð9Þ
and a time parameter is defined as
s ¼ 2pE2c
Mr4

0

: ð10Þ
The initial evolution of a virtually plane surface develops a roughness, where the dominating wave length
equals k. Wave lengths shorter than k/2 do not develop but are instead attenuated (cf. e.g. Kim et al.,
1999), where the plane strain result can be converted to the present plane stress result by replacing E with
E/(1 � m2).

3. Numerical analysis

A computational method that evolves a body surface by an adaptive finite element procedure is used, cf.
(Jivkov, 2003, 2004). The method is based on a problem split into equilibrium and evolution sub-problems
at each time increment. The equilibrium sub-problem, i.e. the solution of (4)–(7) is obtained using the finite
element code ABAQUS (2004). Six-node triangular elements are used. The numerical procedure is based
on the principle of virtual work. Virtual displacements dui and corresponding virtual strains, d�ij as variations
of parameterized displacement functional, give the following equation for the first variation of the total poten-
tial energy
dU ¼ 1

2

Z
V

d�ijrijdV �
Z

S
duirijnj dS: ð11Þ
The body volume V is bounded by the surface S. The solution is obtained as
dU=duðnÞ ¼ 0; ð12Þ
where u(n) are nodal displacements.
At time t, the solution to (12) provides the distribution of stress along the surface. The stress in the body

surface, along with curvature of the surface, gives the dissolution rate and the new position of the body surface
as
hiðt þ DtÞ ¼ hiðtÞ þ DtviðtÞ; ð13Þ
where the hi(t) defines the position of the surface as a function of the time t, and vi is given by (3) or in non-
dimensional form by (8). This presents the evolution sub-problem, which is solved using an in-house proce-
dure for surface tracking and geometry re-meshing. In the finite element environment, the surface advance
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is represented by surface node displacements. To ensure that the incremental evolution of the surface is not
accelerating due to developing stress concentrations eventually resulting in numerical problems, a maximum
corrosion depth is governing size of the time step, Dt, in each computational step. This maximum penetration
depth used in the present study is of the same order of magnitude as the side length of the smallest element.

A problem for moving boundaries was studied by Zhang and Bower (1999), using a finite element method,
where a differential equation had to be solved to compute the advancing of the body boundaries. The mesh
was updated in increments the same way as done in the present analysis. The character of the problem allowed
them to preserve principle meshing throughout the calculations. The present problem creates an extensive
amount of new surfaces. Because of that the mesh has to be totally rearranged during the calculations. Here
this is done at every increment. To properly follow the surface shape changes, a new distribution of nodes
along the evolved surface is essential. The existing nodes along the evolving surface at the beginning of a time
step define the positions of the same number of points along the advanced surface at the end of the time step.
A B-spline curve is created along the new surface using these node positions as spline knots (Knott, 1999).
New nodes along that curve are distributed using a surface refinement process, based on one curvature and
two length constraints. At every step of the surface refinement process, the nodes already introduced form
a polygon of line segments. The curvature constraint is given by the maximum angle that two neighbouring
segments are allowed to make. The length constraints specify the maximum and the minimum allowed node
spacing. The maximum node spacing is used to initially distribute nodes along the B-spline at regular dis-
tances. After this initial meshing, the refinement procedure is based on segment splitting using the maximum
angle and minimum distance constraints. A thorough description of the refinement process may be found in
Jivkov (2003). The evolved body geometry requires re-meshing of the interior, which is completed with a Del-
aunay-type triangulation procedure (Shewchuk, 2002). Thus, the current geometry is changed and the finite
element formulation of the boundary value problem for the next time increment is prepared. The ratio
between element sides of the smallest element and the characteristic length scale of the problem is typically
0.005k. A typical mesh is displayed in Fig. 3.

Overall, the solution is handled by the procedure for the evolution sub-problem. At each increment of time,
this procedure prepares the mesh for the current boundary value problem, invokes ABAQUS as an external
solver and waits for the equilibrium results to be delivered in order to decide for future surface evolution.

During the calculations the minimum length between nodes, lmin, was varied as k/10, k/20, k/40, k/80, i.e.
reducing the length parameter of the mesh by dividing with 2. Also the maximum length between nodes
(lmax = 10lmin) and the maximum distance of evolution governing the time increment (ladv = lmin) were reduced
correspondingly. For the case with a coarse mesh (lmin = k/10), the deep pits were not formed and there was
abnormal undulations of the surface. For finer mesh parameters, the wavy surface evolved into pits that deep-
ened. The finer the mesh, the more a cusp-like shape was obtained, i.e. that means to say that the maximum
curvature was obtained for the finest mesh investigated. For this mesh the computational efforts became too
Fig. 3. Typical mesh for a crack starting from an surface indent.
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large and the stage were the pit develops into a crack could not be investigated. The width of the cracks for the
two intermediate cases showed that the width of the crack for finer mesh was approximately 0.7 of the coarse
mesh. This indicates a somewhat slow convergens of present model. The largest differences is for a pit depth of
around 0.2k to 0.5k. The convergence rate is better for shallow waves and for large cracks.
4. Pitting

To evaluate the model the evolution of a small amplitude randomly perturbed surface is computed. In the
initial surface the nodes along the free edge are dislocated at x1 = 0 and �b < x2 < b, where the remote load is
selected so that b becomes around 10k. Every node in this section is given an initial position that is a random
distance in the x1-direction. The distances are rectangularly distributed in the interval �0.01k to 0.01k. A Fou-
rier transform of the result shows that high frequency waves diminish and that a dominating peak in growth
rate develops for wave lengths that approximately equals k. The expected wave length of the fastest growing
perturbations is k (cf. Srolovitz, 1989).

To further study the behaviour of the model for different wavelengths, an initially sine-wave perturbed sur-
face was used with a fixed wavelength k0 and the numerical value of the length scale k was changed. The initial
surface was given a maximum displacement of 0.05k0. This perturbed surface covered around 10 periods of a
cosine wave along the x2-axis, i.e., x1 = cos(2px2/k0). For k larger than 2.0k0 the amplitude is reduced during
the simulation. This is expected, given that the critical wave length is (1/2)k.

At least initially, the fastest growing waves was, as in the simulation of a randomly perturbed surface,
obtained for k = k0. Fig. 4 shows how the surface evolves for k = k0. The last position of the pit in this figure
is when the largest curvature of the tip is reached. This position defines the time t/s = 0. The time spent before
this is ambiguous since the extent of the phase with shallow waves depend strongly on the amplitude selected
for the initial waves.

Initially the amplification of the original waviness is observed to be linear, which, e.g., is manifested as a
symmetric growth of convex and concave half periods. When the amplitude becomes of the order of, say a
tenth of k, the shape becomes clearly asymmetric. After that, more or less only the inward going parts of
Fig. 4. Development of a pit. The wavelength of an initial sine-wave equals k.



Fig. 5. Comparison of final pit shape obtained by Kohlert et al. (2002) and a cycloid compared with the present result.
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the surface grow. At t/s = 0 a somewhat cusp-like shape is obtained. A curvature of around 50/k is obtained at
t/s = 0. This occurs when the depth of the pit is around 0.3k as shown in Fig. 4.

It has been suggested that the surface after some time assumes the shape of a cycloid at least for diffusion
driven cracks (cf. Kohlert et al., 2002; Chiu and Gao, 1993). The parametric form of the cycloid chosen here is
x1 ¼ kð2pÞð1=2þ cosnÞ and x2 ¼ k=ð2pÞðn� sinnÞ; ð14Þ
where x1 and x2 define the position of a cycloid surface. Fig. 5 compares the present result with the result of
Kohlert et al. (2002). A cusp shape is also included in the figure. In the solution by Kohlert et al. (2002), short
wave ripples are observed on the flanks surrounding the pit. This is supposed to indicate that the employed
series expansion nearly fail to converge. Apart from these ripples all three results at a selected stage of the
present solution, coincide fairly well. It is assumed by Kohlert et al. (2002) that a cusp solution is approached
also for his model. A significant property of a cusp or a sharp crack is the width and shape of the crack tip. At
a certain depth, the tip of the pit is supposed to degenerate to become a singular point. However, the present
calculation does not result in a cusp. Instead, after the minimum tip radius is obtained, the tip widens during
continued growth, as is described in the following section.
5. Initiation of cracks and self-similar crack growth

The pit may develop from a random surface roughness or from single frequency waves, as described in the
previous section. It may also develop from a pre-existing indent that may have caused the dissolution to local-
ize. With a periodic wavy surface an array of co-linear pits is formed. When the pits have grown beyond the
time t/s = 0 they form cracks. The simulations indicate that the competition between the growing cracks
makes the growth rate unstable. Therefore, only one or two of 10 co-linear pits simulated in the previous sec-
tion continue to become substantially large cracks. The process is likely to continue until only one crack
remains but this could not be done within reasonable computation time. Instead, here, a solitary crack is
analysed.

Fig. 6 shows how a formed crack extends while the blunting of the tip increases. The time elapsed since the
transformation from pit to a crack, defined as t/s = 0, to the present situation is t = 1.5s. The slightly sloping
crack is the result of a not fully stable path. As the crack grows the crack tip driving force increases. The stress
intensity factor, KI, is depending on geometry, only via the length of the crack, a. In this situation, when the
crack tip radius, is increasing, the strain energy is the only term in (3) that increases. The surface energy den-
sity decreases. Therefore, the strain energy increasingly dominates as a driving force for crack growth. This
leave us with a dominating length scale, (KI/r0)2 or equivalently the crack length, a.



Fig. 6. The development of a crack initiated from a pit. The non-dimensional time elapsed is t/s = 1.5. The slightly sloping crack is the
result of a not fully stable path.

Fig. 7. Normalised width, 2q/k, versus normalised crack length, a/k.
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The width of the crack increases as is shown in Fig. 7. When the crack length a P k0 the width increases
approximately linearly with crack length. At this stage the solution has assumed an approximate self-similar
state, i.e. all characteristic lengths of the evolving geometry, scale with the crack length. The length scale orig-
inates from the growth rate, vtip, at the deepest part of the pit and the time t through a ¼

R
vtip dt. Fig. 7 give

the following relation between crack width, 2q, and the crack length
2q ¼ 0:027a: ð15Þ
A more general relation is obtained by using the stress intensity factor for an edge crack, i.e. KI ¼ 1:12r0

ffiffiffiffiffiffi
pa
p

.
The relation (15) gives
2q ¼ 0:007ðKI=r0Þ2: ð16Þ
Consider that the origin of the coordinate system x1 and x2 is at the crack mouth r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
. If the shape of

the crack should remain constant the dissolution rate vi projected on the vector xi has to be constant at every
point along the surface, as the lower part of Fig. 8 shows. At the crack tip the dissolution rate is vtip. Therefore,
self-similar growth requires that the dissolution rate at all points of the crack surface fulfil the self-similarity
condition
vi ¼ vtip

njxj

r
ni; ð17Þ
where r is the distance from the crack mouth and ni is the inward unit normal of the surface.
The calculations show that the width is very small as compared with the crack length. The image of an ide-

alized crack therefore seems appropriate and (17) may, by putting x2/x1 = 0, be replaced with the steady-state
condition



Fig. 8. The tip of the steady-state growing crack. Note that the crack surfaces are slightly swaying. The lower insert shows the requirement
that the dissolution rates are constant in the x1-direction at all points of the crack surface according to (18).
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vi ¼ vtipn2
1ni: ð18Þ
In Fig. 8 the dashed curve shows the position of the crack at an earlier time increment. The result confirms that
the dissolution rate is small on the crack surfaces whereas the major dissolution occurs at the tip.

Further, another consequence of the self-similar crack growth is that the stress distribution remain constant
in the crack tip region. The stress at the crack tip, rtip, observed when the crack length a is larger than k is
around 23r0. On the flanks of the blunted tip the stress rapidly decreases. At a horizontal distance of q from
the crack tip the stress has decreased to around 4r0.

6. Discussion

The simulations show that there is an initial phase when the pit sharpens and becomes a crack. At this point
the shape is fairly well approximated by that of a cycloid. The deepest part of the cycloid is a cusp. Locally the
surfaces of the cusp are parallel and the tip is a point. Therefore, the cusp tip neighbourhood is that of a crack
and in the cusp tip neighbourhood a square root singular stress field dominates.

The stress intensity factor of the tip was calculated by Chiu and Gao (1993) to be
KI ¼ r0

ffiffiffiffiffiffiffiffi
k=2

p
; ð19Þ
where the period length of the initial wavyness, i.e., the distance between the cusps, k0 = k. The slightly sloping
crack is the result of a not fully stable path. There is not any path criteria in the present calculations and be-
cause of that the path is slightly unstable. The slightly sloping crack is the result a numerically trigged devi-
ation from a straight path (cf. Bjerkén et al., 2006). The width of a crack with the stress intensity factor given
by (19) should according to (16) be related to k as follows:
2q ¼ 0:0035k; ð20Þ
which is around 0.13 of the present result as observed in Fig. 4. It is the observation also from Fig. 7 that there
is a rapid increase in crack tip radius when the crack is growing to the length k. This could be an effect of the
assumed steady-state conditions and it could also be an effect of the slow convergence of the model.

The results for self-similar crack growth provide insight into the possibly paradoxical result that the crack
does not continue to sharpen as it grows. It is first noted that any sharp crack would be in a local state of self-
similar growth. In view of the result, a crack that is sharper than given by (16) with respect to the remote stress
intensity factor would suffer from large stresses along the approximately straight crack surfaces where the



Fig. 9. Repeated branching leads to a crack geometry with preserved self-similar properties.
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dissolution normally vanishes (see Fig. 8). Therefore, commencing dissolution would take place outside the tip
region and widen the crack. Also the opposed applies: a crack that is wider than what (16) predicts, would
leave upper and lower parts of the propagation front (in Fig. 8) undissolved which would give a sharper crack.

Because the stress, rtip, at the crack tip, that controls the rate of crack growth, vtip, remains constant, it
follows that also the crack growth rate is constant. The implication of this is that the crack growth rate remain
constant even though KI increase. This may seem like a paradox, but seems reasonable in view of the propor-
tional scaling of 2q with (KI/r0)2. The effect is that the constant, and load independent, crack growth rate is a
necessary requirement to maintain proportionality between volume removed material per unit of time and
elastic energy release rate.

As the edge crack is growing under self-similar conditions the crack widens slowly, due to the increasing
stress intensity factor. It is readily understood that this, in the extension leads to a virtually flat surface such
as the initial free edge from which several cracks could be initiated. The shortest wave length of roughness
growing on a surface with the stresses equal to those at the crack tip would be
kb ¼
2pEc
r2

tip

¼ k
2
ðr0=rtipÞ2: ð21Þ
Obviously branching ought to occur when at least 1.5 waves, i.e., two depressions, fit in along the blunted
crack front. The stresses along the blunted tip are in the interval 4r0 to 23r0. Then kb is in the interval
0.06k to 0.002k. The reasoning that 2q = 1.5kb and the relation (15) between crack tip radius and the crack
length, roughly predicts initiating branching when the crack length is in the interval
0:05k < a < 1:8k: ð22Þ
The expected crack length cannot be determined with any accuracy. The absence of branching during the pres-
ent calculations to crack lengths slightly larger that 2k is not totally unexpected considering the crude estimate
made. However, branching should be expected for crack lengths of this order of magnitude.

The expected scenario after branching is that the crack continues to grow and progressively blunt until next
branching occurs. The anticipated behaviour is depicted in Fig. 9. The preserved self-similar properties are
interesting. They provide a picture of self-similarity such as observed for branching trees, cauliflower, coastal
lines, etc.
7. Conclusions

The evolution caused by dissolution at a mechanically stressed surface is calculated. The rate of dissolution
is proportional to the total available energy provided as elastic strain energy and surface energy. An adaptive
finite element method is used to compute the evolution. The result agrees to some extent with earlier results,
for both dissolution and surface diffusion, during incipient development of surface roughness and formation
of pits. At the final stage of a pit, earlier results suggest that the body surface assumes the shape of a cycloid
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with periodic array of cusps. The present result is that the cusp shape is never reached. Instead a pit continues
to extend to form a crack with a finite crack tip curvature.

A single growing crack becomes self-similar, meaning that all linear dimensions of the developing crack.
scale with the crack length. The width of a single crack is very small compared with the crack length. Because
of the small crack width, the tip region becomes controlled by a stress intensity factor.

During the self-similar growth, the growth rate is constant even though the stress intensity factor increases.
This is due to the growth rate being controlled predominantly by stresses, which remain constant during self-
similar growth.

The growing cracks seem stable as long as the crack tip width is small. However, as a single crack grows and
the width increases, it is predicted to branch. It is further discussed that the branching should occur repeatedly,
forming a multi branched structure with self-similar properties preserved.
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